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Abstract In this paper, a new version of the multi-
objective particle swarm optimizer named the
Diversity-enhanced fuzzy multi-objective particle
swarm optimization (f-MOPSO/Div) algorithm is pro-
posed. This algorithm is an improved version of our
recently proposed f-MOPSO. In the proposed algo-
rithm, a new characteristic of the particles in the objec-
tive space, which we named the “extremity,” is also
evaluated, along with the Pareto dominance, to appoint
proper guides for the particles in the search space. Three
improvements are applied to the f-MOPSO to mitigate
its shortcomings, generating f-MOPSO/Div: (1)
selecting the global best solution based on the diversity
of the extreme solutions, (2) impeding the particles to be
trapped in the local optima using a mutation scheme
based on the dynamic probability, and (3) removing the
pre-optimization process. To validate f-MOPSO/Div, it
was compared with some other popular multi-objective
algorithms on 14 standard low- and high-dimensional
test problem suites. After the comparative results indi-
cated the outperformance of the proposal, the f-
MOPSO/Div was applied to solve an optimal conjunc-
tive water use management problem, in a semi-arid
study area in west-central Iran, over a 13-year long-term

planning period with two main objectives: (1) maximiz-
ing the aquifer sustainability as an environmental goal,
and (2) maximizing the crop yields as a socio-economic
goal. As the results suggest, the cumulative groundwater
level drawdown is considerably decreased over the
whole planning period to make the aquifer sustainable,
while the water productivity is held at a desirable level,
demonstrating the superiority of the f-MOPSO/Div
when also applied to solve a large-scale real-world
optimization problem.

Keywords Evolutionary optimization .Multi-objective
optimization . Particle swarm optimization . Fuzzy
inference system . Conjunctive water use

Introduction

Multi-objective optimization

In multi-objective optimization, a set of non-dominated
solutions is constructed at each iteration and is usually
added to an external archive to provide information for
selecting the guides. Discriminating the non-dominated
solutions from a large set of solutions contributes the
promising regions to be found in the search space when
the Pareto dominance relation is strong enough to intro-
duce a sufficient number of solutions. In this case, the
selection pressure is insufficient; thus, employing some
other techniques is required to enable the guides to be
designated from the stored non-dominated points. In
contrast, the selection of solutions may lead to very poor
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performance when there are weak dominance relations;
i.e., a few points are to be discriminated based on the
Pareto dominance. In this case, the selection pressure
needs to be decreased to allow some dominated solu-
tions to take part in the comparisons for the guide
selections. Accordingly, the number of candidate solu-
tions needs to be increased to make the archive diversi-
fied enough to cover a large domain of the objective
space. Some of the guide selection techniques proposed
in the multi-objective algorithms are listed as follows.

1. Randomized selection: This assigns a randomnumber
to each non-dominated solution that is found in the
optimization process and then selects one of the sev-
eral solutions taking part in a tournament based on the
roulette wheel selection method. The practical appli-
cations have proven that this mechanism has poor
performance due to the excessive stochastic nature
of the selection process (Agrawal et al. 2008)

2. Relaxed Pareto-based dominance methods includ-
ing ε-dominance (Laumanns et al. 2002), r-domi-
nance (Ben Said et al. 2010), and the grid-based
approach (Yang et al. 2013; Liu et al. 2018)

3. Reference point–based dominance techniques
(Thiele et al. 2009; Goulart and Campelo 2016;
Liu et al. 2017; Wang et al. 2017). In these tech-
niques, all of the results rely on the reference points,
and the initial solutions should be diversified
enough in the objective space to cover all reference
points (Lin et al. 2015).

4. Non-Pareto dominance methods including the max-
imum fitness (Balling and Wilson 2001), relation
favor (RF) (Drechsler et al. 2001), and global detri-
ment (GD) (Garza-Fabre et al. 2009).

Multi-objective particle swarm optimization

The particle swarm optimization (PSO) algorithm, first
proposed by Kennedy and Eberhart (1995), is the most
commonly used stochastic population-based swarm in-
telligence technique inspired by the evolution of nature.
Compared to other meta-heuristic techniques (e.g., the
genetic algorithm), PSO has a more flexible and well-
balanced mechanism that can enhance and adapt the
global and local exploration, and it needs fewer particles
(solutions) to provide the required diversity and a faster
convergence rate (Abido 2010). The details of some
studies that have addressed the applications of the four

techniques mentioned in the previous subsection for
multi-objective PSO (MOPSO) algorithms are summa-
rized in Table 1.

Multi-objective conjunctive water use optimization
models

This paper is focused on applying a new MOPSO algo-
rithm to solve a real-world optimal conjunctive water use
problem. The conjunctive water use concept was first
introduced by Burt (1964). Both sources of surface and
groundwater present some desired characteristics. Lack
of water losses due to seepage, leakage, evaporation, and
water transfer makes groundwater dominate the surface
water. Moreover, the large surface water reservoir con-
struction is always challenging environmental problems,
adaptation with the society, and economic efficiency
(Afshar et al. 2010). The groundwater is never subject
to sedimentation and has a low potential for pollution and
climate change–related droughts. The main disadvantage
of the groundwater resources might be its need for a high
amount of energy for pumping from the underlain water
table, leading to pay much more costs compared to
surface water resources. The surface water benefits from
some utilities discriminating it from groundwater, which
mainly includes the capability for generating electrical
energy by hydropower plants and its application in rec-
reational affairs and flood control. The conjunctive use of
both surface and groundwater use can hold a good bal-
ance between the advantages and disadvantages of these
water resources by increasing the benefits and decreasing
the shortcomings of both of them (Hollander et al. 2009).
In addition to quantitative benefits conjunctive water use
presents, this kind of water use may also improve the
water quality by conjunctively salt water–fresh water use,
which has a wide effect on increasing water productivity
and decreasing the need for desalinization as well as
water-logging control. The qualitative water problems
are more reported in coastal areas with a high potential
of seawater intrusion, which can be handled by conjunc-
tive water use (Yadav et al. 2004; Kaur et al. 2007).
Furthermore, in arid and semi-arid regions challenging
with population increase, growing agriculture, and devel-
oping industries, all of the water quality-quantity prob-
lems are more crucial, necessitating conjunctive water
use as a solution. In these regions, the climate change
impacts are threats to water resources sustainability, pro-
voking water resources management in all its forms,
including supply management, demand management,
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and supply-demand management in these regions (Safavi
et al. 2010).

There is a voluminous literature carried out on the
multi-objective optimization of conjunctive surface-
ground water use, considering different aspects of man-
agement purposes. McPhee and Yeh (2004) developed a
decision support system through performing a three-
objective optimizationmethod aimed to minimize ground-
water level drawdowns and an ε-constraint method to

tackle the multi-objective nature of their problem. Yang
et al. (2009b) introduced a multi-objective management
model utilizing a coupled genetic algorithm-constrained
differential dynamic programming method to maximize
net agricultural benefits considering constant and variable
costs in agricultural activities. Peralta et al. (2014) pro-
posed a simulation-optimization model for optimal con-
junctive use of the reservoir-surface-groundwater system.
The goalswere tomaximizewater supply and hydropower

Table 1 Advantages and disadvantages of several MOPSO algorithms presented in the literature

Authors Algorithm Advantages Disadvantages

Mostaghim
and Teich
(2003a)

Sigma method • Assigning each particle a particular global best whose
Sigma vector has the smallest distance to that of the certain
particle

• Speeding up the convergence

• Lacking sufficient diversity
• Facing the premature convergence

Mostaghim
and Teich
(2003b)

ε-dominance • Restricting the number of non-dominated particles in the
external archive

• Speeding up the convergence

• Losing diversity
• Facing the premature convergence

Ireland et al.
(2006)

Centroid
method

• Distance-weighted averaging of the archive non-dominated
points to calculate a particular guide

• Maintaining diversity

• Reducing the convergence rate
• Facing the premature convergence

Yang et al.
(2009a)

• Combining the Sigma method with the local density around
each particle to mitigate the effect of the high convergence
speed

• Holding a desired balance between the convergence and
diversity

Sahoo et al.
(2011)

HSG-MOPSO • Some specifically chosen dominated solutions are added to
the normal non-dominated archive of the MOPSO to keep
the diversity

• The population members follow their respective nearest
guides

• Retarding the convergence
• Facing a mild premature convergence

Li et al.
(2017)

MOPSO/GMR • Presenting a novel ranking strategy called the Global
Margin Ranking (GMR) to guide the individuals to the
margins of the objective space

• Combining GMR with the individuals’ density
Rezaei et al.

(2017a)
f-MOPSO • Replacing the diversity criterion with a newly identified

criterion called “extremity”
• Selecting the guide particles based on dominance and

extremity

• The possibility of premature convergence
if the particles are engaged in a drift when
moving to the extreme points

• Needing a pre-optimization process

Nebro et al.
(2018)

SMPSO/RP • Removing the diversified particles located far from the
Pareto solutions in favor of returning the nearer ones to the
archive

• Accelerating the convergence
Qu et al.

(2020)
SS-MOPSO • Proposing self-organized speciation based MOPSO to solve

multi-modal problems
• Preserving the diversity through incorporating the

non-dominated sorting to a crowding distance sorting
mechanism

The current
proposal

f-MOPSO/Div • Involving the diversity to choose the guides
• The desired performance when taking the triple

extremity-diversity-dominance criteria
• Incorporating a dynamically parameter tuned mutation

scheme to avoid local optima
• Removing the pre-optimization process
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generation as well as to minimize surface water transfer
and groundwater pumping costs. Srivastava and Singh
(2017) employed a fuzzy multi-objective goal program-
ming technique to optimize cropping patterns in a canal
command area, regarding several qualitative and
quantitative purposes. Sun et al. (2017) utilized a multi-
objectivemodel to optimize the cropping pattern in a study
area located in the southwest of China. The main goals of
the optimization were to maximize the net benefit and to
minimize the agricultural drought severity for the main
crops as well as the shortages in meeting the irrigation
demands supplied by surface water resources to decrease
groundwater extraction in the region. Yousefi et al. (2018)
conducted a multi-objective conjunctive-treated wastewa-
ter and groundwater use management to achieve three
main goals: maximizing net benefit, minimizing nitrogen
leaching, and maximizing groundwater recharge. They
applied two techniques, including single-objective particle
swarm optimization (PSO) with an additive weighting
method as well as the multi-objective PSO (MOPSO) to
solve their multi-objective optimization model. Zeinali
et al. (2020) linked a non-dominated sorting genetic algo-
rithm II (NSGA-II) with a coupled WEAP-MODFLOW
simulation model targeting (1) maximization of the water
demands met and (2) minimization of the cumulative
groundwater withdrawal at an operational period in a
low-flow area.

The MOPSO algorithm has also been widely used in
several water resources management schemes such as
reservoir operation, rainfall-runoff modeling, water quality
modeling, and groundwater modeling (Jahandideh-
Tehrani et al. 2020). Furthermore, as an alternative to
conjunctively surface and ground water use,
Tayebikhorami et al. (2019) attempted to use the treated
wastewater as an unconventional source of water to supply
the water demands. They utilized a fuzzy NSGA-II algo-
rithm as the optimizer in which the fuzzy transformation
method (FTM) was used to address the potential uncer-
tainties of the system contributing to developing different
fuzzy scenarios to account for the uncertainties of the
system. Then, the fuzzy parameters confidence levels were
included in the optimization sector to facilitate the trade-
off curves between the objectives to be generated.

The present work

In this paper, we design and propose an improved
version of the multi-objective particle swarm optimiza-
tion (MOPSO) named f-MOPSO/Div. It is based on the

recently proposed f-MOPSO algorithm, which was first
proposed in a bi-objective version by Rezaei et al.
(2017a) and then in a tri-objective version by Rezaei
et al. (2017b). This algorithm uses a Sugeno fuzzy
inference system to delineate an index named the com-
prehensive Dominance Index (DI). This index can eval-
uate the solutions found at each iteration of the algo-
rithm in terms of both the dominance and “extremity.”
The extremity, expressing how close a solution is to any
of the axes in the objective space, is a previously un-
identified characteristic of the solutions in the objective
space we found out in this research. In f-MOPSO/Div,
the extremity remains as the basis for selecting the
personal best particles; however, the “extremity” is re-
placed by “diversity” as the measure that helps select the
global best solution. In this paper, the f-MOPSO/Div is
applied to solve a socio-economic-environmental con-
junctive water use management problem.

In the remainder of this paper, we first introduce the
particle swarm optimization algorithm in detail in “Particle
swarm optimization” section. In “Fuzzy-based multi-
objective particle swarm optimization” section, we intro-
duce and emphasize the unique capabilities of the f-
MOPSO algorithm. In “Proposed diversity-enhanced
fuzzy multi-objective PSO” section, we put forward our
proposed algorithm (f-MOPSO/Div) consisting of three
subsections. “Experimental results on standard benchmark
functions” section presents the experimental results of
applying the proposed algorithm on a variety of standard
benchmark functions. “Conjunctive surface-ground water
use management” section introduces the study area and
presents the simulation-optimization model’s mathemati-
cal formulation. “Results and discussion (f-MOPSO/Div
application)” section gives results and provides some dis-
cussions on them. Finally, “Conclusion” section concludes
the paper.

Methodology

Particle swarm optimization

Suppose for a D-dimensional optimization problem that
Xi = (xi1, xi2,…, xiD) and Vi = (vi1, vi2,…, viD) are the ith
particle’s position vector and velocity vector, respec-
tively. Assume that Pbestti ¼ pi1ð ; pi2;…; piDÞ is the
personal best (Pbest) position of the ith particle and
Gbestt = (pg1, pg2,…, pgD) represents the global best
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(Gbest) position of the swarm, where iЄ{1, 2,…,N},D
is the number of dimensions, and N is the swarm size.
The velocity and position of each particle is updated
using Eqs. (1) and (2):

Vtþ1
i ¼ wVt

i þ c1r1 Pbestti−X
t
i

� �
þ c2r2 Gbestt−X t

i

� � ð1Þ

X tþ1
i ¼ X t

i þ Vtþ1
i ð2Þ

where superscript t is the iteration number; w is the
inertia weight; r1 and r2 are two random vectors; and
c1 and c2 are the cognitive and social scaling parameters,
respectively. An efficient form of Eq. (1) is the constric-
tion coefficient model that is shown below (Rezaei et al.
2017a).

Vtþ1
i ¼ χ Vt

i þ φ1 Pbestti−X
t
i

� �þ φ2 Gbestt−X t
i

� �� � ð3Þ

χ ¼ 2k

j2−φ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ φ−4ð Þp j ;φ ¼ φ1 þ φ2;φ1

¼ c1r1;φ2 ¼ c2r2 ð4Þ
where χ is the constriction factor. The parameter k Є [0,
1] in Eq. (4) controls the exploration and exploitation
abilities of the swarm, where k = 1 denotes full explo-
ration and k = 0 suggests full exploitation; however, a
transition between k = 1 and k = 0 could provide a good
balance between exploration and exploitation. Hence, k
can be calculated as follows:

k ¼ kmax−
kmax−kmin

itermax
� iter ð5Þ

where kmax and kmin are constants that must be set

properly, iter is the number of iterations, and itermax is
the maximum number of iterations.

Fuzzy-based multi-objective particle swarm
optimization

The method was first proposed by Rezaei et al. (2017a).
This algorithm helps the MOPSO algorithm select the
suitable Pbests and Gbest for the swarm at each itera-
tion. The algorithm takes advantage of a Sugeno fuzzy
inference system (SFIS) to assign an index to each
solution to discriminate the best solutions of a popula-
tion. In f-MOPSO, the SFIS consists of several rules,
each of which represents an aggregated membership
degree coming from combining the fuzzy membership
function values of the objectives as the premises. The
SFIS also includes the weighted sum of the objectives as
the consequence of each rule. The SFIS rules’ conse-
quences represent the partial dominance of the solutions,
while the resulting fuzzy membership degree (MD) acts
as a weight that is assigned to the partial dominance to
stress it. The structure of the SFIS for a multi-/many-
objective minimization problem is as follows:

If Z
0
1 is A

1
1and Z

0
2 is A

1
2 and…and Z

0
M is A1

M Then Z1

¼ W1
1Z

0
1 þW1

2Z
0
2 þ…þW1

MZ
0
M

ð6Þ

If Z
0
1 is A

2
1 and Z

0
2 is A

2
2 and…and Z

0
M is A2

M Then Z2

¼ W2
1Z

0
1 þW2

2Z
0
2 þ…þW2

MZ
0
M

ð7Þ

⋮
If Z

0
1 is A

N
1 and Z

0
2 is A

N
2

⋮
and…and Z

0
M is AN

M Then
⋮
ZN ¼ WN

1 Z
0
1 þWN

2 Z
0
2 þ…

⋮
þWN

MZ
0
M

ð8Þ

here, Z
0
i; i ¼ 1; 2;…;M , is the ith normalized objective

function value and M is the number of objectives.
Aj
i ; i ¼ 1; 2;…;M and j ¼ 1; 2; ::;N , is the fuzzy set

corresponding to the ith normalized objective, which is
represented by a fuzzy membership function (MF) in the
jth fuzzy rule; and N is the total number of the fuzzy
rules.W j

i is the weight corresponding to the ith objective

in the jth fuzzy rule and Z j ¼ ∑M
i¼1W

j
i Z

0
i is the conse-

quence of the jth rule.
In the pre-optimization process, a parallel single-

objective optimization is implemented over all objective
functions. Hence, the bounds of the objectives can be
found in this process. Additionally, in this process, a set
of objective values is generated for each of the
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objectives, each of which is divided into three sets
labeled by high, middle, and low classes. Then, the
statistical parameters of these sets are all extracted to
facilitate the algorithm to find out the fuzzy membership
function parameters involved in the SFIS rules. For
more information about the way to make the member-
ship function parameters dependent on the statistical
parameters of the objectives, we refer the readers to
Rezaei et al. (2017a). Furthermore, a product-based
Larsen implication function is employed to aggregate
the fuzzy membership function values calculated for
each premise of a certain rule to impose a weight on
the consequence of that rule. Finally, the weighted av-
erage based defuzzification method is chosen for aggre-
gating the consequences of all the fuzzy rules as follows:

DI ¼ ∑N
j¼1μ

jZ j

∑N
j¼1μ

j
ð9Þ

where μj is the aggregated membership degree that is
assigned to consequence Zj for the jth fuzzy rule of the
SFIS, which is calculated by the following equation:

μ j ¼ f j
1 � f j

2 �…� f j
M . Here, f

j
i is the membership

degree that is assigned to the ith normalized objective
function value in the jth rule, and

Z j ¼ W j
1Z

0
1 þW j

2Z
0
2 þ…þW j

MZ
0
M , where i = 1, 2,

…, M. DI is called the comprehensive Dominance In-
dex. Table 2 illustrates a scheme for defining the weight
vectors for a bi-objective problem and depicts an

effective way to combine the fuzzy membership func-
tions regarding the weight vectors. In a bi-objective
minimization problem, the DI in Eq. (9) mostly tends

to the Zj calculated as Z j ¼ W j
1Z

0
1 þW j

2Z
0
2, in which a

specific relation expressed as
W j

1

W j
2

≅− ∂Z 0
2

∂Z 0
1

, is held between

(W j
1, W

j
2) and (Z

0
1, Z

0
2). The more extreme a solution

with the location of (Z
0
1, Z

0
2) in the objective space, the

less the most tended Zj value, where j = 1, 2,…,NR, and
NR stands for the number of the SFIS rules. Meanwhile,
the less the most tended Zjvalue, the less the value ofDI
will be. Therefore, the more extreme solutions in the
objective space are always assigned the less DI values.
Since the extreme solutions, which indeed, are the end-
points on a non-dominated front, could frequently guide
the other solutions to the solutions having the less ob-
jective values and produce the better non-dominated
fronts, these solutions must be chosen as the guide
solutions when decided to select the Pbest or Gbest
solutions in this algorithm.

Furthermore, the DI not only determines the best
solution (the most extreme one) among several non-
dominated solutions on a local Pareto front but is
capable of preferring the dominated and non-
dominated solutions in the comparisons performed
to delineate the guide solutions. In fact, in a mini-
mization problem, every weighted average of the
lower values of Zj presented by a non-dominated
solution is lower than that of the higher values of
Zj presented by a dominated one. As a result, the
lower the DI of a solution, the better that solution in
terms of both extremity and dominance.

In every iteration of f-MOPSO, the particle having
the lowest DI between the current Pbest particle and the
newly updated ones determines the new Pbest, and the
lowest DI obtained from all Pbests of the swarm delin-
eates the Gbest particle in that iteration. The other cal-
culations are the same as in a single-objective PSO.
Moreover, the non-dominated solutions obtained from
each iteration are stored in an external archive as the
final solutions found by the algorithm, forming the final
Pareto front.

Proposed diversity-enhanced fuzzy multi-objective PSO

The f-MOPSO/Div is an improved version of the f-
MOPSO algorithm designed upon some improvements
made to the original f-MOPSO. These advancements

Table 2 MFs combinations in the rules of the SFIS for a bi-
objective problem assuming the weight step = 0.1

W1 W2
Z

0
1=Z

0
2

0 1 High/mid High/low Mid/low Low/low

0.1 0.9 High/mid High/low Mid/low Low/low

0.2 0.8 High/mid High/low Mid/low Low/low

0.3 0.7 High/mid High/low Mid/low Low/low

0.4 0.6 High/mid High/low Mid/low Low/low

0.5 0.5 – – – Low/low

0.6 0.4 Low/mid Low/high Mid/high Low/low

0.7 0.3 Low/mid Low/high Mid/high Low/low

0.8 0.2 Low/mid Low/high Mid/high Low/low

0.9 0.1 Low/mid Low/high Mid/high Low/low

1 0 Low/mid Low/high Mid/high Low/low
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can be briefly mentioned as follows: (1) the diversity-
based Gbest selection, (2) the mutation-aided global
search strengthening that is only recommended for solv-
ing the large-scale optimization problems, and (3) re-
moving the pre-optimization process. These advance-
ments are listed below and explained in detail.

Diversity-based Gbest selection

The PSO and f-MOPSO algorithms all face the prema-
ture convergence problem in their original versions.
This problem emerges when the search for the higher-
fitness areas in the search space would be at the cost of
losing extremity among the particles in the swarm of
particles. To tackle this problem, in f-MOPSO/Div, the
non-dominated Pbest particles are all extracted from the
swarm, and the one that is located in the least-densely
populated region is chosen as theGbest. The diversity of
a particle can be calculated as follows.

di ¼ min
j
∑M

k¼1 f ik xð Þ− f j
k xð Þ�� �� ð10Þ

where i = 1, 2,…, Nnd; j Є {1,…, i − 1, i + 1,…, Nnd};

M = number of objectives; f ik xð Þ = kth objective for the

ith solution and f j
k xð Þ = kth objective for the jth solution.

Also, di is the diversity index of the ith particle. Note
that when calculating this index, i ≠ j. Nnd is the number
of non-dominated Pbest particles. The Gbest would be
the non-dominated Pbest having the highest diversity
index. This approach to choosing the Gbest particle can
effectively prevent one end of the Pareto front from
being more focused and can ensure a nice balance and
make the solutions fluctuate among all ends of the local
Pareto fronts to entirely identify the objective space.

Mutation-aided local optima avoidance

To enhance the performance of the f-MOPSO and
avoid the particles to be trapped in local optima, we
propose using a mutation mechanism. Among a num-
ber of the mutation mechanisms, an adaptive polyno-
mial mutation is addressed here. The polynomial mu-
tation (Deb and Deb 2014) is a kind of mutation that
transfers a particle from one location to another loca-
tion by assuming that the probability of the particle’s
transfer to closer locations is higher than that of the
particle’s transfer to farther locations in the search
space. Furthermore, in f-MOPSO/Div, the mutation
probability is assumed to be a dynamic probability

rather than a fixed one in the optimization process. In
such a mechanism, the mutation probability is high in
the early iterations, and linearly decreases by lapse of
iterations. The dynamic mutation probability can be
calculated as follows:

pm ¼ pm;max−
pm;max−pm;min

itermax
� iter ð11Þ

where pm, max and pm, min are the maximum and
minimum values of the mutation probability that is
set at the beginning of optimization, respectively; iter
is the number of the current iteration; itermax is the
maximum number of iterations; and pm is the proba-
bility of mutation. The polynomial mutation imple-
mentation is allowed once the random number gener-
ated for each decision variable (rm) is lower than the
dynamic mutation probability (pm) at each iteration.
Therefore, the mutation value is calculated as follows:

δi ¼
2rið Þ1= ηmþ1ð Þ−1 ; if ri < 0:5

1− 2 1−rið Þð Þ1= ηmþ1ð Þ
h i

; if ri≥0:5

(
ð12Þ

where ri is a random number that is generated for the
ith decision variable of a focused particle upon which
(rm < pm); ηm is the distribution index of mutation,
which is usually set to a constant number; and δi is
the mutation value. Then, the ith decision variable is
mutated as follows:

xti;new ¼ xti;old þ δi Ubi−Lbið Þ ð13Þ

where xti;new is the mutated value of the ith decision

variable, xti;old is the previous value of the ith decision

variable, and Ubi and Lbi are the upper bound and
lower bound of the ith decision variable, respectively.

Removing pre-optimization process

The important and preliminary process in the f-
MOPSO is the pre-optimization process. However,
the pre-optimization can be very time-consuming
and imprecise, especially when handling large-
scale multi-objective optimization problems. Fur-
thermore, this process could negatively impact the
quality of the optimization results by imparting
more importance to an objective that is much
closer to its ideal/minimum value than other ob-
jectives. In f-MOPSO/Div, this process is removed
from the algorithm and incorporated into the main
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structure of the f-MOPSO/Div. In this way, the
necessary parameters are calculated and extracted
iteration by iteration. In this way, not only the
optimization process is going well but also the
computational costs can also be considerably
mitigated.

The flowchart of the f-MOPSO/Div algorithm is
shown in Fig. 1.

Experimental results on standard benchmark
functions

Comparative algorithms and parameter setting

To validate the proposed f-MOPSO/Div, here, this
algorithm is compared with the original f-MOPSO
and two popular multi-objective evolutionary opti-
mization algorithms i.e. non-dominated sorting

genetic algorithm-type II (NSGA-II), first proposed
by Deb et al. (2002), as the most popular multi-
objective genetic algorithm (MOGA) and the speed-
constrained multi-objective particle swarm optimi-
zation (SMPSO) algorithm, first introduced by
Durillo et al. (2009), as a robust multi-objective
PSO algorithm (MOPSO).

All algorithms are applied to seven lower-
dimensional benchmark problems and seven higher-
dimensional and more complex benchmark problems
proposed in the Congress on Evolutionary Computation
(CEC2009) (Zhou et al. 2009). All of the objectives in
these problem suites are to be minimized, except for the
Kita problem, in which the objectives are to be maxi-
mized. These problems cover a variety of challenges for
multi-objective optimization algorithms, having contin-
uous, discontinuous, linear, and non-linear, concave,
and convex optimal Pareto fronts. Furthermore, three

Perform the optimization by generating (for 

t = 1) or updating (for t > 1) the particles

Impose an adaptive dynamic polynomial 

mutation on a decision variable if that variable is 

allowed to be mutated

Insert each particle and its current Pbest into the SFIS 

structure, obtain the DI value for each one and select 

the new Pbests based on the lower DI

Assign the non-dominated Pbest with the maximum 

diversity index value as the Gbest of the population

Stopping criteria satisfied?

Transfer each particle to an 

external archive if it is non-

dominated

Present the non-dominated 

particles recorded in the 

external archive as the final 

solutions, and form the 

optimal Pareto-front

YesNo

Calculate the statistical parameters to form 

the SFIS structure, which are based on the 

objective values that are found so far.t = t + 1

Initializing optimization, set (t = 1)

Fig. 1 Flowchart of f-MOPSO/Div
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out of seven low-dimensional problems are constrained
and others are non-constrained.

For comparison of the algorithms introduced in
this section, the tunable parameters of these algo-
rithms should be the first set. For NSGA-II, the
crossover probability is set to 0.9, and the mutation
probability is set to 0.1 for low-dimensional prob-
lems and 1/D for high-dimensional problems, in
which D is the number of decision variables of
each problem. Furthermore, ηc and ηm are both set
to 20. The size of the tournament selection is also
set to 2, and the size of the pool of the elite
chromosomes is set to half of the population size.
For SMPSO, the size of the archive is set to be the
same as the population size and ηm is set to 20. For
f-MOPSO and f-MOPSO/Div, the weight step is set
to 0.1 to form the weight combinations and ηm is
set to 20. Furthermore, kmax and kmin are set to 0.9
and 0.4, respectively. In f-MOPSO/Div, for UF1,
UF4, UF5, UF6, and UF7 test problems, pm, max

and pm, min are set to 0.1 and 0.01, respectively,
and for UF2 and UF3 these parameters are set to
0.01 and 0.001, respectively. For doing a fair com-
parison, all algorithms are going on until maximum
200 iterations. Furthermore, the population size of
all algorithms is set to 40.

Performance metric

To determine the best-performing multi-objective algo-
rithm, the performance of each algorithm should be
evaluated under a comprehensive criterion. Here, the
performance of all competitive algorithms over all
benchmark problems is compared based on the inverted
generational distance (IGD), first proposed by Sierra
and Coello (2005). The IGD metric can be able of
evaluating the eligibility of the optimization algorithms
in terms of both convergence and diversity of the final
solutions the algorithms found (Zhou et al. 2009) and is
calculated as follows:

IGD ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1di
2

q
ð14Þ

where di is the Euclidean distance between the ith mem-
ber of the known optimal Pareto front and the nearest
member of the final Pareto front found by the algo-
rithms, and N is the size of the optimal Pareto set for
each problem.

Comparison of the algorithms on benchmark test
problems

In this section, the capabilities of the proposed f-
MOPSO/Div algorithm are evaluated against those of
NSGA-II, SMPSO, and f-MOPSO algorithms. The de-
tailed numerical results are presented in Table 3, and
four instances of the resulting Pareto fronts are illustrat-
ed in Figs. 2, 3, 4, and 5.

Note that in all of these figures, the optimal Pareto
fronts achieved byNSGA-II, SMPSO, f-MOPSO, and f-
MOPSO/Div are presented in the subfigures (a), (b), (c),
and (d), respectively. As can be seen in Table 3, the f-
MOPSO/Div significantly outperforms its competitors
in 22 out of 28 (79%) cases considered as the perfor-
mance criteria (average, best, worst, and std (standard
deviation) of IGD metric obtained over numerous inde-
pendent runs).

For much more challenging the capabilities of the
proposed algorithm, all algorithms were implemented
on 30-dimensional complex UF benchmark problems.
The detailed numerical results are presented in Table 4.
In general, the proposed f-MOPSO/Div is successful in
achieving better results on 19 out of 28 (68%) of the
performance criteria, compared to other competitors,
while each of NSGA-II and SMPSO algorithms can
reach better results only on 4 out of 28 (14%) of the
criteria.

Conjunctive surface-ground water use management

Study area

The Gavkhouni river basin covering an area of
41,547 km2 is located at the Central Plateau river
basin in Iran. The basin is including 21 sub-basins.
The study area is Najafabad Plain located in west-
central Iran as a part of Zayandeh-Rud River Basin
located in the greater Gavkhouni river basin. This
plain is 1712 km2 area, with geographical coordi-
nates between 50° 33′ 32″ to 51° 40′ 00″ Eastern
longitudes and 32° 19′ 14″ to 33° 00′ 32″ Northern
latitudes (Fig. 6). Read more about this basin in
(Safavi and Rezaei 2015).

The Najafabad aquifer occupies an area of 940.9
km2 including 14,623 wells with an annual dis-
charge of 852.7 million cubic meters (MCM)
(Yekom Consulting Engineers 2013). This aquifer
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is mainly recharged by river water infiltration, irri-
gation return flow, and the direct precipitation on
the plain; however, the annual precipitation in this
area is very low, and the main surface water
recharging the Najafabad aquifer is supplied from
the Zayandeh-Rud River and reservoir. The
Njafabad plain is divided into two main sub-plains:
(1) Nekouabad-Right located on the right bank of
the Zayandeh-Rud River, and (2) Nekouabad-Left
located on the Left bank of the Zayendeh-Rud
River.

Due to the consumption of the largest volume
of available water resources and the massive

agricultural and horticultural productions, the
Najafabad sub-basin, including Nekouabad-Right
and Nekouabad-Left sub-areas, is identified as the
most important sub-basin of the Gavkhouni basin,
such that 584 thousand tons of agricultural prod-
ucts and 45.8 thousand tons of horticultural prod-
ucts are annually yielded in this sub-basin. The
agricultural sector is the most water-consuming in
the region, and any water resources management
plan in the Najafabad region should properly ad-
dress the agricultural water use in this region.

The Najafabad region is mainly an irrigated
agricultural area, mainly due to lacking adequate

Table 3 Statistical results for IGD metric on the low-dimensional standard benchmark functions. (The results corresponding to the best-
performing algorithms are italicized)

Problem Performance criteria NSGA-II SMPSO f-MOPSO f-MOPSO/Div

Constr-Ex Average 1.8930E−01 1.0670E−01 1.4992E−01 6.1049E−02
Best 1.2595E−01 5.1443E−02 8.9892E−02 2.6053E−02
Worst 3.7416E−01 1.9271E−01 2.2699E−01 1.4204E−01
Std 7.5622E−02 4.4863E−02 3.4661E−02 4.2011E−02

Fonseca Average 2.0818E−01 2.2257E−01 2.6438E−01 4.0065E−02
Best 1.0073E−01 1.3941E−01 1.6261E−01 1.5292E−02
Worst 2.7110E−01 3.4401E−01 3.3685E−01 1.0706E−01
Std 5.0004E−02 6.3290E−02 5.3556E−02 2.9516E−02

Kita Average 1.2790E+00 3.2972E−01 3.1450E−01 7.1611E−02
Best 4.1840E−01 2.7230E−01 1.5763E−01 4.5432E−02
Worst 3.1099E+00 3.9296E−01 5.4031E−01 1.3337E−01
Std 7.7696E−01 4.0356E−02 1.2065E−01 2.4527E−02

Binh Average 9.6489E−01 3.9032E−01 8.9423E−01 3.4556E−01
Best 6.8518E−01 2.4507E−01 7.3413E−01 5.8164E−02
Worst 1.2895E+00 7.6926E−01 1.2968E+00 1.1366E+00

Std 2.0802E−01 1.6724E−01 1.7944E−01 3.4069E−01
DTLZ2 Average 2.5770E−01 2.7602E−02 8.4346E−02 4.4857E−03

Best 1.8291E−01 1.5672E−02 5.5225E−02 9.8735E−04
Worst 4.1627E−01 5.4613E−02 1.1455E−01 1.5902E−02
Std 7.3330E−02 1.1904E−02 1.9088E−02 4.6264E−03

Kursawe Average 1.7541E−01 3.1510E−01 5.2464E−01 6.4661E−02
Best 1.2261E−01 1.9847E−01 1.2960E−01 3.2606E−02
Worst 3.0401E−01 5.7527E−01 1.7609E+00 1.4265E−01
Std 5.7320E−02 1.0865E−01 5.2333E−01 3.3211E−02

Deb Average 2.3023E−01 2.7115E−01 2.0324E−01 2.5065E−01
Best 1.4726E−01 1.0230E−01 9.8635E−02 9.3955E−02
Worst 2.7301E−01 3.2112E−01 2.8947E−01 3.6764E−01
Std 3.5037E−02 6.4008E−02 8.1797E−02 7.7609E−02
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precipitation in the region, making this region be
categorized in the semi-arid regions. The predom-
inant crops cultivated in this area consist of wheat
and barley, with 41.8% of the total area, and rice
and alfalfa with 14.5% and 5.5% of total cultivat-
ed area, respectively. Potato and onion are also
desired crops cultivated in this area, mainly in
the autumn season (Yekom Consulting Engineers
2013; Zayandab Consulting Engineers 2008).

Decreased reliable surface water resources in the
region as a result of a streak of droughts which
have occurred in recent years poses challenges in
surface water supply for this region, imposing
much more pressure on groundwater resources to
meet increasing agricultural demands in this re-
gion, such that the groundwater level in the
Nekouabad-Right and Nekouabad-Left regions ex-
periences the drastic 13 and 20 m drawdown in
just a decade. Moreover, the increasing population
as well as some negative climate change impacts

such as global warming prompt the water demands
to be increased in this region. This increasing
negative balance between water supply and water
demands in such a semi-arid region urges water
resources management for this region. Further-
more, while an averagely 7.4% of total water
consumption in the agricultural sectors in the
country is used in this region, this region yields
just a ratio of 4.6% of total national agricultural
net benefits.

Accordingly, in this paper, we aim at developing a
management model for optimizing conjunctive surface-
ground water use. This optimal management model is
developed with two main goals: (1) minimizing the
groundwater withdrawals and (2) maximizing the crop
yields as a solution to enhancing the net benefits of the
agricultural activities in the study area. In this study, a
13-year planning period beginning from 2003–2004
water year through 2015–2016 water year is considered
as the planning period.

(a) (b)

(c) (d)

Fig. 2 Pareto fronts resulting from (a)NSGA-II; (b) SMPSO; (c) f-MOPSO; and (d) f-MOPSO/Div algorithms applied to Fonseca problem
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Optimization model mathematical formulation

Minimize Z1 ¼ ∑
13

i¼1

∑
12

j¼1
ΔHij−ΔHi;opt

 !2

=2−

∑
12

j¼1
ΔHij−ΔHi;opt

 !2

=2� sgn ∑
12

j¼1
ΔHij−ΔHi;opt

 !
2
666664

3
777775þ Zpen1 þ Zpen2 ð15Þ

sgn ∑
12

j¼1
ΔHij−ΔHi;opt

 !
¼ ∑

12

j¼1
ΔHij−ΔHi;opt

�����
�����= ∑

12

j¼1
ΔHij−ΔHi;opt

 !
ð16Þ

Zpen1 ¼ m1 � min
i

min sgn GW total;max− ∑
12

j¼1
GWij

 !
; 0

" #( )�����
�����; for i ¼ 1; 2;…; 13: ð17Þ

Zpen2 ¼ m2 � min sgn ∑
13

i¼1
∑
12

j¼1
ΔHij−ΔH total;min

 !
; sgn ΔH total;max− ∑

13

i¼1
∑
12

j¼1
ΔHij

 !
; 0

" #�����
����� ð18Þ

(a) (b)

(c) (d)

Fig. 3 Pareto fronts resulting from (a) NSGA-II; (b) SMPSO; (c) f-MOPSO; and (d) f-MOPSO/Div algorithms applied to Kita problem
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Maximize Z2 ¼ ∑
13

i¼1
∑
6

c¼1
Y ic � Aicð Þ ð19Þ

Y ic

Y ic;max
¼ ∏

12

j¼1
1−Kyjc 1−

Supij
Dij

� 	
 �
; for i

¼ 1; 2;…; 13 ð20Þ
Subject to:

Dij ¼ ∑
6

c¼1
CDijc � Aic � 10−5 ð21Þ

Supij ¼ SWij;net þ GWij;net ð22Þ

SWij;net ¼ a� b� c� SWij ð23Þ

GWij;net ¼ a� GWij ð24Þ

SWavail
j;min≤SWij≤SWavail

j;max ð25Þ

GWavail
j;min≤GWij≤GWavail

j;max ð26Þ

ΔH total;min≤ ∑
13

i¼1
∑
12

j¼1
ΔHij≤ΔH total;max ð27Þ

Hij ¼ Hi; j−1−ΔHi; j−1; for j≠1 ð28Þ

Hi;1 ¼ Hi−1;12−ΔHi−1;12 ð29Þ

(a) (b)

(c) (d)

Fig. 4 Pareto fronts resulting from (a) NSGA-II; (b) SMPSO; (c) f-MOPSO; and (d) f-MOPSO/Div algorithms applied to UF1 problem
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The parameters used in the model formulation are
defined in detail below:

Zi ith objective function (i = 1, 2)
Zpen1 The first penalty function restricting the

groundwater extraction in each study sub-area.
m1 The penalty coefficient in the first penalty

function.
Dij The net water demand of the jth month in the

ith water year (MCM).
Supij The net water supply of the jth month in the

ith water year (MCM).
Aic The cultivated area for cth crop in the ith

water year (ha).
ΔHij Groundwater level (GWL) variation in jth

month of the ith water year (m).
ΔHi, opt The optimal GWL variation in the ith water

year (m).
Zpen2 The second penalty function restricting the

GWL variations over the whole planning
period.

GWtotal,

max

The maximum allowable groundwater
volume extracted in each water year
(MCM).

m2 The penalty coefficient in the second penalty
function.

ΔHtotal,

min

The minimum allowable GWL variation
over the whole planning period (m).

ΔHtotal,

max

The maximum allowable GWL variation
over the whole planning period (m).

Yic The yield per unit cultivated area of the cth
crop in the ith water year (kg/ha).

Hij The initial GWL in the jth month of the ith
water year (m).

CDijc The net crop water requirement of the cth
crop per unit cultivated area in the jth month
of the ith water year (mm).

GWij, net The net groundwater volume extracted
in the jth month of the ith water year
(MCM).

GWij The gross groundwater volume extracted in
the jth month of the ith water year (MCM).

(a) (b)

(c) (d)

Fig. 5 Pareto fronts resulting from (a) NSGA-II; (b) SMPSO; (c) f-MOPSO; and (d) f-MOPSO/Div algorithms applied to UF2 problem
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SWij, net The net surface water volume allocated to
each study sub-area in the jth month of the
ith water year (MCM).

SWij The gross surface water volume allocated to
each study sub-area in the jth month of the
ith water year (MCM).

a The efficiency coefficient of the water use in
the farm, including the evaporation and
infiltration to the aquifer.

b The efficiency coefficient of the water
transfer through the main irrigation canals.

c The efficiency coefficient of the water
distribution through the secondary irrigation
canals.

SWavail
j;min The minimum volume of the surface

water allocated in the jth month and
derived from the historical data (MCM).

SWavail
j;max The maximum volume of the surface

water allocated in the jth month and
derived from the historical data (MCM).

GWavail
j;min The minimum volume of the groundwater

extracted in the jth month and derived from
the historical data (MCM).

GWavail
j;max The maximum volume of the groundwater

extracted in the jth month and derived from
the historical data (MCM).

Table 4 Statistical results for IGD metric on the high-dimensional standard benchmark functions. (The results corresponding to the best-
performing algorithms are italicized)

Problem Performance criteria NSGA-II SMPSO f-MOPSO f-MOPSO/Div

UF1 Average 3.8302E−01 2.5420E−01 4.0666E−01 1.7766E−01
Best 3.2075E−01 1.5733E−01 2.0199E−01 1.4209E−01
Worst 4.4442E−01 6.7222E−01 6.0365E−01 2.1749E−01
Std 4.0116E−02 1.5838E−01 1.2331E−01 2.4358E−02

UF2 Average 3.6152E−01 1.4377E−01 2.1796E−01 1.1819E−01
Best 3.2871E−01 1.0296E−01 1.7588E−01 8.5923E−02
Worst 4.3388E−01 2.2515E−01 2.7207E−01 1.5114E−01
Std 3.1178E−02 3.3958E−02 2.9979E−02 1.8830E−02

UF3 Average 4.1943E−01 4.4917E−01 4.7162E−01 3.6706E−01
Best 3.5465E−01 4.2528E−01 3.0984E−01 2.5288E−01
Worst 6.0195E−01 4.8542E−01 6.3517E−01 5.4217E−01
Std 9.5076E−02 1.8055E−02 8.5575E−02 1.0707E−01

UF4 Average 1.0411E−01 1.9029E−01 1.9777E−01 1.1370E−01
Best 7.0716E−02 1.7179E−01 1.9049E−01 1.0179E−01
Worst 1.6231E−01 2.0445E−01 2.1511E−01 1.5808E−01
Std 3.3668E−02 1.0675E−02 7.5344E−03 1.6533E−02

UF5 Average 2.7608E+00 1.5463E+00 3.2887E+00 8.8455E−01
Best 2.4020E+00 6.8702E−01 1.9354E+00 5.3020E−01
Worst 3.0644E+00 2.8757E+00 4.0740E+00 1.3375E+00

Std 1.9331E−01 7.4479E−01 7.4177E−01 2.7266E−01
UF6 Average 1.7070E+00 6.4561E−01 7.2503E−01 5.3050E−01

Best 1.4984E+00 4.8009E−01 3.7939E−01 3.3858E−01
Worst 1.9130E+00 9.5231E−01 2.7224E+00 1.2143E+00

Std 1.3713E−01 1.6800E−01 7.1035E−01 2.7004E−01
UF7 Average 4.8469E−01 4.9742E−01 8.2069E−01 3.4566E−01

Best 3.4883E−01 3.0279E−01 5.4909E−01 3.1195E−01
Worst 7.2139E−01 8.7917E−01 1.1746E+00 3.6071E−01
Std 1.2857E−01 2.1756E−01 2.4141E−01 1.5669E−02
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Yic, max The maximum of cth crop yield per unit
cultivated area in the ith water year fulfilled
when fully satisfying the crop water demand
(kg/ha).

Kyic The yield response factor of the cth crop in
the ith water year, representing the crop
sensitivity to the deficit irrigation.
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Fig. 6 Najafabad Plain in the Gavkhouni River Basin, Iran (Rezaei et al. 2017b)
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Preparing the simulation-optimization model

Artificial neural network

A simulation-optimization model is used to solve the
conjunctive use problem. In this model, the optimization
section is the f-MOPSO/Div algorithm, whose superior-
ity over other popular multi-objective evolutionary al-
gorithms was proven in the previous sections of this
paper, and the simulation model is a multi-layer
perceptron feed-forward neural network (MLPFNN).
The optimization model is designed to delineate the
optimal surface water allocated and groundwater ex-
tracted volumes in the monthly time steps, while the
simulator attempts to estimate the groundwater level
(GWL) variations in any monthly time step. The
MLPFNN model benefits from 286 input data series,
each of which includes several input features illustrated
in Figs. 7 and 8, for the Nekouabad-Right and the

Nekouabad-Left regions, respectively. Fourteen input
data are involved in simulating the monthly groundwa-
ter level in the Nekouabad-Right, and 13 input data are
included in the Nekouabad-Left. The output of the net-
work is the GWL variation. This variation is negative if
there is GWL drawdown and is positive if the GWL
rises. It is noteworthy that from the 286 data series, 65%
is put aside for training the network, 10% is dedicated to
validation, and 25% is assigned to the test stage. The
network is adopted as a single-hidden-layer network.
The 14-7-1 and 13-12-1 structures are found as the best
structures for the network for the Nekouabad-Right and
Nekouabad-Left sub-areas, respectively, based on nu-
merous trials and errors. The architecture of the net-
works built based on the specific characteristics of each
region is shown in Figs. 7 and 8.

There are several criteria to benchmark the perfor-
mance of the simulators (Yeom et al. 2015; Wong et al.
2020). Among them, we adopted the correlation
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MLPFNN designed for the
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coefficient (R) to evaluate the goodness of fitting the
simulated outputs to the observed targets. The R values
resulting from the best implementation of the MLPFNN
model on two study sub-areas are displayed in Table 5.

Comparison between f-MOPSO and f-MOPSO/Div

To further validate the use of the f-MOPSO/Div algo-
rithm, the performance of this algorithm and the original
f-MOPSO in solving the real-world conjunctive water
use problem is investigated in this section. The maxi-
mum number of the iterations of both algorithms was set

to 200. It is noteworthy that 50 stall iterations were also
set, and the stagnation of the algorithms to generate the
better ideal point for the local Pareto fronts over these
stall iterations is considered as the stopping criterion for
the optimization process. Furthermore, the swarm size
was set to 40, and the weight step in the SFIS structure
was also set to 0.1. The final Pareto fronts each algo-
rithm yields at each study sub-area are presented in Fig.
9. It is worth mentioning that the vertical axis of these
Pareto fronts is, in fact, the minus of the second objec-
tive, minimization of which means maximization of the
real form of the second objective presented in the math-
ematical formulation of the optimization model.

Since any multi-objective optimization algorithm
presents an optimal Pareto front as the final result of
the optimization process, there is a need to select the
best point/solution on this front as the final result of the
algorithm. Here, we employ compromise programming,
first introduced by Zeleny (1973), to do so. According to
the compromise programming, the weighted distance of
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Fig. 8 The architecture of the
MLPFNN designed for the
Nekouabad-Left region

Table 5 Correlation coefficient (R) achieved in the best imple-
mentation of the MLPFNN model

Training Validation Test Total

Nekouabad-Right 0.84 0.92 0.82 0.85

Nekouabad-Left 0.78 0.46 0.85 0.76
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each point to the ideal point on the Pareto optimal front
can be calculated as follows:

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1ð Þ2 Zi

1−Z1;min

Z1;max−Z1;min

� 	2

þ W2ð Þ2 Zi
2−Z2;min

Z2;max−Z2;min

� 	2
s

ð30Þ

where Zi
j , j = 1, 2, is the jth objective value of the ith

non-dominated solution on the final Pareto front, Zj, min

and Zj, max are the minimum and maximum values of the
jth objective on the final Pareto front, respectively,Wj is
the weight assigned to the jth objective, and Di is an
index representing the weighted distance of the ith non-
dominated solution on the Pareto front to the ideal
solution in the objective space. To designate the weights

of the objectives, a questionnaire was filled by some of
the experts and stakeholders in the field. Finally,W1 was
obtained to be 0.59 and W2 was calculated to be 0.41.

To compare the f-MOPSO and f-MOPSO/Div algo-
rithms in terms of their capability to solve the real-world
conjunctive water use management problem, two key
criteria are considered: (1) groundwater level (GWL)
variations and (2) productivity. Productivity is defined
as the total crop yields per unit water consumption
volume (kg/m3). The first criterion is an environmental
goal, helping someone realize the performance of the
algorithms to mitigate the groundwater level draw-
downs to make the vital groundwater resources sustain-
able to exploit in the possibly dry years in the future.

(a) (b)

(c) (d)
Fig. 9 Final Pareto fronts found by different algorithms in a, b right region; and c, d left region
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The second criterion is a comprehensive socio-
economic-environmental goal, suggesting that the eco-
nomic benefits achieved are at the cost of using how
much water, especially the groundwater.

Tables 6 and 7 summarize the numerical values
of these performance criteria achieved by the best
solution obtained through the optimization. As can
be seen, the f-MOPSO/Div can achieve lower GWL
drawdowns over the 13-year planning period while
maintaining productivity in a more desirable level as
compared to the f-MOPSO algorithm. In detail, the
proposed algorithm has calculated the GWL draw-
down in the Nekouabad-Right region by 15% less
than that computed by the f-MOPSO, while the
GWL drawdown is turned into GWL rise in the
Nekouabad-Left as computed by the f-MOPSO/Div,
experiencing the sustainable conditions nearly 5
times more than those reported by the original f-
MOPSO as the results in Table 7 illustrate.

Additionally, the results suggest slightly better pro-
ductivity calculated by the proposal than that resulting
from the original f-MOPSO. Since the f-MOPSO/Div
shows better results to solve such a real-world environ-
mental problem, we show some more results received
from running this algorithm in the forms of figures and
tables and make some discussions on these results to
further enhance the understanding of the performance of
this new algorithm when facing such a problem in the
next section.

Results and discussion (f-MOPSO/Div application)

Nekouabad-Right

The results of the simulation-optimization model ap-
plied to the Nekouabad-Right study sub-area suggest
that this region mostly relies on the groundwater

Table 6 Comparison between the original and the proposed algorithms based on the performance criteria

Region Nekouabad-Right Nekouabad-Left

Criterion Drawdown (m) Productivity (kg/m3) Drawdown (m) Productivity (kg/m3)

Algorithm f-MOPSO f-MOPSO/Div f-MOPSO f-MOPSO/Div f-MOPSO f-MOPSO/Div f-MOPSO f-MOPSO/Div

2003–2004 − 3.18 − 1.53 0.69 0.73 3.34 2.76 1.00 1.07

2004–2005 − 2.57 − 1.52 0.88 0.85 − 1.54 − 1.44 1.03 0.96

2005–2006 − 1.30 − 1.52 0.89 0.84 2.83 2.88 0.95 0.91

2006–2007 1.87 − 1.49 0.91 0.86 − 1.57 − 1.49 0.95 1.01

2007–2008 − 2.37 − 1.51 0.65 0.65 − 1.32 − 0.92 0.71 0.60

2008–2009 − 1.72 − 1.51 0.61 0.61 − 1.50 − 1.53 0.81 0.90

2009–2010 − 0.72 − 1.26 0.54 0.80 0.00 − 0.96 0.56 0.95

2010–2011 − 2.05 − 1.51 0.76 0.74 − 0.10 − 0.76 0.73 0.48

2011–2012 − 0.98 0.06 0.81 0.67 − 0.92 0.25 0.51 0.59

2012–2013 − 1.85 − 0.90 0.72 0.74 1.08 3.82 0.81 0.89

2013–2014 3.44 4.13 1.39 1.41 1.92 1.32 1.73 1.49

2014–2015 3.69 1.33 0.92 1.02 − 1.09 − 1.50 1.28 1.19

2015–2016 − 2.28 − 1.29 0.60 0.65 − 1.53 − 0.95 0.83 0.87

Table 7 Overall comparisons between the original and the proposed algorithms based on the major criteria

Criterion Cumulative drawdown (m) Average productivity (kg/m3)

Algorithm f-MOPSO f-MOPSO/Div f-MOPSO f-MOPSO/Div

Nekouabad-Right − 10.02 − 8.51 0.80 0.81

Nekouabad-Left − 0.39 1.46 0.91 0.92
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resources to supply the water demands, such that the
average ratio of the groundwater extraction to the sur-
face water allocation (GW/SW) reaches 5.75, over the
whole planning period, while this figure is observed to
be 12.7 in the actual operation. In the first 4 years of the
planning period, the GW/SW is high, which is accom-
panied by the proper precipitation and the high rate of
recharge by the river, and thus, the GWL drawdown
could be suitably controlled over these years. Moreover,
nearly 94% of the total water demands are met in these
years, resulting in the productivity (total crop yields/
total water consumption) equal to 0.82 kg/m3 as a figure
very similar to the average productivity observed in the
actual operation in the basin. It is noteworthy that the
monthly crops water demands are all calculated using
the CROPWAT 8.0 software.

In conclusion, in the Nekouabad-Right study sub-
area, 91% of the demand is averagely met, and the
cumulative − 8.51-m GWL drawdown is achieved ver-
sus − 13.37-m drawdown seen in the actual operation of
the region in the same period. Furthermore, the water
productivity is calculated to be 0.814 kg/m3 compared
to 0.841 kg/m3 averagely seen in the actual operation in
the basin, suggesting the desired balance between the
economic aspect of the conjunctive use, reflected by the
crop yields, and the environmental aspect, reflected by
the water consumption. Also, the ratio of the groundwa-
ter extraction to the surface water allocation is set to be
5.75, whereas this figure is seen to be 12.7 in the actual
operation, suggesting a 55% decrease in this ratio,
which in turn can hold a suitable balance between the
recharging and discharging factors of the aquifer

0
5

10
15
20
25
30
35
40

20
03

-2
00

4

20
03

-2
00

4

20
04

-2
00

5

20
05

-2
00

6

20
06

-2
00

7

20
07

-2
00

8

20
08

-2
00

9

20
09

-2
01

0

20
10

-2
01

1

20
11

-2
01

2

20
12

-2
01

3

20
13

-2
01

4

20
14

-2
01

5

20
14

-2
01

5

20
15

-2
01

6

)
M

C
M(

dn a
me

D/ylppuS

PLanning Period ( Water Year)

Surface Water Allocation Groundwater Extraction Water Demand

Fig. 10 Surface water and groundwater allocated to the Nekouabad-Right region and the water demands

-24

-19

-14

-9

-4

1

20
03

-2
00

4

20
03

-2
00

4

20
04

-2
00

5

20
05

-2
00

6

20
06

-2
00

7

20
07

-2
00

8

20
08

-2
00

9

20
09

-2
01

0

20
10

-2
01

1

20
11

-2
01

2

20
12

-2
01

3

20
13

-2
01

4

20
14

-2
01

5

20
14

-2
01

5

20
15

-2
01

6

)
m (

no it aira
V

L
W

G
evital u

m u
C

Planning Period (Water Year)

Actual Operation f-MOPSO/Div

Fig. 11 Cumulative groundwater level variation in the Nekouabad-Right region

Environ Monit Assess (2020) 192: 767 Page 21 of 27 767



resulting in a desirable GWL drawdown over the whole
13-year planning period. It is noteworthy that since only
six dominant crops among a large variety of the crops
are considered to be cultivated in the study area in this
paper, we reduced the groundwater and surface water
volumes available to the crops, based upon the amount
of the reduction of the total water demands to the de-
mands determined for the dominant crops. This proce-
dure can make all comparisons based on the water ratio
met, GWL variations, and the ratio of the groundwater
to surface water allocation absolutely fair and plausible
in this paper. This revision on the water resources avail-
able is also made in the Nekouabad-Left region.

Figure 10 shows the volume of the water supply
separated by surface-ground water along with the

demands. Figure 11 depicts the cumulative GWL draw-
down delineated by the proposed model versus what is
seen in the actual operation. Figure 12 displays a statis-
tical chart presenting the six main crop yields over the
whole planning period, and finally, Fig. 13 illustrates the
ratio of the groundwater extraction to the surface water
allocation separated by different water years compared
to the actual operation, all in the Nekouabad-Right
region.

Nekouabad-Left

The results obtained in this region suggest the average
groundwater extraction to the surface water allocation to
be 3.98 versus a value of 8.00 observed in the actual
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operation. While in 2003–2004 water year, the GWL is
raised by 2.76 m, in 2004–2005 the GWL withdraws by
− 1.44 m, mainly due to the low precipitation and also
the low recharge by the river in this water year. The
occurrence of a drought condition in 2007–2008 water
year poses very low precipitation and also low surface
water allocation to the region resulting in − 0.92-m
drawdown this year. Meanwhile, the demand percent-
age met and also the water productivity both decline by
25% and 50%, respectively, illustrating an acute condi-
tion for water resources management in this year. In
2012–2013, due to the proper recharge of the aquifer
and considering low water demands for the main crops

in the region, the GWL was raised by 3.82 m as the
highest rise in the GWL over the whole 13-year period.

In conclusion, in the Nekouabad-Left region, the
water demands are averagely met by 94.4%, and the
GWL is raised by 1.46 m, while the GWL withdraws
by − 21.98 m in the actual operation of the region.
Furthermore, the average water productivity is ob-
tained to be 0.916 kg/m3, which is larger than 0.841
kg/m3 reported in the basin. It is noteworthy that the
irrigation efficiency in both study sub-areas is com-
puted above 74%, which is significantly higher than
that in the actual operation in the basin, which is
estimated to be 58%.
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Figure 14 shows the volume of the water supply and
demands. Figure 15 depicts the cumulative GWL draw-
down modeled versus that in the actual operation. Fig-
ure 16 displays a statistical chart presenting the six main
crop yields, and finally, Fig. 17 illustrates the ratio of the
groundwater extraction to the surface water allocation
compared to the actual operation, all in the Nekouabad-
Left region.

Conclusion

In this paper, an improved multi-objective particle
swarm optimization algorithm named f-MOPSO/Div
was proposed as an improved version of our recently
proposed f-MOPSO algorithm. While the f-MOPSO
deals with the multi-objective nature of the optimization

problems using a comprehensive dominance index (DI)
to choose the Pbest and the Gbest particles, the f-
MOPSO/Div can benefit from the DI only when
assigning the Pbests to the particles. Then, it selects
the non-dominated Pbest that is located in the least-
densely populated region in the objective space as the
Gbest of the swarm at each iteration.

To better handle the high-dimensional problems, we
recommended incorporating a polynomial mutation
with an adaptive dynamic mutation probability into the
f-MOPSO/Div.

In f-MOPSO, there is a pre-optimization process
before the main optimization process. This pre-
optimization process can be a very time-consuming
and also an imprecise process, especially when dealing
with large-scale multi-objective optimization problems.
Hence, in the proposed f-MOPSO/Div, the pre-
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optimization process is removed and incorporated into
the main structure of the algorithm.

To validate the f-MOPSO/Div, it was applied to 14
well-known low- and high-dimensional multi-objective
test problem suites and compared to two popular multi-
objective evolutionary optimization algorithms as well
as the original f-MOPSO. After the superiority of the
proposal was revealed, this algorithm was applied to a
practical engineering optimal conjunctive water use
problem to benchmark the capabilities of f-MOPSO/
Div to deal with real-world problems. Overall, the meth-
od can hold a suitable balance between recharging and
discharging factors of the groundwater reservoir, such
that the cumulative groundwater level drawdowns can
be much reduced over the whole planning period as
compared to what is seen in the actual operation. Water
productivity and irrigation efficiency are among other
factors ameliorated by the proposed model.

In the future works, we aimed at examining other
objectives that could be addressed in the conjunctive
water use problems. Taking uncertainty into account
both in the simulation and optimization models could
be another field of interest to be addressed in the future
to reflect the uncertain nature of the conjunctive water
use problems, mainly resulting from climate change in
the study areas.
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