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Abstract This work presents the theoretical back-
ground, development, and preliminary evaluation of
a one-dimensional unsteady sediment transport and
bed evolution model for a looped river network. The
sediment transport and bed evolution model employs
a concept that differentiates sediment particles mov-
ing in the form of suspended sediment, and near bed,
and bed sediment. Applying the active layer con-
cept, the developed model utilizes the appropriate
exchange mechanisms between the suspended sedi-
ment and active layer material, which are presented in
great detail. The governing transport equations were
solved using the split operator approach that resulted
in two successive steps. The advection equations were
solved using the characteristics method, whereas the
diffusion equations were discretized using the Crank-
Nicholson scheme. The obtained system was comple-
mented with additional auxiliary equations in order
to allow sediment transport and bed evolution simu-
lation at nodes, thus enabling the same in a looped
river network. The derived equations were applied to
develop an open-channel flow, sediment transport, and
bed evolution model that was subjected to a series of
preliminary numerical tests.
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Introduction

Due to the complexity of sediment transport and bed
evolution models, there is still no widely accepted
approach on how these processes should be mod-
eled. While many authors have the same approach
regarding the suspended sediment transport processes,
the remaining sediment mechanisms are still being
explored. However, splitting the sediment into sus-
pended and bed sediment allows the assumption that
suspended sediment particles move continuously with
a velocity that equals the flow velocity. This hypothe-
sis makes it possible to derive the suspended sediment
mass continuity equation in its standard form.

One of the aspects where the authors approaches
usually differ is the way they model the sediment
mixture. Most of the existing sediment transport mod-
els represent the sediment mixture via a characteristic
diameter (e.g., the model SUTERNCH-2D specified
in van Rijn et al. (1990) or FAST2D detailed in
Rodi 2000), while they do not consider all of the
sediment-related processes. Another common solution
is to model the sediment as uniform. One of the more
important improvements in the sediment modeling
was when authors defined the sediment as a mixture
made of different-sized particles such as the BRAL-
LUVIAL model presented in Holly et al. (1985), or
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SEDICOUP described in Holly and Rahuel (1990a,
b). Table 1 gives an overview of the analyzed sedi-
ment transport models, where it can be seen that most
authors adopted the idea of representing the sediment
mixture with a number of size classes. This is because
when modeled that way, the computed total sediment
transport gives better agreement with the measure-
ments, than in cases when the assumption of uniform
sediment is employed.

Unlike the suspended sediment transport, the trans-
port of bead load and near bed sediment, and the
exchange mechanisms between these and the sus-
pension are far from univocal. There are three main
approaches according to which these mechanisms are
modeled. The first is based on the homogenous layer
developed by Karim and Kennedy (1982) and Karim
et al. (1983, 1987). This layer consists of a sediment
mixture that is potentially exposed to the flow. The
height of the layer is a value between the height of the
dunes and the height of a bed particle jump. Models
BRALLUVIAL (Holly et al. 1985) and CHARIMA
(Holly et al. 1990) and models from authors Armanini
and Giampaolo (1988), Rahuel et al. (1989), and many
others rely on the homogenous layer concept.

The second approach is based on the bed load layer,
where particles moving as bed load are considered
(van Rijn 1987), while the height of the layer equals
the height of the particle’s jump. Some of the models
that endorsed this assumption are the FAST2D (Bui
et al. 1998), the model developed by Rodi (2000),
FAST3D (Wu et al. 2000), or its newer version intro-
duced by Bui and Rutschmann (2006, 2010).

Finally, the third approach is the active layer and
sub-layers (stratums) approach suggested by Spasoje-
vic and Holly (1990). The idea of this approach is that
the active layer is made from sediment particles poten-
tially exposed to the flow and particles already moving
in the form of bed load. Some of the models that rely
on this approach are the MOBED2 (Spasojevic and
Holly 1990), SEDICOUP (Holly and Rahuel 1990a,
b), and CH3D-SED (Gessler et al. 1999) and mod-
els developed by authors Yang and Simoes (2008),
Hung et al. (2009), Horvat et al. (2015) and Horvat
and Horvat (2016), and others.

Constant interaction between the suspended sedi-
ment and water flow causes changes in the size class
distributions through space and time, while at the
same time defining the availability of certain particles

for the exchange processes between the suspension
and bed and near bed material. The model presented
in Struksima et al. (1985) does not consider sus-
pended sediment transport, only the bed load. Model
CCHE2D (Jia and Wang 1999) uses the bed load to
compute bed deformation, while the model presented
in Nagata et al. (2000) simulates the change of bed
elevation with bank erosion relying on an empiri-
cal expression for the assessment of the entrainment
intensity. Model BRALLUVIAL determines the bed
elevation from the mass conservation equation written
for each of the size classes separately. The CHARIMA
model (Holly et al. 1990) is a one-dimensional model
that solves the system of suspended sediment mass
balance and bed load equations, as well as equations
for sediment below the river bed. Wu et al. (2004)
suggested a one-dimensional model that considers the
suspended sediment as well as the bed load, including
exchange mechanisms between the material in sus-
pension and on the river bed for an unlimited number
of size classes. A one-dimensional model SEDICOUP
(Holly and Rahuel 1990a, b) also separately models
the suspended sediment and the sediment near and on
the bed, while bed elevation is evaluated through the
change of the cross-section area.

Recently, the greatest challenge in the filed of
sediment transport was modeling the exchange mech-
anisms between suspended sediment and bed material.
Model CCHE1D (Wu and Vieira 2002) incorporates
the standard equation for nonuniform sediment in an
un-equilibrium state. CCHE1D treats the suspended
and bed load together, meaning there is one equation
for these two types of sediment, while the exchange
mechanisms are determined as the difference between
the total sediment transport and the transport capac-
ity at an equilibrium. Model FAST2D (Rodi 2000)
represents the sediment mixture through a character-
istic grain size, while suspended sediment transport is
described using the suspended sediment mass balance
equation with exchange terms. Deposition is described
as the advection flux of suspended sediment due to
gravity, while the entrainment process is defined by
assuming an equilibrium state. Other models consider
the interaction between water and suspended sediment
using the suspended sediment mass balance equation
for the considered size class (Spasojevic and Holly
1990; Holly and Rahuel 1990a, b; Wu 2004; Zhou
et al. 2009; Hung et al. 2009). This equation includes
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Table 1 Overview of sediment transport and bed evolution models

References Type Bed Bed Susp. No. of

load elev. sed. Dep./ size

transp. change transp. /Entr. classes

Celik (1982) 2D No No Yes1 Yes No

Struksima et al. (1985) 2D Yes Yes No No No

Holly et al. (1985) 1D Yes Yes Yes No Unlim.

Celik and Rodi (1985) 2D No No Yes1 Yes No

Yang (1986) 1D Yes Yes Yes No Unlim.

Karim et al. (1987) 1D Yes Yes Yes No Unlim.

Armanini and Giampaolo (1988) 1D Yes Yes Yes Yes Unlim.

Rahuel et al. (1989) 1D Yes Yes No Yes Unlim.

Spasojevic and Holly (1990) 2D Yes Yes Yes Yes Unlim.

van Rijn et al. (1990) 2D Yes Yes Yes2 Yes No

Holly et al. (1990) 1D Yes Yes Yes Yes Unlim.

Holly and Rahuel (1990a, b) 1D Yes Yes Yes Yes Unlim.

Bhallamudi and Chaudhry (1991) 1D Yes Yes Yes No No

Bui et al. (1998) and Rodi (2000) 2D Yes Yes Yes Yes No

Olsen (1999) 2D Yes Yes Yes No Yes∗

Brors (1999) 2D Yes Yes Yes Yes No

Jia and Wang (1999) 2D Yes Yes No No No

Gessler et al. (1999) 3D Yes Yes Yes Yes Unlim.

Nagata et al. (2000) 2D Yes Yes No No No

Wu et al. (2000) 3D Yes Yes Yes Yes No

Hervouet and Bates (2000) 3D No No Yes D No

Wu and Vieira (2002) 1D Yes Yes Yes Yes Unlim.

Duan et al. (2002) 2D Yes Yes Yes No No

Olsen (2003) 3D Yes Yes Yes No∗ No

Wu et al. (2004) 1D - Yes No Yes Unlim.

Wu (2004) 2D Yes Yes Yes Yes Unlim.∗

Yongjun et al. (2004) 3D No Yes Yes Yes∗ No∗

Ruther and Olsen (2005) 3D Yes Yes Yes Yes No∗

Duan and Nanda (2006) 2D No No Yes Yes No∗

Bui and Rutschmann (2006) 3D Yes Yes No No Unlim.

Wu and Wang (2008) 1D Yes Yes Yes Yes Unlim.

Yang and Simoes (2008) 1D Yes Yes Yes Yes Unlim.

Fang et al. (2008) 1D Yes Yes Yes Yes Unlim.

Huang et al. (2008) 1D Yes Yes No No No

Khosronejad et al. (2008) 3D Yes Yes Yes Yes No

Zeng et al. (2008) 3D Yes Yes Yes Yes No∗

Garcı́a (2008) 3D No ∗ Yes Yes No∗

Garcı́a (2008) 3D No ∗ Yes D No∗

Garcı́a (2008) 3D No ∗ Yes Yes No∗

Garcı́a (2008) 3D No∗ No Yes Yes Yes

Fischer-Antze et al. (2009) 3D Yes Yes Yes ∗ Unlim.∗
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Table 1 (continued)

References Type Bed Bed Susp. No. of

load elev. sed. Dep./ size

transp. change transp. /Entr. classes

Hung et al. (2009) 2D Yes Yes Yes Yes Unlim.∗

Zhou et al. (2009) 2D Yes Yes Yes Yes Unlim.∗

DHI (2009) 1D Yes No∗ Yes Yes Unlim.

Bui and Rutschmann (2010) 3D Yes Yes No No Unlim.

Brunner (2010) 1D Yes Yes Yes Yes 20

Horvat et al. (2015) 2D Yes Yes Yes Yes Unlim.

E, entrainment; D, deposition; ∗not clear; 1steady; 2quasi unsteady

the exchange mechanism that allows the material to
get pulled into suspension, or be deposited to the river
bed.

By analyzing the extensive literature, the authors
did not find a 1-D model based on the exact compu-
tational procedures used for simulating flow, sediment
transport and bed evolution in natural watercourses as
presented in this paper. However, the concepts used
in this model (e.g., method of characteristics, active
layer concept) are well-known and used extensively
in computational hydraulics. Nevertheless, the authors
embarked on an enterprise to build such a model, and
investigate its potentials and flaws. It should be also
noted that the authors feel that this paper should be
viewed in a context of a theoretical background to
their other papers, and are hopeful that this paper has
some merit in this respect.

Governing equations

Since the sediment transport mainly depends on flow
conditions, the development of a sediment transport
and bed evolution model implies the development of a
water flow model as well. The hydraulic model imple-
mented in this model was described by Horvat et al.
(2017a); therefore, only a short overview will be given
in this paper. The one-dimensional de Saint-Venant
continuity equation is

∂A

∂t
+ ∂Q

∂x
= 0, (1)

while the momentum equation can be written down as

∂Q

∂t
+ ∂

∂x

(
α

Q2

A

)
+ g A

∂Z

∂x
+ g A Sf = 0, (2)

where A denotes the flow cross-section area, t is
the time, Q stands for discharge, x marks the spa-
tial coordinate consistent with the flow direction, α is
the velocity distribution coefficient, g is the gravita-
tional acceleration, Z is the water surface elevation,
and finally, Sf denotes the friction slope.

The domain where sediment processes are investi-
gated is divided into three parts: the suspended sedi-
ment, the active layer, and the layers (stratums) below
it, where the latter are composed of the active stra-
tum and subsequent stratums. The sediment equations
are defined for each of these elements and com-
plemented with appropriate exchange mechanisms
between them. The sediment mixture is represented
via a number of size classes k = 1, ..., K , where
K marks the total number of sediment size classes.
Since the presented work deals with the development
of a one-dimensional sediment transport and bed evo-
lution model, an additional assumption is introduced.
A cross section’s shape cannot change; however, it can
be elevated or lowered due to bed evolution.

The governing equations used for the development
of the considered model include equations describ-
ing the suspended sediment transport, bed, and near
bed sediment transport, as well as the interrelation
between them. As stated earlier, the manner in which
the suspended sediment transport is modeled has been
already described by different authors (Spasojevic and
Holly 1990; Gessler et al. 1999; Horvat et al. 2015);
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therefore, these equations are referred to only when
required in order to better understand the remaining
elements of the sediment model. Therefore, the sus-
pended sediment mass continuity equation for the k-th
size class is

∂Ck

∂t
+ u · ∂Ck

∂x
= 1

A
· ∂

∂x

(
εs · ∂Ck

∂x
· A

)

+Esed
k · B

ρ · A
− Dsed

k · B

ρ · A
, (3)

where Ck is the suspended sediment concentration of
the k-th size class, u is the velocity of the flow, x

marks the distance in flow direction, εs denotes the
turbulent diffusion coefficient, A represents the cross-
section area, Esed

k is the entrainment flux for the k-th
size class, B marks the width of the cross section, ρ is
the density of the water-sediment mixture, and Dsed

k is
the deposition flux for he k-th size class. Equation 3
can be found in Spasojevic and Holly (1990), Gessler
et al. (1999), and Horvat et al. (2015) and is easily
adapted for one-dimensional sediment transport.

Mass balance equation of the active layer

The sediment particles near and at the bed are under
the dominant influence of the gravitational force,
unlike the suspended sediment moving with same
velocity as the water. Figure 1 depicts the considered

control volume. Particle fluxes through the upstream
and downstream faces of the control volume are the
result of particles arriving and/or leaving from an adja-
cent control volume, while the particle flux through
the bottom is the result of deposition and entrainment
of particles from the bed into the suspension. Conse-
quently, the following assumptions are introduced: the
particle size distribution is constant inside the active
layer’s control volume, the same-sized particles are
exposed in the same manner to the flow, the length
of the active layer’s control volume is longer than the
length of the particles movement on the bed. How-
ever, since the active layer’s bed elevation can change,
it can move downwards and enter the layer beneath
it. Consequently, the material under the active layer is
also split into a series of sub-layers (stratums) that all
have the same horizontal dimension as the active layer
(Fig. 1).

The total mass of the k-th size class Mk in the active
layer’s control volume is Mk = ρs · Vk , whereas the
size class fraction of the k-th size class in the sedi-
ment mixture is βk = Mk/M . Applying well-known
correlations, Eq. 4 is attained where Vk denotes the
volume of the k-th size class sediment, while M marks
the mass of the sediment inside the active layer con-
trol volume V . Since V is defined by the active layer
height Ea , the cross-section width, and the distance
between two computational points �x, the active layer

Fig. 1 The active layer and
the stratums below it
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control volume is V = Ea · �x · B . The latter equa-
tion was used to derive (4), assuming the density of
the sediment particles ρs , and porosity of the sediment
mixture p to be constant.

βk = Vk

(1 − p) · V ·ρs

ρs

, ⇒ Mk = βk ·ρs ·(1 − p)·Ea ·�x·B
(4)

The change of Mk in time can be expressed as

∂Mk

∂t
= ρs · (1 − p)

�x
· ∂

∂t
(βk · Ea · B) . (5)

The change of mass given in Eq. 5 is a result of bed
load transport between two subsequent cross sections
(ϕk)us − (ϕk)ds (Fig. 1), where indexes ds and us

denote the downstream and upstream face of the con-
trol volume respectively. Additional change of mass
can occur due to the movement of particles from the
active layer into suspension (Fig. 1). This occurrence
is described through the source term Sk that appears
with a negative sign, since it represents a loss for
the considered control volume. Therefore, the mass
balance equation can be formulated as

ρs ·(1 − p)·∂ (βk · Ea · B)

∂t
= (ϕk)us − (ϕk)ds

�x
−Sk·B.

(6)

The source term is defined as the difference between
entrainment that pulls sediment particles from the
active layer into suspension and the deposition flux
that accounts for suspended sediment particles that
deposit onto the bed. Therefore, the source term can be
formulated as Sk = Esed

k − Dsed
k . Furthermore, there

is one more exchange mechanism not yet specified.
The interaction between the active layer and stratum
immediately below it, called the active stratum, is
accounted for through the flux of exchange (Sf )k that
presents a gain for the active layer and therefore it
appears in the appropriate mass balance equation with
a positive sign (Eq. 7). Consequently, in the mass bal-
ance equation for the active stratum, it has to appear
as a loss.

ρs · (1 − p)
∂ (βk · Ea · B)

∂t
+ (ϕk)ds − (ϕk)us

�x

= B ·
[
Dsed

k − Esed
k + (

Sf

)
k

]
(7)

The first step in the computational procedure is
to carry out the hydraulic calculations, after which

the sediment equations can be solved. Therefore,
when computing the sediment equation, the hydraulic
parameters are known. Governed by this reasoning,
B is considered to be independent of time within the
sediment computation itself. An additional assump-
tion is that B = const. inside a control volume;
therefore, the following notation φk = ϕk/B can be
introduced. Consequently, the final form of of the
mass balance equation for the active layer can be
derived.

ρs ·(1 − p)· ∂
(
βk · Ea

)
∂t

+ (φk)ds − (φk)us

�x
= −Esed

k +Dsed
k +(

Sf

)
k

(8)

The global mass balance equation for the active layer
and stratums

By summing the mass balance equation of the active
layer (7) over all of the size classes k, and imple-
menting the condition that the sum of all size class
fractions is by definition 100%, i.e.,

∑K
k=1 βk = 1, the

following equation is attained

ρs · (1−p) · ∂ (Ea · B)

∂t
+

K∑
k=1

[
(ϕk)ds − (ϕk)us

]
�x

− (9)

−
K∑

k=1

B ·
((

Sf

)
k
− Esed

k + Dsed
k

)
= 0.

The mass balance equation of the k-th size class for
the active stratum l is obtained in the same manner
as the active layer mass balance equation. Figure 1
clearly depicts that the active stratum is not in con-
tact with the flow, ergo it does not influence bed load,
neither can it exchange material with the suspension.
Therefore, the mass balance equation of the k-th size
class in the l-th (active) stratum is

ρs · (1 − p) · ∂
(
βk,l · Es,l · B)

∂t
+ (

Sf

)
k
· B = 0. (10)

By summing (10) over all k size classes in the sedi-
ment mixture, and implementing the same criteria that∑K

k=1 βk,l = 1, the global mass balance equation for
the active stratum is obtained,

ρs (1 − p) · ∂
(
Es,l · B)

∂t
= −

K∑
k=1

[(
Sf

)
k
· B

]
. (11)
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It can be concluded from the last equation that the
change of the active stratum’s height depends only on
its exchange with the active layer. Using the same rea-
soning as previously, a trivial mass balance equation
for the next stratum l − 1 can be derived,

ρs · (1 − p) · ∂
(
Es,l−1 · B

)
∂t

= 0. (12)

The bed elevation of the last stratum is marked zsf

(Fig. 1), and it is considered to be equal to zero, as well
as to be independent of time. It should be noted that
(12) can be written for each of the stratums beneath
the active stratum.

The global mass balance equation for the active
layer and stratums, i.e., global mass balance equation
of the bed material, is retrieved by adding together
the mass balance equations, summed for all k, for the
active layer and all of the stratums. During this oper-
ation, the same assumption was used as earlier that
B = const. during the sediment computation and
within the control volume.

ρs · (1 − p) · ∂zb

∂t
+

K∑
k=1

[
(φk)ds − (φk)us

]
�x

+
K∑

k=1

(
Esed

k − Dsed
k

)
= 0. (13)

Overview of the available equations

At this point, a total of 2K + 1 sediment-related equa-
tions are presented, K suspended sediment mass bal-
ance (3), K mass balance (8) for the active layer, and
one global mass balance (13) for the active layer and
stratums. The following variables are the unknowns:
K unknown suspended sediment concentrations Ck ,
K unknown fluxes of exchange with the deeper layers(
Sf

)
k
, K unknown fluxes due to entrainment Esed

k , K

unknown fluxes due to deposition Dsed
k , K unknown

fluxes of bed load per unit width φk , K unknown size
class fractions βk , one unknown active layer height
Ea , one unknown bed elevation zb , giving a total of
6K + 2 unknown variables. Therefore, 4K + 1 addi-
tional equations are required in order to have a system
of equations that can be solved.

The primary unknowns in the presented system
of equations are Ck , βk, and zb. The concentration
needed for the evaluation of Esed

k , diffusion coeffi-
cient, bed load flux, active layer height, and the fall
velocity are all variables that depend on the flow char-
acteristics and/or on the primary sediment unknowns
and are determined using empirical equations given in
Appendix 3.

Numerical approach for flow equations

The numerical approach for solving the flow equations
in the presented model was described by Horvat et al.
(2017a); therefore, only a short overview will be given
in this paper. As it is well-known in computational
hydraulics, for a one-dimensional model, a number
of computational points along a one-dimensional axis
can be used to describe space. The position of these
points is denoted by index i that takes values from
i = 1 at the upstream to i = I at the downstream
end of the considered domain. For the discretization
of Eqs. 1 and 2, Preissmann’s scheme was used. Equa-
tions 14 and 15 respectively present the continuity and
momentum equation,

F1

(
An+1

i , An+1
i+1 , Qn+1

i , Qn+1
i+1

)
= 0, (14)

F2

(
Qn+1

i+1 , Qn+1
i , An+1

i , An+1
i+1 , αn+1

i , αn+1
i+1 , Zn+1

i , Zn+1
i+1 ,

Kn+1
i+1 , Kn+1

i , (nstr)
n+1
i+1 , (nstr)

n+1
i

)
= 0,

(15)

where F1 and F2 mark the discrete continuity and
momentum equations and indexes i and i + 1 stand
for the computational point on the x coordinate line,
while indexes n and n+1 refer to the previous (known)
and current (unknown) time steps. The introduction of
hydraulic conveyance K in this stage is a necessity,
since the friction slope from Eq. 2 can be expressed as

Sf = Q |Q|
K2 . (16)

Consequently, in Eq. 15, K denotes hydraulic con-
veyance defined through the Strickler’s coefficient as

K = nstr A R2/3, (17)

where R represents the hydraulic radius and nstr is
Strickler’s coefficient. It is evident that Eqs. 14 and

Environmental Monitoring and Assessment (2020) 192: 242 242Page 7 of 25



15 are nonlinear; therefore, they are solved using the
Newton-Raphson iterative procedure and the Thomas
(double-sweep) algorithm as presented by Horvat
et al. (2017a).

Numerical approach for sediment transport
and bed evolution equations

Using the previously presented equations, the sus-
pended sediment mass balance (3), the active layer
mass balance (8), and the global mass balance (13),
one can describe the transport of suspended sediment
as well as bed and near bed material.

The suspended sediment equation is an advection-
diffusion equation, meaning that it has a mixed math-
ematical character, which is why the split operator
approach (Yanenko 1971) was selected as the solu-
tion approach. The main advantage of this approach
is that it allows the division of the governing equation
into separate parts, each of which is then solved using
the numerical approach that suits it best (Spasojevic
and Holly 1990; Gessler et al. 1999; Wu 2008; Hung
et al. 2009; Isic et al. 2013; Horvat et al. 2015). Hence,
the local mass change due to advection, marked with
upper index a, is given with Eq. 18, while the local
mass change caused by diffusion, marked with a + d ,
is given with Eq. 19.

(
∂Ck

∂t

)a

= −u · ∂Ck

∂x
+ Esed

k · B

ρ · A
− Dsed

k · B

ρ · A
, (18)

(
∂Ck

∂t

)a+d

−
(

∂Ck

∂t

)a

= 1

A
· ∂

∂x

(
εs · ∂Ck

∂x
· A

)
.

(19)

The direct consequence of the presented numerical
approach is the necessity to simultaneously solve the
(18), (8), and (13), so that the formerly introduced

condition
∑

β = 1 would always be satisfied (Hor-
vat et al. 2015). This computational step is called
advection and bed evolution step.

It should be noted that the numerical solution of
the suspended sediment advection equation is prone
to numerical issues such as numerical diffusion, oscil-
lations, and instability. In order to avoid these issues
as much as possible, the method of characteristics
was selected for this part of the solution. The imple-
mented approach for the suspended sediment advec-
tion is presented in great detail by Isic et al. (2013).
The diffusion step is solved using an implicit scheme
of the finite difference method, while the sediment
transport of the near bed and bed material is a slow
process which is why (8) and (13) are discretized by
integration over time and control volume.

Discretized equations for advection and bed evolution
step

The active layer mass balance equation (Eq. 8) for the
k-th size class is discretized with the finite difference
method according to the notations used in Fig. 2 and
rearranged to attain (20).

F3k = ρs · (1 − p) · (βk · Ea)
n+1
i − (βk · Ea)

n
i

�t
− ((

Sf

)
k

)
i

(20)

+ θ · (φk)
n+1
i−1/2 − (φk)

n+1
i+1/2

xi−1/2 − xi+1/2
+ (1 − θ) · (φk)

n
i−1/2 − (φk)

n
i+1/2

xi−1/2 − xi+1/2

+ θ ·
(
Esed

k − Dsed
k

)n+1

i
+ (1 − θ) ·

(
Esed

k − Dsed
k

)n

i
.

The notations used in Eq. 20 are i as the index
that marks the computational point, n the previous
(known) time step, n + 1 the current (unknown) time
step, while θ denotes the weighing factor. One Eq. 20
can be written for each size class k in the sedi-
ment mixture, so for one computational point the total
number of these equations is K .

i I i 1i 1i 1 2ii 1 2i 1

N 1 Nus ds

computational nodes

computational points

Fig. 2 Computational points and discretization notation
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The global mass conservation (13) presents one
equation with one unknown bed elevation zb. The
discretized form of Eq. 13 is given with Eq. 21.

F 1 = ρs · (1 − p) · (zb)
n+1
i − (zb)

n
i

�t
(21)

+
K∑

k=1

⎛
⎝θ

[
(φk)

n+1
i−1/2 − (φk)

n+1
i+1/2

]
xi−1/2 − xi+1/2

+
(1 − θ)

[
(φk)

n
i−1/2 − (φk)

n
i+1/2

]
xi−1/2 − xi+1/2

⎞
⎠

+
K∑

k=1

(
θ

(
Esed

k − Dsed
k

)n+1

i

+ (1 − θ)
(
Esed

k − Dsed
k

)n

i

)
= 0

Both Eqs. 8 and 13 are discretized using a semi-
explicit scheme. This implies that when computing the
bed load flux for the n + 1 time step, the velocity is
taken from the appropriate time step n + 1 (since the
hydraulic variables are known at this point), while βk

is from the previous time step n. This allows the com-
putation in the arbitrary point i to stay independent
from the surrounding points.

The discretized form of the suspended sediment
mass balance equation is

F 2k = Ca
k − (Ck)DL

−
D1∑
DL

B
(
Esed

k − Dsed
k

)
ρ · A

�t (22)

−�t1θ

(
B

ρ · A

(
Esed

k − Dsed
k

))n+1

i

,

where �t1 = tn+1 − tD1 . It should be noted that tD1

presents the time at the foot of the trajectory (Isic et al.
2013).

The derived (20), (21), and (22) are nonlinear dis-
cretized equations that must be solved simultaneously
in order to satisfy the condition

∑K
k=1 β = 1. By

linearizing the global mass balance (21), Eq. (23) is
obtained.

(23)

The linearized form of the advection (22) is

(24)

Finally, the linearized form of the active layer mass
balance (20) is

(25)

The presented system consists of 2K + 1 equations
and the same number of unknowns. However, devel-
oping a sediment transport model in a looped river
network requires complementing the usual equations
with additional ones in order to compute the sediment
transport and bed evolution at computational nodes
that define reaches (computational links) in the looped
network. Additional equations are necessary both for
hydraulic and sediment transport computation. Since
the hydraulic part of the model was described by Hor-
vat et al. (2017a), it will not be presented here. How-
ever, the supplementary equations for the sediment
transport computation are presented in the following
paragraphs.

The suspended sediment equation for nodes is
derived under the assumption that, in nodes, complete
mixing of sediment occurs. In that case, the sum of
the sediment transport mass in all links entering the
considered node, Lin, equals the sum of individual
inflows multiplied with one exiting outflow concen-
tration Cout , which is the same for every outgoing link
Lout . Therefore, the outflow concentration is also the
nodal concentration Cout = CN . According to what
was previously stated, Eq. 26 can be formulated.

Qloc · Cloc +
Lin∑

lin=1

Qlin · Clin = Cout ·
Lout∑

lout=1

Qlout

= CN ·
Lout∑

lout=1

Qlout (26)

In Eq. 26, Qloc·Cloc presents a local external inflow
to the node, Cloc is the suspended sediment concentra-
tion in the external inflow, and Qloc is the correspond-
ing discharge, while Cin and Qin are respectively the
suspended sediment concentration entering node N
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regularly, and the matching discharge. In the former
equation, Cout = CN is the outflow suspended sedi-
ment concentration from the node, while Qout is the
discharge exiting node N computed as the sum of all
inflows to the node (Fig. 3).

Every (26) contains one unknown concentration at
the considered node N , and one or more additional
unknown concentration(s) originating from upstream
node(s). This is the result of the implemented method
of characteristics for the advection and bed evolution
step. Equation 22 is the suspended sediment advec-
tion equation (Isic et al. 2013), after its integration
along a trajectory. Since the implemented computa-
tional approach allows the trajectory to travel as far
as the upstream node, in some cases, it intersects the
upstream node itself. In that case, the concentration
at the bottom of the trajectory is set as CN−1 at the
appropriate time. This means that the concentration at
the foot of the trajectory is determined by linear inter-
polation between times n and n + 1, suggesting that
Cn+1

N−1 should be known at this stage of the compu-
tation. Therefore, the computation is carried out by
first evaluating the nodal concentrations, after which
the concentrations at (internal) computational points
of a link can be determined. The nodal computa-
tion starts from the looped network’s upstream end(s),
where boundary conditions are available. This way the
algorithm works its way down the system comput-
ing only the nodal suspended sediment concentrations.
These computed concentrations at the nodes also rep-
resent the suspended sediment concentrations at the
upstream points Cn+1

I of the outflow links of a node.
Further computation requires the definition of a pro-
cedure to determine the size class distribution of the
active layer, βn+1

I , and the bed elevation, (zb)
n+1
I , at

the upstream points of the outflow links. Since the
mentioned algorithm starts from the upstream end(s)
of the looped river network, after preforming the stan-
dard computation, all of the sediment variables are
defined at the last points of the inflow links, i = 1. The
next step is computing these variables at the upstream
(first) points i = I of the exiting links. The size class
distribution at i = I of the exiting links is determined
using the continuity equation for the bed load fluxes

Lin∑
lin=1

φt
k · βk · (1−γk) · ζk =βN

k ·
Lout∑

lout=1

φt
k · (1−γk) · ζk,

(27)

where γk marks the allocation parameter of the k-th
size class (Horvat et al. 2015), and ζk is the hiding
factor of the k-th size class (Horvat et al. 2015), while
φt

k marks the theoretical value of the mass flux of bed
load transport per unit width for the k-th size class.
By employing (27), another assumption is introduced,
namely, the size class distribution is the same for all
outflow links of one node. The computed size class
distribution at a node is set as the known value of the
size class distribution at points i = I of all outflow
links. If division with zero occurs in Eq. 27, one of the
following conditions is set

βn+1
I = βn

I or βn+1
I = 1

Lin

·
Lin∑

lin=1

βn
lin

. (28)

Using the computed value βI , the bed elevations at
points i = I of the outflow links are computed from
the global mass balance (21).

Fig. 3 Schematic
representation of a node N

N

N 3

N 2

N 1

N 3

N 2

N 1

Qloc

Cloc

Lin 1

Lout 2

Lout 1

Lin 3

Lin 2

Lout 3

Qin 1

Qin 3

Qin 2 Qout 2
Qout 3

Qout 1 Cout 1

Cout 3

Cout 2

Cin 1

Cin 2
Cin 3
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Afterwards, the regular equations are used to con-
duct sediment transport and bed evolution computa-
tions for all points except at i = 1 where all of the
variables are already evaluated. This way, the iterative
computation is reduced to computing sediment vari-
ables at the downstream points of inflow links. Using
these values, the continuity equation is solved to deter-
mine the suspended sediment concentration at a node,
consequently assigning it to the upstream points of
exiting links. The size class distribution is evaluated
from the continuity equation of the bed load fluxes, or
as the average of the values entering the node, after
which solving (21) gives us the bed elevation. Finally,
the next iteration starts and the described procedure is
repeated until the criteria for stoping the iterations is
satisfied.

Discretized equations for diffusion step

The diffusion (19), presented earlier, is discretized
using the Crank-Nicholson scheme in addition to its
weighing in time (i.e., computational step). Since
the diffusion step is computed after finalizing the
hydraulic computation, all of the values known from
the hydraulic computation are taken from the cur-
rent time step (meaning the dispersion coefficient and
cross-section area). The discretized equation is

(
∂Ck

∂t

)a+d

−
(

∂Ck

∂t

)a

(29)

= θ ·
[

1

An+1
· ∂

∂x

(
εn+1
s · ∂Ca+d

k

∂x
· An+1

)]

+ (1 − θ) ·
[

1

An+1
· ∂

∂x

(
εn+1
s · ∂Ca

k

∂x
· An+1

)]
.

The time derivative is determined using Euler’s
approximation, while the discretization of the deriva-
tives in space is done in two steps. The first step is
to discretize the external derivative, and afterwards
the inner derivatives. Since the sediment computa-
tion consists of the advection and bed evolution and
diffusion step, this implies that the suspended sedi-
ment concentrations determined at the diffusion step
also represent the unknown concentrations at the cur-
rent time step Ca+d

k = Cn+1
k ; therefore, notation

n + 1 can be used. The derived equation is implicit
and is solved using the Thomas algorithm. Thus, it

is rearranged in a manner that all of the terms mul-
tiplied with the unknown concentrations (Cn+1

k )i+1,
(Cn+1

k )i , (Cn+1
k )i−1 appear on the left side, while the

terms remaining on the right side are multiplied with
known concentrations Ca

k . Furthermore, by grouping
the terms multiplying the unknown concentrations by
points, the coefficients of the Thomas algorithm are
obtained. The final form of the equation is

(
Cn+1

k

)
i+1

·Pi +
(
Cn+1

k

)
i
·Qi +

(
Cn+1

k

)
i−1

·Ri = Si.

(30)

Numerical tests

Previous sections presented the development of a one-
dimensional sediment transport and bed evolution model
for a looped river network. The first step after develop-
ing such a model is to carry out a series of numerical
tests in order to examine the model’s behavior.

Evaluating the suspended sediment transport
algorithm in a looped network

The first example has the goal to evaluate one of
the model’s elementary principles, the mass conserva-
tion of the suspended sediment at the nodes. Figure 4
shows the modeled system that consists of five hori-
zontal sections that are connected through five nodes.

Link L2 has a rectangular cross section, while
the rest of the links have trapezoidal cross sections.
The upstream boundary condition for the hydraulic
computation is a known hydrograph, while on the
downstream boundary, a known water depth of 10 m

is set. The initial discharge is Q = 190 m3/s and it
remains constant for the first 15 days of the computa-
tion. Afterwards, the discharge increases in two days
time to a value of Q = 240 m3/s and stays unchanged
for one day. After a day, it decreases to Q = 180 m3/s

in two days time. Subsequently, the discharge stays
constant until the end of the simulation. During all of
the considered simulations, node n = 3 has a constant
local inflow of Qlocal = 20 m3/s. The sediment com-
putation requires only upstream boundary conditions,
which is in this case set as a constant value of concen-
tration in time. At node n = 3, along with the local
discharge, the inflow of suspended sediment is also
defined.
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Fig. 4 Representation of the schematic channel

The discharge and velocity distributions along the
considered channel, at various times, are given in
Fig. 5. Comparing the results at different times (con-
tinuous line represents the results before the wave,
the dotted during the wave, and dashed after), the
influence of the passing wave is easily detected.

Figure 6 contains functions Q(t) and C(t) at nodes
n = 4, n = 3, and n = 2. It can be noted that at node
n = 4, the incoming hydrograph entering through
link L5 equals the sum of the outflows through links
L2 and L4. Since this node has no local inflow, the
results are as expected. Node n = 3 connects only
two links, the inflow link L4 and outflow link L3, but
the boundary conditions are set so that there is local
inflow of water that explains the increased hydrograph
on the outflow link. Node n = 2 connects links L2

and L3; therefore, the sum of their discharges equals
the outflow discharge through link L1.

Next, the change of total concentration in time
SumC at node n = 4 is evaluated. During the deriva-
tion of the equations, it was assumed that the distribu-
tion of concentrations at nodes is proportional to the
discharges. By analyzing Fig. 6, it can be observed
that the suspended sediment concentration entering
node n = 4 equals the concentrations at the upstream
ends of the outflow links. The result is a consequence
of the implemented concept, that the nodal concen-
trations are computed proportional to the discharge.
Analogously, the outflow link of node n = 3 shows
decreased values of concentrations in comparison with
the inflow link, despite the fact that the node has a
local inflow of suspended sediment. This is caused

(a) Change of discharge in space - Q(x) (b) Change of velocity in space - u(x)

Fig. 5 Change of discharge and velocity throughout the channel on route L5 − L4 − L3 − L1
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(a) Change of discharge at node n=4 (b) Change of discharge at node n=3 (c) Change of discharge at node n=2

(d) Change of total concentration at node n=4 (e) Change of total concentration at node n=3 (f) Change of total concentration at node n=2

Fig. 6 Suspended sediment transport at a looped channel

by the fact that the mixture of the local concentration
and local discharge is in a proportion that decreases
the suspended sediment concentration. The same is
observed at node n = 2. There are two links enter-
ing this node: link L2 with greater value of suspended
sediment concentration and link L3 with a smaller
concentration. The result is that the outflow link has
the concentration between these two values.

Evaluating the linear advection

As stated earlier, implementing the split opera-
tor approach onto the sediment transport equation
resulted in two subsequent steps: the advection and
bed evolution and diffusion step (Spasojevic and Holly
1990). While the diffusion term is numerically benign,
the advection step is known for introducing a series
of difficulties into the computation. The main issue
can be attributed to the stochastic change of the
Courant’s number in both space and time, resulting

from the open channel’s natural geometry and bound-
ary conditions. The greatest challenge when solving
the advection equation is to select a numerical solu-
tion that will ensure accuracy, and at the same time
allow the use of larger time steps. Many authors opt for
finite difference schemes for the advection step, due
to their simplicity (Wu 2008; Fletcher 1991; Hirsch
2007; Strikwerda 2004), while Lax and Wendroff
(1960) developed a second-order scheme for the linear
advection equation.

A number of researchers investigated the employ-
ment of the method of characteristics onto the linear
advection aiming to reduce the influence of numerical
diffusion. Since this method depends on the interpola-
tion it uses, there are different papers on this subject.
Leonard suggested quadratic upstream interpolation,
while Holly and Preissmann (1997) proposed a local
cubic interpolation polynomial that was further inves-
tigated by other authors Ahmad and Kothyari (2001),
Tsai et al. (2006), and Yang and Hsu (1991).
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The tests presented here were conducted on the
pure advection equation. Afterwards, the same proce-
dure was employed on the advection as a part of the
split operator approach (as in the developed model).
The numerical solutions were evaluated based on the
displayed dispersion and dissipation, and the pure
advection tests are carried out on the example of Gauss
function and the steep wave example. Although these
tests were performed diligently using the developed
model, they are generally known and well elaborated
in literature. Therefore, they are given in Appendices
1 and 2.

Examining the exchange mechanisms

While deriving the governing equations, the sus-
pended sediment source term was defined as the
difference between the entrainment flux and deposi-
tion flux. To evaluate the integrity of the incorporated
exchange mechanism, two representative situations
were evaluated.

The first scenario is clean water entering a water-
course whose bed is covered with sediment. Assuming
the flow characteristics are designed so that they can
initiate bed sediment movement, the expected out-
come is the bed sediment entrainment into suspen-
sion. This would lead to the watercourse containing
suspended sediment that is then available for depo-
sition. By imposing steady-state flow conditions, it
is expected that after some time, the equilibrium
between entrainment and deposition will be achieved.

The other scenario is based on a watercourse that
has no sediment in it, and its bed is also clear of
any sediment that could be entrained. The upstream
boundary condition is set so the water entering the
watercourse contains suspended sediment. In this sce-
nario, by ensuring proper hydraulic conditions, it is
anticipated that suspended sediment deposition will
occur. As a result, sediment will appear on the bed that
is then available for entrainment. By allowing steady-
state flow conditions, after a certain amount of time,
the sediment will reach an equilibrium state; thus,
entrainment will be balanced out with deposition.

The considered situations are the simplest
approaches to test the exchange mechanisms. In order
to attain a result as clear as possible in both exam-
ples, the considered watercourse was selected as a
prismatic channel with a rectangular cross section
with B = 10 m and a horizontal bed. The total length

of the channel was 20 km and the computational
points were placed at a distance of 0.5 km, resulting
in 41 computational points total. The time step was
�t = 60 s. The hydraulic computation was the same
in both scenarios, setting the initial conditions as
still water with the initial depth of h = 10 m. The
upstream boundary condition was a known discharge
over time that was set as Q = 0.0 m3/s at the start of
the simulation and rises to Q = 90 m3/s in two days
and remains as such until the end of the simulation
time. The downstream boundary condition was a
known water depth of h = 10 m. After the discharge
reached its maximum, approximately 39 days were
left for the hydraulic model to reach a steady state,
before starting the sediment computation. Further
simulation data differ for the two considered cases, so
they are presented separately.

Bed sediment entrainment

For the evaluation of the entrainment model, the initial
and boundary conditions set for the sediment com-
putation were the same. There is no sediment in the
water, neither is there sediment in the water entering
the channel. The initial and boundary conditions for
the sediment are set as known percentages of a size
class fraction on the bed. In order to attain more appar-
ent conclusions, only one size class was considered;
therefore, the initial and boundary conditions were
β = 1 for the given size class. The simulated time
interval for the sediment computation was 11.66 days.
Since the equilibrium state was reached much earlier,
the results are presented only for two days.

Figure 7 shows the changes through time of sus-
pended sediment concentration, entrainment flux, and
deposition flux, while Fig. 8 presents the change of
the same variables throughout the channel. Figure 7a
displays the temporal variation of C, E, and D at com-
putational point i = 10, while keeping in mind that
point i = 1 is on the downstream end of the channel. It
can be observed that the value of the entrainment flux
is greater at the beginning of the sediment simulation
and it decreases as the computation advances due to
the diminishing of bed material available for entrain-
ment into suspension. The opposite can be detected for
the deposition flux which is the smallest at the begin-
ning of the simulation since there is no sediment in
the water that could be deposited. As the simulation
advances, the sediment concentration C in the water
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(a) Entrainment (E), deposition (D) and total concentration 
(Conc) at computational node i=10

(b) Entrainment (E), deposition (D) and total concentration 
(Conc) at computational node i=30

(c) Total concentration (Conc) at computational points i=10 
and i=30

(d) Entrainment (E) and deposition (D) at computational points
i=10 and i=30

Fig. 7 Entrainment through time

increases. This statement is supported by the C(t)

curve in the considered figure. The increased sus-
pended sediment concentration also means that there
is enough sediment in the water to start deposition, as
can be seen on the D(t) curve. Furthermore, it can be
noted that after some time, all three curves become
horizontal. More precisely, the values of entrainment
and deposition even out, resulting in equilibrium val-
ues of the considered variables.

Figure 7b depicts the same variables at point i =
30. By comparing Fig. 7a and Fig. 7b, it can be
detected that, even though the shapes of the curves
are the same, there are some differences between
the values. For example, in Fig. 7a, the value of the
suspended sediment concentration, when it reaches a
steady state, is C ≈ 260 ppm, while in point i = 30
(Fig. 7b), this value is C ≈ 225 ppm. Considering
the fact that point i = 30 is closer to the upstream
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(a) Entrainment through space at different times (b) Deposition through space at different times

(c) Total concentration through space at different times (d) Entrainment (E) and deposition (D) through space at 
different times

Fig. 8 Entrainment through space

end, the attained results correspond to the expected
behavior. The difference between suspended sediment
concentrations at steady state is explained by the fact
that point i = 10 is further down then point i = 30;
therefore, it has more space and time to pull bed sedi-
ment into suspension, leading to greater concentration
values. This is also presented in Fig. 7c and d.

Figure 8a presents the variation of E throughout the
channel at different times. It is observed that the great-
est value of E appears at the beginning of the sediment

computation, and it decreases in time, until reaching
equilibrium, when any further computation results in
the same curve (the two lowest curves in the figure
are overlapping). Additionally, it can be noticed that
the value of E generally increases downstream, since
there is more available material to be entrained into
suspension. The increase of E throughout the channel
declines in time, and the line slowly tends to become
horizontal due to the influence of the deposition
term.
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Figure 8b and c show the changes of D and C

throughout the channel at different times. By compar-
ison, it can be discovered that both of these variables
are the smallest at the beginning of the simulation,
and increase in time until reaching an equilibrium
state (two upper curves overlapping in both figures).
As the value of entrainment is increasing towards the
downstream end, the value of C is also increasing
and making it possible for the deposition to increase
as well. Figure 8d simultaneously depicts values E

and D throughout the channel at different times.
The largest values of these variables are observed at

the beginning of the simulation. It is also discov-
ered that the difference between these two values
decreases in time, until reaching an equilibrium state,
manifested as the balancing out of E(x) and D(x)

curves.

Suspended sediment deposition

In this numerical test, the initial condition for the sed-
iment computation is set as known values C = 0.0,
while the upstream boundary condition is a known
suspended sediment concentration.

(a) Total concentration at computational points i=10 and i=30

(b) Entrainment (E), deposition (D) and total concentration
(Conc) at computational point i=10

(c) Entrainment (E) and deposition (D) at computational points
i=10 and i=30

Fig. 9 Deposition through time

Environmental Monitoring and Assessment (2020) 192: 242 242Page 17 of 25



Figure 9a depicts concentration changes through
time in two selected computational points: i = 10
and i = 30. The selected time interval embraces the
moment when the disturbance reaches the selected
points and slowly increases the concentrations until
reaching a constant value that matches the one
assigned with the boundary conditions. Figure 9b
presents the values of E, D, and C at point i =
10. Furthermore, this demonstrates that the inflow of
water containing suspended sediment into a channel
with no sediment on its bed will provoke deposi-
tion, as expected. As a consequence of the deposition,
bed sediment will become available for entrainment,

explaining the lag of function E in comparison with
D. It can also be observed that, as the concentra-
tion value becomes steady, the values of E and D

even out confirming the establishment of an equilib-
rium state. Figure 9c shows the changes of E and
D at points i = 10 and i = 30, where it can be
noticed that values at point i = 10 lag behind values
at point i = 30. This is explained by the fact that point
i = 30 is located upstream of point i = 10, so the
disturbance that occurs at the upstream end reaches it
first.

The changes through space are presented in Fig. 10.
Figure 10 a shows the change of concentration through

(a) Total concentration through space at different times (b) Deposition through space at different times

(c) Entrainment through space at different times (d) Entrainment (E) and deposition (D) through space at different times

Fig. 10 Deposition through space
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space at various times. By comparing the concen-
tration values at different times, one can notice the
increase of concentration from the initial condition
until reaching the value of the boundary condition.
Figure 10b and c present the changes of D and E

through space for the selected times, where it can
be observed that the increased concentrations are fol-
lowed by deposition, while the consequence of depo-
sition is the occurrence of entrainment. In Fig. 10d,
it can be seen that function D(x) is always in front
of curve E(x), due to the previously stated reasons.
Furthermore, it clearly displays the tendency of these
functions to balance out reaching an equilibrium state.

Conclusion

This paper presents the theoretical background and
preliminary numerical tests for a one-dimensional
sediment transport and bed evolution model for an
arbitrarily looped river network. The developed model
relies on the active layer and sub-layers concept, and
includes a complete set of governing equations that
account for the transport of a sediment mixture as sus-
pended, bed, and near bed sediment, as well as for
possible morphological changes through the exchange
mechanisms of entrainment and deposition. Utilizing
the split operator approach, two sets of equations were
defined, the advection and bed evolution equations
and diffusion equation. Consequently, the suspended
sediment advection was solved using the method of
characteristics with the third-order local interpola-
tion polynomial. However, this method was somewhat
enhanced, providing the possibility for the particle
trajectory to travel through multiple computational
points, all the way to the upstream node of that particu-
lar reach. This enabled the model to handle larger time
steps, thus reducing CPU time. The diffusion equation
was solved using the Crank-Nicholson scheme.

As to the computational procedure when solving
the advection and bed evolution equation set, the
guiding principle was the simultaneous solution of
all equations for each computational point indepen-
dently. This significantly reduced the complexity of
the model, since the sediment computation (within the
advection and bed evolution step) remained explicit
in space, but implicit within one computational point.
Naturally, this procedure did not restrict the use of an
unlimited number of size classes when describing a

sediment mixture. To facilitate the modeling of sedi-
ment transport in arbitrarily looped river networks, the
derived equations were complemented by additional
equations that rely on nodal mass balance equations.
In the case of suspended sediment, a complete mixing
in nodes was assumed, while for the active layer size
class distribution, the solution algorithm relies on a
continuity equation for bed load fluxes with complete
mixing of active layer material in nodes.

Initial numerical tests were conducted using
schematic examples in order to evaluate the exchange
mechanisms defined within the model as well as the
mass balance equation for the whole modeled domain.
These tests focused on evaluating the entrainment
and deposition fluxes in situations when predictable
results can be expected. For the entrainment mech-
anism, a scenario when clear water enters a chan-
nel with bed material was conceived, while for the
deposition mechanism, a situation when water with
suspended sediment enters an empty channel was
analyzed. In both cases, the temporal and spacial evo-
lution of the entrainment flux, deposition flux, and
suspended sediment concentration was monitored. It
was concluded that the exchange fluxes eventually
come to an equilibrium, while the suspended sedi-
ment concentration takes on a constant value within
one computational point as steady state is achieved.
Furthermore, the error of the sediment mass balance
equation and the condition for the sediment size class
distribution remain within machine precision. Since
the model performed well in all analyzed scenarios,
it was concluded that the developed model passed the
first stage of the evaluation process and is ready to be
further examined using more complex field scenarios.
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Appendix 1. Linear advection

The pure advection equation and the initial conditions
can be formulated as
∂C

∂t
+ u

∂C

∂x
= 0, C (x, 0) = C0 (x) , (31)

where C0 marks the initial concentration, C is the con-
centration, and u is the known and constant velocity,
while x and t are respectively the space and time coor-
dinate. Equation 31 has an exact solution, implying

Environmental Monitoring and Assessment (2020) 192: 242 242Page 19 of 25



that for positive values of u and initial concentra-
tion C0 (x), the solution moves to the right without
changes in its shape. For negative velocities u, it will
move towards the left, also without any changes in its
shape. The numerical solution of Eq. 31 is obtained
using the method of characteristics with two differ-
ent types of interpolation, namely third- (HP3) and
fifth (HP5)-order interpolation polynomials. Further-
more, four different schemes of the finite difference
methods, the Upwind (UW), Lax-Friedrichs (LF),
Lax-Wendroff (LW), fourth-order Runge-Kutta (RK),
and Mac-Cormack (MC2) were utilized. The accuracy
of the numerical solution was evaluated by comparing
it with the exact solution.

The following equation is the analytical solution of
the linear advection equation used in this test

C (x) = e

−(x−x0)2

2σ 2
x , (32)

where x0 marks the placement of the extreme value
of the Gauss function, and σx = 250 m is a standard
deviation parameter. The initial conditions are derived
from Eq. 32 by setting the maximum of the function at
x0 = 0.0 m in t = 0.0 s, while the upstream boundary
condition is attained from the same equation by letting
the remaining part of the function enter the computa-
tional domain at t > 0.0 s. The length of the modeled
domain is L = 10 km, the total simulation time is
160 min, and space increment is set as �x = 200 m,
while the propagation velocity measures u = 0.5 m/s.

The results of these test were presented earlier by
the Isic et al. (2013), where the von Neumann stability
analysis was conducted. For Courant number values
λ < 1.00 numerical oscillations occur and/or dissipa-
tion of the solution, depending on the selected numer-
ical approach. It is also noticeable that the difference
between results attained by Mac-Cormack deviates
much more than those obtained with HP3 and HP5.
This also supports the decision to introduce a third-
order interpolation polynomial. On the other hand,
it was observed that using a fifth-order interpolation
polynomial is not necessary, since it does not provide
much improvement in the results, while it does intro-
duce a series of complications during the derivation
of the equations. Another disadvantage of the finite
difference method is its need to satisfy the Courant-
Friedrichs-Lewy condition during the computations,
(Thomas 1995) (for the Upwind, Lax-Friedrich, and
Lax-Wendroff 0 < λ ≤ 1, for Runge-Kutta 0 < λ ≤

2
√

2). On the other hand, the method of characteris-
tics does not have this type of restrictions. Considering
the presented, it would be reasonable to opt for such
computational parameters that would ensure λ = 1
values, but due to practical reasons, this is impossible,
especially when modeling natural watercourses.

Appendix 2. Linear advection as a part of the split
operator approach

The next step is to utilize the considered numerical
approaches for the solution of the sediment transport
equation in natural watercourses. Since this kind of
example does not have an exact solution, due to the
changing geometry and other parameters, the results
attained with HP5 will be considered as representative
for the evaluation of the other methods.

The longitudinal section of the modeled domain
is presented in Fig. 11a where P 1, P 2, and P 3
marked with red lines are the cross sections where the
results were analyzed. The total length of the modeled
domain was L = 5080 m with �x = 20 m, while the
total simulation time was 39.2 h. The selection of the
computational time step of �t = 30 s was conditioned
with the most sensitive of the considered schemes.
The upstream boundary condition for the sediment
computation is given with the Gauss curve while the
hydraulic part of the computation was set as steady
flow. Figure 11c, d, and e show the temporal change of
the suspended sediment concentration at sections P 1,
P 2, and P 3 attained with different numerical meth-
ods. By inspecting the results, it is obvious that the
HP3 gives the results closest to the referent values
(attained by HP5). The results computed with MC2
and LW lag behind the HP3 results, while the rest of
the approaches gave even worst agreement. Figure 11b
shows the change of Courant’s number through the
computational domain as a consequence of altering
geometry, making it impossible to set the value λ = 1
for realistic examples. Furthermore, restraining the
Courant number would lead to considerably longer
CPU times when modeling open-channel flow and
sediment transport, where often the simulated time is
a few years. One of the most important advantages of
the characteristics method is that it can be modified to
accommodate greater time steps. Since the complexity
of the procedure increases with the order of the inter-
polation, the HP3 approach was used because it gives
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(a) The longitudinal section of the modeled domain (b) Courant's number through space

(e) Concentration at point P3(d) Concentration at point P2(c) Concentration at point P1

Fig. 11 Sediment transport computation—stable solution

(a) Courant's number in space

(b) Concentration at point P1 (c) Concentration at point P2 (d) Concentration at point P3

Fig. 12 Sediment transport computation—unstable solution
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better results than MC2, and is good enough when
compared with HP5, keeping in mind the complexity
generated by the fifth-order polynomial.

The computational results attained by different
methods are presented in Fig. 12b, c, and d. In contrast
to the UW and RK schemes that become numerically
unstable with increased time steps, the HP3 algorithm
works without any significant decrease in its accuracy.
Courant numbers are displayed in Fig. 12a. For the
presented finite difference methods the computed val-
ues of λ are the maximal values that could be reached
by them, while the HP3 algorithm could have worked
properly even with greater values of λ.

As it can bee concluded from the presented equations
in the “Numerical approach for sediment transport and
bed evolution equations” section, the computationally
most demanding numerical method in the developed
1-D model is the method of characteristics used for
solving the advection step. To remedy this, the com-
putational procedure was conceived in such a way to
allow the particle trajectory to traverse an arbitrary
number of computational points within one computa-
tional link. This allows the HP3 method to use larger
time steps than the other methods, thus reducing the
computational time (Table 2).

Although the implemented characteristics method
(HP3) with a longer trajectory excels amongst the
tested methods, this method is unfortunately not suited
for parallel processing as one of the currently used
techniques for improving computationally demanding
models.

Table 2 Computational times

Numerical Time step (s)

method 15 30 50 100 300 600

HP3 100.28 61.32 37.95 26.63 10.65 6.48

RK 108.75 62.15 – – – –

UW 103.45 64.37 39.77 – – –

LW 104.11 56.74 40.12 – – –

MC 105.54 61.02 – – – –

MC2 101.02 61.10 – – – –

Appendix 3. Auxiliary equations

The bed load flux for unit width is

φk = φt
k · βk · (1 − γk) · ζk, (33)

where φt
k is the theoretical value of the mass flux of

bed load transport per unit width suggested by van
Rijn (1984a).

The deposition flux is determined according to
Eq. 34, where C

dep

k stands for the suspended sediment
concentration representative for computing the depo-
sition flux that is set as C

dep

k = Ck , while w
f

k marks
the fall velocity that can be found in van Rijn (1984b).

Dsed
k = ρs · w

f
k · C

dep
k (34)

As an alternative, the equations suggested by Wu
and Wang (2006) can be used to determine the fall
velocity.

The entrainment flux can be modeled analogously
to the deposition flux, resulting in Eq. 35, where Cer

k is
the suspended sediment concentration representative
for the computation of entrainment that can be set as
Cer

k = Ck , and adding the term βk in order to take into
account the availability of a certain size class.

E
sed,1
k = βk · ρ · w

f
k · Cer

k (35)

Another option is to evaluate the entrainment as the
remaining material that was not taken into account as
bed load flux, but rather as the sediment mass that was
pulled into the suspension. In that case, this term can
be modeled as

E
sed,2
k = φt

k

�x
· βk · γk · ζk, (36)

where the right-hand side is divided with �x since
the bed load flux is given per unit width, while the
entrainment flux is given per unit area.

The third option incorporated into the model is to
evaluate the entrainment flux as

E
sed,3
k = −εt · ∂ (ρ · Ck)

∂z

∣∣∣∣
zb

= − (εt )ak+�a · ρ · (Ck)ak+�a − (Ck)ak

�a
, (37)

where (Ck)ak+�a = Ck , and (Ck)ak
is an empiri-

cally determined value computed as suggested by van
Rijn (1984b). The turbulent diffusion coefficient εt is
computed as

εt (z) = 1

σk

· κ · u∗ · z ·
(

1 − z

h

)
, (38)
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where κ marks the von Karman constant, and h is the
water depth. Equation 38 was modified to accommo-
date one-dimensional models; thus, the depth h was
replaced with the average depth, while for z, it was set
z = a.

It should be noted that for determining the param-
eters that profoundly influence the exchange mecha-
nisms, one can also use a stochastic approach, e.g.,
multivariate analysis (Pastor et al. 2016).

The active layer depth is computed according to
Spasojevic and Holly (1990), and Hung et al. (2009).

The equations describing one-dimensional,
unsteady open-channel flow are derived from the
three-dimensional equations by averaging them over
the width and depth. Consequently, the dispersion
term appears. This equation term is modeled anal-
ogously to the diffusion term which is why they
are grouped together. Computing diffusion requires
knowing the diffusion coefficient, and in the case
when dispersion is modeled, its coefficient should
also be determined. Fischer et al. (1979) proposed Eq.

K = 0.011 · u2 · B2

h · u∗
. (39)

Alternatively, expressions proposed by Falconer
(1984) or Zhou et al. (2009) can be implemented, who
suggested a joint diffusion and dispersion coefficient
averaged over depth and used then to model two-
dimensional flow. These expressions can be simplified
to accommodate one-dimensional flow as in Eq. 40.

K = kl · u · h · √
Cf (40)

In Eq. 40, kl marks the depth averaged, longitudinal
dispersion coefficient, Cf stands for the friction factor,
and K is the joint dispersion and diffusion coefficient.
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