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Abstract Like all infectious diseases, the infection rate
of COVID-19 is dependent on many variables. In order
to effectively prepare a localized plan for infectious
disease management, it is important to find the relation-
ship between COVID-19 infection rate and other key
variables. This study aims to understand the spatial
relationships between COVID-19 infection rate and
key variables of air pollution, geo-meteorological, and
social parameters in Dhaka, Bangladesh. The relation-
ship was analyzed using Geographically Weighted Re-
gression (GWR) model and Geographic Information
System (GIS) by means of COVID-19 infection rate as
a dependent variable and 17 independent variables. This
study revealed that air pollution parameters like PM, 5
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(»<0.02), AOT (p<0.01), CO (p<0.05), water vapor
(p<0.01),and O3 (p < 0.01) were highly correlated with
COVID-19 infection rate while geo-meteorological pa-
rameters like DEM (p < 0.01), wind pressure (p < 0.01),
LST (p<0.04), rainfall (p<0.01), and wind speed
(p <0.03) were also similarly associated. Social param-
eters like population density (p <0.01), brickfield den-
sity (p < 0.02), and poverty level (p < 0.01) showed high
coefficients as the key independent variables to COVID-
19 infection rate. Significant robust relationships be-
tween these factors were found in the middle and south-
ern parts of the city where the reported COVID-19
infection case was also higher. Relevant agencies can
utilize these findings to formulate new and smart strat-
egies for reducing infectious diseases like COVID-19 in
Dhaka and in similar urban cities around the world.
Future studies will have more variables including eco-
logical, meteorological, and economical to model and
understand the spread of COVID-19.

Keywords COVID-19 - Dhaka city - Bangladesh - GIS -
Geographically Weighted Regression (GWR)

Introduction

In December 2019, the first reported cases of a new
infectious disease were found in Wuhan, China (Guan
etal. 2020). It was named COVID-19, a new virus of the
group of coronavirus, which is also known as severe
acute respiratory Syndrome Coronavirus 2 (SARS-
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CoV-2) (Gorbalenya et al. 2020; Pedrosa 2020). The
typical clinical symptoms include fever, dry cough,
myalgia, and pneumonia which may cause progressive
respiratory failure due to alveolar damage and may
eventually lead to death (Huang et al. 2020). On 11
March 2020, the World Health Organization (WHO)
has declared the COVID-19 as a public health emergen-
cy because the number of cases drastically increased
outside of China (WHO 2020). As of May 20, 2020,
4,900,255 confirmed cases in over 200 countries/
regions and 323,341 deaths were reported worldwide
(University 2020).

Like other countries, Bangladesh is also suffering
from this global pandemic. The country has a population
of more than 163.7 million with a population density of
1265/km* making it one of the most densely populated
countries in the world (Worldometers 2017). Almost
37.4% of its total population lives in urban areas with
a high level of air pollution (“Bangladesh—Urban pop-
ulation” 2020). Most Bangladeshi urban areas, specially
its capital Dhaka, are highly exposed to different types
of air pollutants, e.g., PM, 5, PM;y, COx, NOx, SOx,
and dust because of uncontrolled urbanization, industri-
al emissions, high traffic density, and construction ac-
tivities. Because of high population density and high
pollution levels have an adverse effect on public health,
the residents of Dhaka are highly susceptible to the risk
of COVID-19 infection. As of May 22, 2020, according
to the Institute of Epidemiology, Disease Control and
Research (IEDCR), Bangladesh, reported 28,521 con-
firmed cases with total death of 408 in the whole coun-
try. The majority of the confirmed cases were identified
in Dhaka which is also the epicenter of this infectious
disease, and till now, there have been 12,386 confirmed
cases reported with 103 deaths (“Bangladesh Covid-19
Update (2020)” 2020).

Research investigating the relationships between
COVID-19 infection rate and air pollution is starting to
appear in the literature (Bontempi 2020a; He et al.
2020). A regional study in 4 countries of Europe to
examine the relationship between NO, and the number
of fatalities due to COVID-19 showed that long-term
exposure to NO, may be one of the most important
contributors to fatality caused by the virus (Ogen
2020). Researchers in Italy have speculated that atmo-
spheric pollution is a co-factor in inducing high levels of
deaths due to COVID-19 (Conticini et al. 2020;
Martelletti and Martelletti 2020). A nationwide cross-
sectional study in the USA considering 20 confounding
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factors including population density, weather, and so-
cioeconomic variables showed that PM, 5 had a clear
link to COVID-19 mortality rates (Wu et al. 2020a).
Conticini et al. (2020) have suggested considering pop-
ulation, social habits, and meteorological condition to-
gether with air pollution when analyzing COVID-19
spread and mortality rates. Moreover, Arab-
rahmatipour et al. (2020) conclude that COVID-19 im-
pacts not only the public health but also the mental
health. However, caution is recommended by Bontempi
(2020a) who has shown that there is no strong evidence
that COVID-19 diffusion mechanism occurs through
the air using PM; as a carrier even though PM;, was
shown to have a linear functional relationship with
cardiovascular disease and non-accidental mortality rate
in Spain (Ortiz et al. 2017). A cross-sectional study was
carried out to evaluate the impact of indoor air pollution
related to the respiratory health system where a strong
positive association was found between the concentra-
tion of PM, 5 and increased maternal lung symptoms,
which is susceptible to COVID-19 (Mulenga and Siziya
2019). An 11 city study was conducted in China where
non-linear models were employed to investigate the
relationship between non-accidental mortality and
NO,, PM, 5, temperature, and relative humidity as co-
variates (He et al. 2020). The researchers found higher
effect estimates of intermediate-term NO, exposure on
respiratory mortality compared to that of the short term
but the differences were too small to be considered
statistically significant. Bontempi (2020b) also men-
tioned that the airborne diffusion of COVID-19 is af-
fected by the local air particulate matter (PM) in north-
ern Italy but finds that there is no significant relationship
between PM;, and COVID-19 mortality rates.

There have also been studies relating to COVID-19
infection rates and geo-meteorological parameters.
Temperature, humidity, and rainfall may have a direct
influence on spreading the COVID-19 and other infec-
tious vector-borne diseases (Casanova et al. 2010; Qi
et al. 2020). Xie and Zhu (2020a) conducted a study in
122 cities across China to establish epidemiological and
experimental research on ambient temperature and
COVID-19 infection. Humidity, wind speed, and tem-
perature are inversely associated with the infection rate
of'the COVID-19 in 310 areas from 116 countries. Islam
et al. (2020) conducted this research and found that both
cold and dry environments were favorable to the spread
of COVID-19. Xie and Zhu (2020b) found a negative
linear relationship between the COVID-19 confirmed
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cases and mean temperature in 122 cities in mainland
China, suggesting warmer weather will not be a crucial
factor to reduce the infection case of COVID-19. On the
contrary, higher mean temperature and average relative
humidity are quite significant in enhancing the COVID-
19 contamination rate in Brazil (Auler et al. 2020),
although average temperature and relative humidity
were not consistent in terms of geographical areas,
because of spatial heterogeneity problems (Qi et al.
2020). Bashir et al. (2020) found a positive relationship
between the COVID-19 and average temperature, min-
imum temperature, and air quality in New York, USA,
although they found a negative relationship with
rainfall. Hu et al. (2013) assumed that the transmissibil-
ity of an infectious disease is totally dependent on the
population density of an area. They found that lower
population density has the lower reported cases of an
infectious disease than the higher density locations.
There are other results revealed and concluded that
population density is one of the key factors to control
the COVID-19 (Luo et al. 2020; Pedrosa 2020; Sajadi
et al. 1992). Also, integration of environmental, climat-
ic, bioindication approaches of air pollution, and man-
made factors are useful for analyzing and predicting
vector-borne and infectious diseases (Benaissa and
Alkama 2019; Ceccato et al. 2018).

Many of the literature reviewed suggested reduc-
tion of air pollution as a strategy to minimize the
adverse health effects of COVID-19. Conclusions
were based on a limited number of particular air pol-
lution and geo-meteorological variables. Like any
public health issue, there are many more factors that
need to be considered for a better understanding of
effective management strategies to control COVID-
19, specially in a city like Dhaka where the COVID-19
infection rates show variation in different parts of the
city even though high levels of air pollution are equal-
ly prevalent all across the city. This study will fill this
knowledge gap identified by examining the relation-
ship between COVID-19 infection rate and 17 other
parameters including air pollution, geo-metrological,
and social parameters. This study is unique in that it
looks not only at air pollution but other linked factors
in Dhaka, one of the most densely populated and
polluted cities in the world. To the best of our knowl-
edge, this is the first time that all these variables have
been modeled using standard advanced statistical and
GIS modeling to understand the relationship with
COVID-19 infection rates in Dhaka.

This study starts with an introduction, a literature
review on the topic, and presentation of the hypothesis
while the “Materials and methods” section describes the
methodology of the study which includes a concise
outline of the parameters studied here that influence
the COVID-19 infection rate, the method used for col-
lection of sample data, and model specifications. The
“Results” section outlines the results of the descriptive
analysis and an interpretation of the spatial relationships
between COVID-19 infection rates and air pollution,
geo-meteorological, and social parameters by using
Geographically Weighted Regression (GWR). The
“Discussion” section elucidates the key findings and
compares the results of this study with similar studies
in the literature, and the final section summarizes the
main points revealed in this study.

Materials and methods

The overall research framework is summarized in Fig. 2
and is described in detail below.

Study location

The study area is located in Dhaka (or Dhaka Metropol-
itan Area) which is the administrative and financial
capital of Bangladesh (Fig. 1). It has an area of
370 km® with around 20.28 million inhabitants and
geographically lies between 23° 40" and 23° 54’ N
latitude and 90° 20’ and 90° 28 " E longitude (Ahmed
et al. 2013; Hoque et al. 2007). Geographically, Dhaka
city is located in the lower reaches of the Ganges Delta
on the tributary of the Meghna Ganges river system
(Ahmed et al. 2014). The monthly average temperature
ranges from 25 to 31 °C; the mean relative humidity and
evaporation range between 80 and 90% and 80 and
130 mm, respectively (BMD 2020). The topography
of the city is relatively flat and its elevation varies
between 0.5 and 12 m (Hoque et al. 2007) (Fig. 2).

COVID-19 data

Daily Thana (small administrative unit of Bangladesh)
wise COVID-19 infection rate was used from two gov-
ernment sources in this study (Table 1). This database
was entered into a city GIS shapefile for further statisti-
cal and spatial analyses. Death statistics of COVID-19
data was not possible to collect because these are not yet
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Fig. 1 The geographical location and distribution of COVID-19 infection in Dhaka city. Cyan circles show the ratio of infection rate on the
land use map. The small black dots are the sample points for data collection

publicly available at the time of writing this paper
(May 23, 2020).

Collection of sample points

Eighty-six points from different parts of Dhaka were
randomly chosen from the study area (Fig. 1). On-screen
digitization process was used to extract these points
from different locations of the study area with the help
of high-resolution Google map and a combination of
other relevant secondary data.

Air pollution parameters

Seven air pollution parameters, namely, particulate mat-
ter (PM, 5), nitrogen dioxide (NO,), aerosol optical
thickness (AOT), sulfur dioxide (SO,), carbon monox-
ide (CO), water vapor, and ozone (O3) of the period
2010-2020 (May), were used in this study (Table 1).
Brickfield density data was also included in the
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regression model because this is considered as one of
the main sources of air pollution in Dhaka (Guttikunda
et al. 2013). The annual average of high-resolution
atmospheric data from different satellites was analyzed
to derive spatial maps of each parameter because
satellite-based air quality mapping and monitoring in
urban areas have been advent as a new avenue of atmo-
spheric research (Engel-Cox et al. 2004). After pre- and
post-processing all of the temporal air pollution param-
eters, the digital number of each parameter was extract-
ed for 86 sample points. Finally, 7 different maps of the
annual average concentration of each parameter were
generated using a point interpolation method of spatial
analysis technique.

Geo-meteorological parameters

The raster data of the digital elevation model or DEM
(m), wind pressure (ms ™), rainfall (mm), land surface
temperature or LST (°C), and wind speed (mph) were
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Fig. 2 The flowchart of the research methodology

collected from different sources and satellite data
(Table 1). These geo-rectified data were analyzed
using GIS platform and finally resampled into 30-m
resolution in order to make an alignment with land use
resolution. Finally, 4 different maps of the annual
average concentration of each parameter were gener-
ated using spatial analysis technique, while the DEM
had only 1-year data.

Social parameters

Both vector and raster databases were used to classify
the social variables (Table 1). All the vector data, after
converting into raster datasets, rasterized to 30-m reso-
lution keeping GCS-WGS-1984 and D-WGS-1984 geo-
graphic coordinate system and datum, respectively.
Poverty, population density, and literacy are included

[Spatial Analysis using GIS
- Spatial distribution of R2
- Spatial distribution of p-value

- Spatial distribution of Influence

as a social parameter as these are considered as impor-
tant variables to understand the relationship with
COVID-19 infection rates (Luo et al. 2020; Sajadi
etal. 1992).

Geographically Weighted Regression

Geographically Weighted Regression (GWR) method
was used to map the association between ambient air
pollution, geo-meteorological, and social data with the
COVID-19 infection rate. Geographically Weighted Re-
gression (GWR) is an approach of exploring spatial non-
stationary which permits different relationships to exist
at different points in space by the process of calibrating
several regression models in a systematic process
(Leung et al. 2000). The fundamental principle of
GWR is that parameters may be estimated anywhere in
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Table 1 Characteristics of different databases used in the study

Theme Parameters (independent) Unit Data sources Temporal/data
year
Air pollutants PM, 5 },Lg/m3 https://sedac.ciesin.columbia.edu/ 2010-2020 (April)
https://www.ecmwf.
int/en/forecasts/accessing-forecasts
NO, nm? https://aura.gsfc.nasa.gov/ 2010-2020 (April)
AOT https://neo.sci.gsfc.nasa.gov/ 2010-2020 (April)
SO, Ppm https://search.earthdata.nasa.gov/search 2019-2020 (April)
CO Ppm https://search.earthdata.nasa.gov/search 2010-2020 (April)
Water vapor Cm https://www.worldclim.org/data/worldclim21.html 2010-2020 (April)
03 Ppm https://search.earthdata.nasa.gov/search 2010-2020 (April)
Geo-meteorological DEM Meter  https:/search.earthdata.nasa.gov/search 2019
Wind pressure ms ' https://www.worldclim.org/data/worldclim2 1 html 2010-2020 (April)
LST °C https://search.earthdata.nasa.gov/search 2010-2020 (April)
Rainfall Mm https://gpm.nasa.gov/trmm 2010-2020 (April)
Wind speed Mph https://www.worldclim.org/data/worldclim2 1.html 2017
Social Population density Per dot Bangladesh Bureau of Statistics 2011
Brickfield Meter  Direct digitization 2019
Poverty % https://data.humdata.org/ 2017
Land use Class  Landsat 8 2019
Literacy % Bangladesh Bureau of Statistics 2011
Dependent variable COVID-19 Upazila Bangladesh Ministry of Health 2020 (May)

infection/mortality Wise

https://www.ieder.gov.bd/

the study area given a dependent variable and a set of
one or more independent variables that have been mea-
sured at places whose location is known (Charlton and
Fotheringham 2014; Fotheringham et al. 1998). GWR
offers the potential of investigating relationships that
vary over space between variables in a regression model
and it is quite a handy approach that allows complex
spatial variations in parameter estimates to be identified,
mapped, and modeled (Brunsdon et al. 1996; Wheeler
and Péez 2010).

In the GWR model component, X is a matrix con-
taining a set of independent or predictor variables and ¥
is a vector of dependent or response variables. The main
calculation of this model is in Eq. 1.

Y=0,+0 X1+ 0B, Xo+....... B, X, + € (1)

where Y is the dependent variable, 0, . [,. are
regression coefficients, X; X, is the independent
variables, and € is the residuals error. In this study,
Geographically Weighted Regression model was
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used for air pollution, geo-meteorological, and so-
cial parameters individually and each run was done
in triplicate. These main GWR calculations for the
models are given below.

For air pollution parameters:

COVID-19 (Y) = 83, + 3;(PMas) + 3,(NO»)
+ B3(AOT) + (34(S0»)

+ B5(CO) + B5(WV)
+3,(03) + € (2)

For geo-meteorological parameters:

COVID-19 = 3, + 3;(DEM) + 3,(WP)
+ 35(LST) + 3,(Rainfall)
+ B5(Wind speed) + € (3)


https://sedac.ciesin.columbia.edu/
https://www.ecmwf.int/en/forecasts/accessing--forecasts
https://www.ecmwf.int/en/forecasts/accessing--forecasts
https://aura.gsfc.nasa.gov/
https://neo.sci.gsfc.nasa.gov/
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://www.worldclim.org/data/worldclim21.html
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://www.worldclim.org/data/worldclim21.html
https://search.earthdata.nasa.gov/search
https://gpm.nasa.gov/trmm
https://www.worldclim.org/data/worldclim21.html
https://data.humdata.org/
https://www.iedcr.gov.bd/
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For social parameters:
COVID-19 (Y) = 3, + 3, (Pop density)
+ 3, (Brickfield)
+ B3(Poverty) + (3,(Land use)
+ Bs(Literacy) + € (4)

After executing these 3 models, the resultant data-
bases were exported, and the coefficient, standard error,
T, p value, and * were input into ArcGIS software for
deriving some spatial maps using a point interpolation
method.

Point interpolation using Inverse Weighted Distance

Inverse Weighted Distance (IWD) method was used for
point data interpolation because this multivariate meth-
od is very useful for temporal climate and environmental
data analysis (Chen and Liu 2012). This interpolation
method simply creates an assumption that close points
from a known point are more identical than those points
are staying apart (ESRI 2020).

To measure the predicted value of each point loca-
tion, IDW assigns some weights based on the closest
distance from a known point. The weights can be
expressed as

)‘j:—P/Z- d—P

where d; is the distance between known and unknown
points, p is the power parameter, and » represents the
number of sampled points used for the estimation. The
main factor affecting the accuracy of IDW is the value of
the power parameter (p) and the search of the neighbor-
hood (Babak and Deutsch 2009; Franke 1982; Shepard
1968).

Results
COVID-19 infection rate

As of May 22, 2020, about 6245 COVID-19 cases were
confirmed in Dhaka city. The graph shows that this virus

infection has affected all areas of the city and the in-
crease in cases from May 06 to May 18, 2020 (Fig. 3).

Descriptive statistical analysis of all parameters

The annual average concentrations of air pollution, geo-
meteorological, and social parameters are shown in
Table 2. The mean annual average concentrations of
PM, 5 (83.98 pg/m®), NO, (427.29 nm?), SO,
(89.18 ppm), CO (93.10 ppm), and O; (238.40 ppm)
were above the national level threshold. The minimum
and maximum ranges of digital elevation model and
land surface temperature were 6-14 m and 20-27 °C,
respectively. The mean annual rainfall and wind speed
were 275 mm and 0.96 mph, respectively, in the study
area. In the social parameters, 0—1878 persons were
found per square kilometer, while the mean poverty
and literacy rates were 70% and 74%, respectively.

Geographical Weighted Regression parameters

Three Geographical Weighted Regression models were
executed in order to understand the statistical and spatial
relationships between the COVID-19 infection rate (de-
pendent variable) and the 17 independent variables of
air pollution, geo-meteorological, and social data. After
running these multi-regression models, significant mod-
el fitting results such as estimated coefficient, standard
error, T, p value, and 72 in the 3 sets of parameters are
listed (Table 3).

In the air pollution data, PM, 5 (0.64), NO, (0.11),
AOT (0.81), SO, (0.20), and O3 (2.25) parameters had
positive coefficient while CO (—0.56) and water vapor
(—3.04) had negative coefficient values. Standard error
calculates the distance between each of the data points
and its predicted value in a model. The model used in
this study estimated a very small standard error in all
independent variables (less than 1). There were only 2
negative parameters CO (—1.9) and water vapor (—
3.89) found in the T result. Among the 7 air pollution
parameters, 5 were statistically significant (R?) to the
COVID-19 infection rate. PM, 5, AOT, and Os statisti-
cally posed a significant positive effect on the COVID-
19 infection rate at a 95% confidence level. On the other
hand, CO and wind vapor had negative coefficient with
the COVID-19, but interestingly, both of them were
statistically significant at p, —0.01. These results as-
sumed that a 1 unit increase in the 5 parameters might
increase the COVID-19 attack or mortality rates in

@ Springer
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Fig. 3 Location-wise confirmed COVID-19 cases in both Dhaka North City and Dhaka South City Corporations (Bangladesh Covid-19

Update (2020)

Dhaka City. This model calculated a strong R? (0.84),
which indicates that 84% of the COVID-19 attack is
explained by the 7 air pollution parameters.

Five parameters were used for the geo-
meteorological data, of which only water pressure
(—0.260) had a negative coefficient value. All other

Table 2 The annual average of the key variables used in this study

parameters like DEM (0.361), LST (0.236), rainfall
(0.439), and wind speed (0.212) had a positive influ-
ence on the dependent variable by showing a robust R*
(0.73). This model explained about 73% variation in
the independent variables responsible for COVID-19
infection rates. All values extracted from the standard

Theme Variables Mean  Std error  Standard deviation Range Min Max Sum

Air pollution parameters PM, 5 83.98 0.04 0.40 2.05 83.06  85.11 7222.66
NO, 42729 1.86 17.21 83.95 373.87 457.82  36,746.62
AOT 0.45 0.00 0.01 0.05 0.42 0.46 38.46
SO, 89.18  1.02 9.43 41.87 4724 89.11 5089.84
CO 93.10  0.02 0.15 0.78 9294  93.72 8006.90
Water vapor 2.39 0.00 0.00 0.00 2.39 2.39 205.54
05 238.40 0.02 0.23 0.87 237.96 238.83  20,502.62

Geo-meteorological parameters DEM 9.83 0.25 2.27 8.02 6.20 14.22 845.33
Wind pressure  2.00 0.01 0.07 0.26 1.88 2.14 172.37
LST 26.17  0.01 0.10 0.46 2587  26.33 2250.39
Rainfall 275.89 2.13 19.79 72.19 240.05 312.24  23,726.29
Wind speed 0.56 0.00 0.04 0.10 0.50 0.60 48.26

Social parameters Pop density 336.15 37.79 350.42 1878.00  0.00 1878.00  28,909.32
Brickfield 60.39 233 21.62 96.52 1548  112.00 5193.29
Poverty 69.73  0.23 2.16 10.27 64.62  74.89 5996.87
Land use 291 0.11 1.04 4.00 1.00 5.00 250.00
Literacy 7381 0.71 6.58 29.00 57.00  86.00 6348.00

@ Springer



Environ Monit Assess (2021) 193: 29

Page 9 of 20 29

Table 3 Model fitting results derived from the Geographical Weighted Regression (GWR) showing the relationship between the COVID-

19 infection rate (dependent variable) and 17 independent variables

Theme Parameters (independent) Model fitting results (COVID-19 as dependent variable)
Estimated coefficient Standard error T p value R
Air pollutant PM, 5 0.645 0.295 2.187 0.029 .84
NO, 0.112 0.305 0.368 0.713
AOT 0.816 0.322 2.531 0.011
SO, 0.200 0.416 0.481 0.630
CcO —0.562 0.296 —1.900 0.057
Water vapor —3.043 0.784 —3.881 0.015
0O; 2.257 0.556 4.059 0.013
Geo-meteorological DEM 0.361 0.105 3.428 0.012 73
Wind pressure -0.260 0.162 —1.604 0.015
LST 0.236 0.126 1.883 0.040
Rainfall 0.439 0.163 2.693 0.017
Wind speed 0.212 0.102 2.077 0.038
Social Pop density 0.318 0.116 2.738 0.016 .70
Brickfield 0.212 0.095 2.233 0.026
Poverty -0.283 0.119 —2.382 0.017
Land use 0.165 0.104 1.591 0.112
Literacy 0.047 0.098 0.481 0.630

error showed in the normal range while the water
pressure (— 1.60) was negative in 7 result. Moreover,
among the 5 geo-meteorological parameters, DEM (p
< 0.01), LST (p < 0.04), rainfall (p < 0.07), and wind
speed (p < 0.03) were statistically significant with the
COVID-19 infection rate. Therefore, these parameters
have the potential to influence the infection of
COVID-19 in Dhaka.

Poverty had negative values in the estimated
coefficient (—0.283) and T result (—2.382), al-
though it was statistically significant (p <0.01).
On the other hand, population density, brickfield
density, land use, and literacy rate had positive
results in both the estimated coefficients and T
results. These 4 parameters showed a very small
standard error, showing these accounted for 70%
of the COVID-19 infection rate (R*>=0.70) in this
model. However, the other 2 social parameters like
population density (p<0.01) and brickfield
(»<0.02) were statistically significant in this re-
gression model. Land use and literacy rate were
not statistically significant.

Spatial relationship between the COVID-19 infection
rate and air pollution, geo-meteorological, and social
parameters

In order to understand the different spatial relationships
among these factors through the advanced statistical
lens, 72, influence, and the p values were derived from
the Geographically Weighted Regression (GWR) mod-
el. The minimum and maximum »* values were 0.30 and
0.84 in the air pollution parameters respectively
(Fig. 4a). The mean value was 0.39 which was mostly
found in the south and middle zones of the study area.
On the other hand, the mean > value (0.28) of geo-
meteorological parameters was found in the middle,
middle eastern, and southern parts of the study arca
keeping minimum and maximum values 0.18 and
0.73, respectively (Fig. 4c). The social parameters were
essential predictors for establishing a relationship with
the COVID-19 infection rate. The mean > value (0.27)
was found in the middle, middle eastern, and north-
western parts of the study area (Fig. 4b). While its
standard deviation was 0.04, the minimum and maxi-
mum values were 0.21 and 0.70, respectively.
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(a) Coefficient of determination (R2) (b) Coefficient of determination (R2) (c) Coefficient of determination (R2)
Air Pollution Parameters Social Parameters Geo-meteorological Parameters

Value Value

Valu

0.473119 0.352619 0.392559
l 0.445259 l 0.329765 l 0.35693
0.417399 0.306911 0.3213
-0.389539 - 0.284058 -0.285671
-0.361678 - 0.261204 -0.250042

0.214412

0.23835 01 2 4
0.178783 - e Miles

4
0.215496 - e Miles

I 0333818 o 1 2 4
0.305958 = mmmmmm Miles
Fig. 4 Spatial distribution of /* in air pollution, social, and geo-meteorological parameters

The higher influence values of independent variables the north, eastern, western, and a few in the southern
predict a good explanation for the dependent variable. In parts were found (Fig. 5a). Except for the middle part of
air pollution parameters, a number of influence zones in the study area, the influence statistics was quite

(a) Influence- Cook’s Distance (b) Influence- Cook’s Distance (c) Influence- Cook’s Distance
Air Pollution Parameters Social Parameters Geo-meteorological Parameters

Value ' Value

0.210377 0.135922
0.189514 0.185923 I 0.125551
0.164376 0.161468 0.115179
0.139239 0.137014 0.104808
0.114101 0.11256 0.094437
0.0889632 o 4 , 4 0.0881054 4 5 4 .0-0840657 012 .
0.0638254 s Miles 0.0636511 = mmmmm Miles 0.0736945 e mm— Miles

Fig. 5 Spatial distribution of influence in air pollution, social, and geo-meteorological parameters
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significant across the study area keeping 0.13 and 0.03
in mean and standard deviation, respectively. The influ-
ence of geo-meteorological parameters was significantly
higher in the study area, except Cantonment, Gulshan,
Ramna, Kafrul, Shahbag, Bangshal, Chakbazar,
Gendaria, and Shyampur areas (Fig. 5¢). The minimum
and maximum values of geo-meteorological parameters

were 0.07 and 0.13, respectively, while its mean value
was 0.09. Social parameters were quite influential in the
north-eastern and southern parts. The minimum and
maximum values of social parameters were 0.06 and
0.21, respectively, while the mean value was 0.10 (Fig.
5b). A strong influence of social parameters was found
in the southern part of the city.

(a) Statistical Significance (b) Statistical Significance (c) Statistical Significance (d) Statistical Significance
of 03 (p<0.05)

{?,E

of AOT (p<0.05)

of CO (p<0.05) .

of N (p<0.05)

: 7 Value Value
Valldsl81261 0.706887 0.0502578
0.146997 0.606888 0.0402488
0.112733 . 0.506888 0.0302398
0.0784685 0.185851 0.406889 0.0202308
0.0442043 9 1 2 4 0.107263 0.306889  , , 00102218 o 1 2 4
0.0099401 =cw—mmmm Miles .0.028674 0.:1-:2_4Miles 0.20689  ww—mm——m Miles 0.0002128 = Miles

(e) Statistical Significance of PM2.5
(p<0.05)

Value

Value
0.368736

0.940499
0.303353 0.807118
0.23797 0.673738
0.172587 0.540357
0.107204 0.406977
0.0418211 e Miles 0.273596

Fig. 6 Spatial distribution of p value in air pollution parameters

(f) Statistical Significance of SO2
(p<0.05)

(g) Statistical Significance of WV
(p<0.05)

Value
0.123014
0.0984583
0.0739025
0.0493468

0.024791
2 4
0.000235264 = e Miles
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(a) Statistical Significance of DEM (b) Statistical Significance of LST (c) Statistical Significance of Rainfall
(p<0.05) (p<0.05) (p<0.05)

Value Val

Value ue
0.0378332 0.081553

0.16102
0.0306246 0.140759 0.0658416
-0.0234159 - 0.120497 -0.0501302
-0.0162073 -0.100236 -0.0344188
0.0089987 0.0799743 0.0187074 01 2

012

4 .
0.0597129 -:_:_4 Miles 0.00299597 - e Miles

01 2 4 .
0.00179007 - e Miles

(d) Statistical Significance of Wind  (e) Statistical Significance of Wind
speed (p<0.05) pressure (p<0.05)

Value ]
0.131383 Valu 199988
0.112825 0.403158
0.0942676 - 0.306329
- 0.0757099 - 0.209499
0.0571522 0 1 2 . 0.11267
Mil . 012 4
0.0385045 o NS 0.015840 = Miles

Fig. 7 Spatial distribution of p value in geo-meteorological parameters

The p value is an important parameter in this study. 0.05), water vapor (<0.01), and O; (<0.01) in the air
There were some strong relationships between COVID- pollution parameters were found. Most of these param-
19 infection rate data and air pollution, geo-meteorolog- eters and their correlated p values were found in the
ical, and social parameters. Strong statistical evidences middle, south, south-western, and south-eastern parts of

of p values in PM, s (<0.02), AOT (<0.01), CO (< the study area. Interestingly, Oz, AOT, and wind vapor
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(a)Statistical Significance of
Brickfield (p<0.05)

Value Value

0.165944 0.54086
l 0.139155 ' 0.449733
0.112365 -0.358605
- 0.0855758 -0.267478
0.0587864 01 2 0.176351
0.031997 - e Miles 0.0852232

(d) Statistical Significance of Pop
Density (p<0.05)

Valu

0.12378 Value 108675
l 0.101512 l 0.0896201
0.0792439 00705652
- 0.0569759 - 0.0515102

0.0347078 ¢ 1 2 .
0.0124398 - Miles

0.0324553
0.0134004

Fig. 8 Spatial distribution of p value in social parameters

were found their strong prevalence over the whole study
area (Fig. 6).

A number of geo-meteorological parameters se-
lected in this model had some positive relationships
with the COVID-19 infection rate. Digital elevation

(b) Statistical Significance of Land
use (p<0.05)

e Miles

(c) Statistical Significance of
Literacy (p<0.05)

Value
0.735551
l 0.646139
- 0.556726
-0.467314

0377901 ¢ 4 »
0.288489

(e)Statistical Significance of Poverty
(p<0.05)

e Miles

model (DEM), land surface temperature (LST), rain-
fall, and wind speed had statistically significant
p values of <0.01, <0.04, 0.01, and < 0.03, respec-
tively. Figure 7 showed a spatial distribution of #*
map in all of the geo-meteorological parameters in
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where DEM, LST, wind speed, and wind pressure
were found in the south, middle, middle eastern, and
southern parts in the area, respectively. Rainfall had
a great statistical influence on the dependent vari-
able, which covered 90% of the study area.
Population density (p <0.01), brickfield (p <0.02),
and poverty (p < 0.01) had significant roles on COVID-
19 infection rate in the study area. In terms of the
geographical distribution of population density and pov-
erty, about 90% of areas were covered by these factors
(Fig. 8). On the other hand, brickfield was highly visible
in the southern part of the study area in which the
COVID-19 infection rate was higher. Land use and
literacy rate were not statistically significant, but these
had a positive coefficient with the dependent variable.

Discussion

The main objective of this study was to investigate the
spatial relationships between COVID-19 infection rate
and air pollution, geo-meteorological, and social param-
eters in the study area using Geographical Weighted
Regression and spatial analysis of GIS. Different results
from the 3 models and their 17 parameters of 3 thematic
areas were found and described in the section below.

COVID-19 infection rate and air pollution parameters

Out of 7 air pollution parameters, 5 parameters PM, 5
(p<0.02), AOT (p<0.01), CO (p<0.05), water vapor
(p<0.01), and O; (p<0.01) were highly correlated with
COVID-19 infection rate in this study. These pollutants are
highly associated with the impacts on urban public health
in Dhaka (Begum et al. 2013). Since COVID-19 mainly
causes respiratory failure, it is no surprise that air pollution
has an influence on COVID-19 infection rates. (Wu et al.
2020b) used temporal PM, 5 data from 2000 to 2016 and
the COVID-19 mortality rate for executing a negative
binomial mixed model in order to calculate the mortality
rate ratio (MRR) in the USA. They found that 1 pg/m’
increases of PM, s can enhance 8% of COVID-19 death
with a 95% confidence interval in Mid-Atlantic, upper
Midwest, and Gulf Coast areas. In this study, PM, s had
a significant positive correlation with COVID-19
(p <0.02) with a 95% confidence level. Along with other
particulates, PM;,, NO,, and Oz were found as critical
factors that attribute to mortality in Spain, in which relative

@ Springer

risks (RRs) were connected with higher respiratory cases
with CI 95% (Ortiz et al. 2017).

O; (p <0.01) was found as a strong factor that may
influence the COVID-19 infection rate in this study. It is
known that ozone generates oxidative stress and expo-
sure to high ozone concentrations might reduce the lung
lining fluid antioxidant level (Domingo and Rovira
2020; Manisalidis et al. 2020). SO, and NO, did not
show a strong correlation and this may be due to slight
increases in these pollutants during the pandemic.
Sharma et al. (2020) looked at 5 air pollutants (PM,
PM, 5, CO, NO,, and SO,) in India during their lock-
down period. They found these parameters had signifi-
cant contribution to reducing the Excessive Risks (ER)
due to COVID-19 mortality except for SO,, which
showed negligible change.

Since air pollution is a risk factor for pulmonary
diseases like asthma and respiratory infection, it is right-
ly considered to have a damaging impact on patients
with COVID-19. A number of studies show a correla-
tion between air pollution and COVID-19 in different
countries (Pansini and Fornacca 2020). This study also
found that there is a significant positive relationship
between COVID-19 infection rate and PM, 5 but a
negative relationship between CO in Dhaka. Yao et al.
(2020) suggest that advanced absorption of the corona-
virus on PM, s is the reason for the higher rate of death
of COVID-19 in China. whereas in Dhaka Pavel et al.
(2020) have generated Kendall and Spearman correla-
tion test which states negative correlation for PM, 5
which is different to this study. This divergence may
arise due to the difference in the time span of the data,
Pavel and co-workers used data from March 2020 to
June 2020 only while this study analyzed the factors for
a longer period, namely, from 2010 to 2020. The current
study has found NO, has a positive coefficient (0.112)
but interestingly has no significance (P > 0.05) with the
determination of the COVID-19 infection rate whereas,
Li et al. (2020a) found the strong significance of NO,
(p<0.01) in China specially in Wuhan and XiaoGan.
SENTINEL-5 which deliver comprehensible informa-
tion on atmospheric variables shows that the emission of
NO, is much higher in China than Bangladesh which
may explain the result of this study.

Variables like relative humidity, temperature, and the
volume of water vapor changes display a significant nega-
tive association of water vapor (5=—3.043, p <0.01) with
COVID-19 infection rates in this study and this is consistent
with a recent study done where water vapor shows same
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association (p<0.01) with COVID-19 infection rates
(Wang et al. 2020). The distribution of AOT or AOD does
vary from country to country and also between the exposer
and pre-exposer period. Our test statistic indicates that there
is a significant impact of AOT (p <0.01) on COVID-19
infection rate and this agrees with results in Italy, Germany,
and Spain particularly on longer exposure period. Three out
of 7 models indicate AOT being an important determinant
in deciding the mortality rate of COVID-19 (Li et al.
2020b). Another potential variable that may instigate the
rate of infection is ozone. Similar to our study, another
study also observed the same result that ozone has signif-
icant positive association with the rate of infection or new
cases of COVID-19 (Adhikari and Yin 2020).

COVID-19 infection rate with geo-meteorological
parameters

Meteorological factors are the key drivers for control-
ling infectious diseases in different parts of the world
(Sahin 2020). However, these triggering factors may
behave differently for the daily mortality cases in a
different climatic zone. For example, in tropical Brazil,
high mean temperature and intermediate relative humid-
ity might be responsible for the COVID-19 outbreak
(Auler et al. 2020). However, these triggering factors
may behave differently for the daily mortality cases in a
different climatic zone. For example, in tropical Brazil,
high mean temperature and intermediate relative humid-
ity might be responsible for the COVID-19 outbreak
(Auler et al. 2020). In this present study, DEM
(p<0.01), wind pressure (p<0.01), LST (p<0.04),
rainfall (p <0.01), and wind speed (p <0.03) were sig-
nificantly associated with the COVID-19 infection rate.
Wu et al. (2020b) revealed that land temperature and
relative humidity were linked to the daily new cases and
deaths of COVID-19. A 1 °C increase in temperature
and 1% increase in relative humidity were associated
with a reduced mortality rate by 3.08% and 0.85%
reduction of daily new cases of COVID-19 infection.
In this study, a 1 °C increase in temperature leads to a
10% increase in COVID-19 infection rates.

Qi et al. (2020) and Wu et al. (2020b) used a Gener-
alized Additive Model (GAM) to compute the province-
specific relations among climatological variables and
the daily cases of COVID-19 in China. Their studies
found that the temperature and humidity presented neg-
ative associations with the COVID-19, while a signifi-
cant interaction can be found between temperature and

humidity. This is different to our study because the
temperature had a positive relationship with COVID-
19 infection rates.

Ma et al. (2020) and Qi et al. (2020) established a
relationship between daily death numbers of COVID-19
with meteorological parameters and air pollution data
from 20 January 2020 to 29 February 2020 in Wuhan,
China, which was the starting point of the global pan-
demic. They revealed a positive correlation (= 0.44)
between COVID-19 death and temperature. This is sim-
ilar to our study because we had a positive correlation
between COVID-19 and temperature (= 0.73).

The number of researches conducted in recent times
indicates that geo-meteorological variables have an in-
fluence on COVID-19 infection rate (Zhou et al. 2020).
In this study, all five geo-meteorological variables are
highly significant with a R* value of 0.73 which implies
that the 73% variations of COVID-19 infection rate can
be explained by these parameters. Digital Elevation
Model (DEM) which uses 3D computer graphics infor-
mation about surface height has shown a significant
positive relationship (3=0.361, p<0.01) between
DEM and infection rate which means that if land eleva-
tion increases by 1 m, it will lead to an increase in the
infection rate of COVID-19 by 36.1%. Interestingly, a
study by (Arias-Reyes et al. 2020) shows an opposite
outcome as they found a strong negative relationship
between land altitude and occurrences of COVID-19
cases. The differences may be due to discrepancies in
altitude that depends on many things such as land, rock
formations, and buildings—specially in a dense, urban
environment (Abdulrazzaq et al. 2019). Further studies
are needed to understand this relationship with elevation
and COVID-19 infection rate.

Another important determining factor of COVID-19
infection rate is Land Surface Temperature (LST). This
study showed that a 1 °C increase in temperature is linked
with 36.1% (p <0.01) increase in infection rate of
COVID-19 which agrees with a recent study which
shows that a 1 °C increase in temperature leads to
12.1% (p <0.0001) increases in new COVID-19 cases.
Moreover, the researchers have also concluded that rain-
fall and wind speed have a positive association with the
infection rate (Adhikari and Yin 2020). A study in turkey
(Sahin 2020) has found that the average wind speed of
14 days has the highest correlation with the number of
COVID-19 cases. But this positive associations between
wind speed and number of COVID-19 cases are bit of
complicated as several other studies indicates a negative
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association between wind speed and Corona Virus infec-
tion rates. It can be argued that low wind speed leads to
higher cases of COVID-19 infection rate, as the low wind
speed assists in keeping the virus in the same area for
several hours (Ahmadi et al. 2020; Rendana 2020). An-
other study conducted to identify the impact of weather
and air pollution on COVID-19 transmission based on
3739 worldwide locations found a positive correlation
between air pressure and transmission of COVID-19
infection rate which was unlike our study as we see a
negative correlation between wind pressure and the rate
of infection of COVID-19 (Xu et al. 2020). The differ-
ence in results may be a localized matter as our study
focused on Dhaka while the literature study contained
3739 global locations.

COVID-19 infection rate with social parameters

Population density is an important parameter with
relation to COVID-19 infection (Rockldv and Sjodin
2020). Desai (2020) showed that areas with high-
density population have more confirmed COVID-19
cases. For analyzing COVID-19 data, population den-
sity information needs to be used as one of the con-
trolling variables and it was suggested that investiga-
tion should be done at local, regional, and national
levels separately (Pedrosa 2020). Hu et al. (2013)
calculated a relationship between influenza mortality
rates and population densities and found that the
higher density shows higher reported mortality. In
the present study, population density (p < 0.01), brick-
field density (p <0.02), and poverty (»p <0.01) had
high coefficients to COVID-19 infection rate.

In and around the Dhaka, there are about 917 brick-
fields covering 26.64 km? (Hassan et al. 2019), which
are the primary sources for air pollution in the city.
These brickfields emit 23,300 tons from PM, s,
15,500 tons of sulfur dioxide (SO,), 302,000 tons of
carbon monoxide (CO), 6000 tons of black carbon,
and 1.8 million tons of CO, (Guttikunda et al. 2013).
Several research reports mentioned that these brick-
fields not only affect the atmospheric quality of the
city but also a responsible factor for other environ-
mental pollutions and are a public health hazard (Saha
and Hosain 2016; Skinder et al. 2014; Tusher et al.
2019). The strong correlation of brickfield density and
COVID-19 infection rates indicated in this study is
alarming in a city like Dhaka.
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Similar to air pollution and geo-meteorological
factors, social factor is an important aspect in deter-
mining its impact on COVID-19. In our study, we
have selected five social factors among them except
land use and literacy; other three factors are highly
significant which indicate that there is association
between COVID-19 infection rate and independent
variables with a R* value of 0.70. Which infers that
70% variation in COVID-19 can be explained by the
social parameters.

One essential diffusion path of COVID-19 infec-
tions is contact between infected and non-infected
people. To reduce the morbidity rate of COVID-19,
the one preventive measure that has been applied
worldwide is to maintain social distance and to
ensure that the imposition of lockdown and uses of
mask is practiced. This is where population density
comes in. As we can assumed it is hard to maintain
the social distance when the population density is
high leading to the rapid spread of the coronavirus.
Our present study confirms this assumption as we
derive a strong positive association (p <0.01) be-
tween population density and COVID-19 infection
rate indicating higher population density surges the
rate of infection. Several previous studies also
reached similar findings (Arias-Reyes et al. 2020;
Nakada and Urban 2020; You et al. 2020). We have
found a strong association (p <0.01) between pov-
erty and COVID-19 morbidity rate as people with
poor income tend to be more exposed to all health
hazards. Mukherji (2020) have concluded that places
where the inequality between low and high income
is high observes a higher indisposition rate of
COVID-19.

Literacy rate (p > 0.63) was not one of the signifi-
cant social parameters of our study. This is in contra-
diction to another study which observed a positive
association between poor education and high rates of
COVID-19 cases (Harlem and Lynn 2020). It is pre-
sumed that with higher literacy rate will lead to more
access to information and awareness. In Dhaka, there
has been an intense campaign by the government and
non-government organizations to educate the public
about COVID-19 and our results suggest that this
could be the reason why literacy rate is not a signifi-
cant parameter in the study.

The present study is an attempt to assess the spatial
relationship of COVID-19 infection rate with air pollu-
tion, geo-meteorological, and social parameters. To the
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best of our knowledge, this study is among the very few
studies concerning coronavirus in Bangladesh. We have
examined 17 different independent variables and their
possible association with the infection rate of COVID-
19. We have used data from 2010 to 2020 while other
studies have used very short-term data for the estimation
of infection rate. One of the limitations of our study is
that we only investigated the COVID cases in Dhaka
while other cities of the country were ignored. Several
other factors such as age, gender, ethnicity, nature of
food intake, and chronic diseases may play an important
role in defining the COVID-19 cases so there is further
scope of research which may help better understand the
nature of COVID-19.

Summary and conclusion

The spatial relationships between the COVID-19 infec-
tion rate and 17 independent parameters of air pollution,
geo-meteorological, and social in the study area using
Graphically Weighted Regression Model and GIS plat-
form were studied. This paper has found a number of
significant key results that can be summarized as
follows:

¢ The mathematical model of COVID-19 and air pol-
lution (R” = 84%), geo-meteorological (R*=73%),
and social parameters (R* = 70%) has a high good-
ness-of-fit

* Air pollution parameters PM, 5 (p<0.02), AOT
(»<0.01), CO (p<0.05), water vapor (p<0.01),
and O3 (p<0.01) were highly correlated with
COVID-19 infection rate

» Digital Elevation Model (»p<0.01), wind pressure
(p <0.01), land surface temperature (p < 0.04), rain-
fall (»p<0.01), and wind speed (p <0.03) of geo-
meteorological parameters were associated with
the COVID-19 attack

» Social parameters of population density (p <0.01),
brickfield density (p < 0.02), and poverty (p <0.01)
were highly coefficient as the key independent var-
iables to the COVID-19 infection rate

e The North, Middle, and Southern parts of the
study area are more susceptible to COVID-19
infection rate

It is hoped that the authorities in Dhaka can utilize
these findings in order to formulate new management

strategies for reducing infectious diseases like COVID-
19. In a small country like Bangladesh, where resources
are limited and targeted and precise approaches based
on scientific analysis as presented in this study will help
in controlling the serious pandemic situation we face
today. This study will also be useful for researchers who
are working on understanding the latent and visible
relationships between the COVID-19 and its associated
variables like pollution, environmental, and social as-
pects. The methodology can be replicated to a similar
country or region considering the local micro-climatic
environment. Future studies will have more variables
including ecological, meteorological, and social (GDP,
BMI Global Health Index) to model and understand the
spread of COVID-19 in an urban environment.
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