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Abstract Monitoring vegetation change and their poten-
tial drivers are important to environmental management.
Previous studies on vegetation change detection and driv-
er discrimination were two independent fields. Specifi-
cally, change detection methods focus on nonlinear and
linear change behaviors, i.e., abrupt change (AC) and
gradual change (GC). But driver discrimination studies
mainly used linear coupling models which rarely con-
cerned the nonlinear behaviors of vegetation. The two
diagnoses need be treated as sequential flow because they
have inner causality mechanisms. Furthermore, ACs
concealed in time series may induce over/under-
estimate contributions from human. We chose the Yang-
tze River Basin of China (YRB) as a study area, first
separated ACs from GCs using breaks for additive and
seasonal trend method, then discriminated drivers of GCs
using optimized Restrend method. Results showed that
(1) 2.83% of YRB were ACs with hotspots in 1998
(30.2%), 2003 (10.4%), and 2002 (7.6%); 66.7% of
YRB experienced GC with 94.8% of which were

positive; and (2) climate induced more area but less
dramatic GCs than human activities. Further analysis
showed that temperature was the main climate driver to
GCs, while human-induced GCs were related to local
eco-policies. The widely occurring ACs in 1998 were
related to the flooding catastrophe, while the dramatic
ACs in sub-basin 12 in 2003 may result from urbaniza-
tion. This paper provides clear insights on the vegetation
changes and their drivers at a relatively long perspective
(i.e., 34 years). Sequential combination of specifying
different vegetation behaviors with driver analysis could
improve driver characterizations, which is key to envi-
ronmental assessment and management in YRB.
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Naturogenic and anthropogenic drivers

Introduction

Profiling vegetation cover change and their drivers in a
relatively longer period is essential for understanding
evolutions and exchange mechanisms of involved ele-
ments in local man-land systems (Gries et al. 2019). On
decades scale, climate variables and human activities are
two main drivers that could deeply influence the vege-
tation cover on the Earth (Hao et al. 2018; Huang et al.
2016; Liu et al. 2018). Climate variables such as pre-
cipitation, temperature, and sun radiation drive the plant
physiological processes such as photosynthesis, respira-
tory, and transpiration, while human activities, such as
urbanization, deforestation, grazing prohibition policy,
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reclamation of land from lakes, market fluctuation etc.,
could directly or indirectly change the processes of
vegetation dynamic by modifying ecosystem composi-
tion and distribution (Xu et al. 2016). Although these
above two drivers alternately or simultaneously drive
and co-decide the direction of vegetation dynamic, they
seldom serve an equal amount of impacts to local veg-
etation during longer period. Discriminating the rela-
tively dominant driver would be helpful to uncover the
evolution and interacting processes between local eco-
systems and external interferences.

The remote-sensing vegetation index such as Nor-
malized Difference Vegetation Index (NDVI) is one of
the most common indicators for pixel-based analysis of
vegetation change and their drivers on regional, conti-
nental, and planet scale (Ivits et al. 2013; Zhao et al.
2015). Previous studies on vegetation change detection
and driver analysis focused on two separate themes.
First, various change detection methods were developed
to target non-linear or linear behaviors of vegetation,
i.e., abrupt change (AC) and gradual change (GC),
based on the hypothesis that ACs and GCs behave
differently in time series NDVI trajectories (Kim et al.
2013). Specifically, parametric and non-parametric lin-
ear analysis (Mu et al. 2013; Zhao et al. 2012) and
nonlinear detection methods (Wu et al. 2017) were
designed to detect GCs and ACs, respectively.
Trajectory-based statistical methods were designed to
detect both GCs and ACs concealed in time series
remote-sensing datasets. These methods are breaks for
additive and seasonal trend (Bfast) (Verbesselt et al.
2010a; Zeileis et al. 2002; Zeileis et al. 2005), detecting
breakpoints and estimating segments in trend method
(Jamali et al. 2015), continuous change detection and
classification method (Zhu and Woodcock 2013), and
Landsat-based detection of trends in disturbance and
recovery (Cohen et al. 2010; Kennedy et al. 2007;
Kennedy et al. 2010). Second, driver discrimination
studies mainly dedicated to developing different models
based on linear models to integrate climate variables and
human-related variables based on the hypothesis that
climate and human activities are two main dominant
drivers responsible for the decades-scale change of veg-
etation cover. One popular philosophy in current re-
search is directly treating anthropogenic drivers (i.e.,
land cover transition) and climate factors as spatial-
temporal covariates to explain vegetation change
(Hawinkel 2019; Wen et al. 2017). However, one of
the biggest challenges of these studies is the difficulty in

explicating uncertainty due to mismatch in the spatial-
temporal scale of different drivers. While the classic
philosophy in most research of this field is to use indi-
rect way to weight the dominant drivers by firstly sim-
ulating the potential relationship between climate and
vegetation and then attribute the differences between
potential vegetation status and real vegetation status to
anthropogenic factors (Evans and Geerken 2004; Gu
et al. 2017; Prince 2010; Wessels et al. 2007, 2012).
But a challenge of these studies is that they built the
model involving vegetation and climate variables main-
ly based on linear coupling relationship without consid-
ering the nonlinear behaviors of vegetation cover. For
instance, the residual trend method (Restrend) (Li et al.
2012; Wessels et al. 2012; He et al. 2015), which is
widely used to discriminate human-/climate-induced
vegetation change, builds a model based on analyzing
the trend of residuals in a vegetation-climate linear
regression.

However, before characterizing the drivers of vegeta-
tion changes, it is necessary to separate ACs from GCs in
advance. Two key reasons are as follows: first, studies
about vegetation change detection and driver discrimina-
tion could be treated as a sequential chain process instead
of two separate fields because of the causal relationships
between them. ACs and GCs in vegetation should be
treated differently because they may be driven by differ-
ent factors with different complicated mechanisms. Spe-
cifically, ACs usually could be associated with human-
induced land cover transitions such as deforestation, ur-
banization, land reclamation, or extremely climate events
such as flood and drought (Forkel et al. 2013).While GCs
usually happen gradually and continuously, which indi-
cate gradual improvement or deterioration of plant cov-
erage or species composition associated with global
warming, soil erosion, fertilizing, irrigation, or nurturing
(Coppin et al. 2004; Forkel et al. 2013; Jong et al. 2011),
these kinds of behaviors could be related to climate
gradual change or indirect human activities such as envi-
ronmental management, policy alteration, or market fluc-
tuation. Second, it has been proven that linear coupling
models which are the basics of Restrend method would
over/under-estimate contributions from human activities
in case of ACs. In some extreme cases, ACs may directly
result in anomaly residuals in the vegetation-climate re-
gression model and therefore may lead to even opposite
conclusions. A previous study (Qu et al. 2018) used a
nonlinear method to detect AC year on a regional scale
and separate the whole time series into former and later
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periods. Then, it conducted Restrend with treating the
former period as a reference period. However, it is unreal
that each pixel in the study area has ACs simultaneously.
Furthermore, ACs in the former or later period could also
result in uncertainties in the linear model of Restrend. It is
more reasonable to exclude the ACs in Restrend model
and pixel-based trajectory analysis methods which are
developed recently that could be used to target ACs
before Restrend.

This study combined change detection model with
driver analysis model by treating these two processes as
a sequence flow to discover annual vegetation dynamics
and their potential drivers. We chose the Yangtze River
Basin of China (YRB) as study area. Firstly separated
ACs from GC by Bfast model and then discriminated
naturogenic and anthropogenic drivers in GCs using
optimized Restrend model based on Global Monitoring
and Simulation Research Group (GIMMS) NDVI3g
datasets and climate datasets derived from 138 meteo-
rological stations from 1982 to 2015. Results were
demonstrated in the whole basin scale, 3 stream scale,
and 12 sub-basin scale to elaborate the spatio-temporal
heterogeneity in YRB. This paper provides pronounced
insights on eco-evolution and corresponding external
drivers in YRB at a relatively long perspective, which
is meaningful for decision-making on environmental
management and restoration of this area.

Materials and methods

Study area

The YRB (24°30′N~35°45′N; 90°33′E~122°25′E)
covers an area about 18.8% of China’s total land area
with mountains (65.6%), hills (24%), and plains
(10.4%) from west to east (Fig. 1). The climate in
majority of YRB is subtropical monsoon climate with
annual mean temperature that ranges from 12.6 to
28.0 °C and average annual precipitation up to
476 mm. According to the land cover map in 2001,
there are mixed forest (35.9%), grassland (20.9%), crop-
land (19.8%), shrub (16.6%), evergreen needle leaf
forest (1.3%), deciduous broadleaf forest (0.6%), ever-
green broadleaf forest (0.5%), deciduous needle-leaf
forest (0.1%), and non-vegetation area (4.2%).

High-speed urbanization started with the ambition of
developing the ‘Yangtze River Economic Belt’ released
by the Chinese government in 1990s (Cui et al. 2013).

Besides the fact that extreme weather events (e.g., se-
vere storms, heatwaves, prolonged drought) increase
during the past 30 years (Dufresne et al. 2013; Gold
2012; Leng et al. 2015; Mora et al. 2017), economic
developments in YRB resulted in several serious envi-
ronmental problems (Gao et al. 2013; Li et al. 2017).
Therefore, it is necessary to describe vegetation change
and their potential drivers in YRB. To elaborate the
spatio-temporal heterogeneity of our results, we con-
ducted analysis in 3 scales, i.e., the whole basin, 3
streams, and 12 sub-basins. The boarders of YRB and
the definition of different streams/sub-basins are accord-
ing to the announcement released by the Changjiang
Water Resources Commission dispatched by the Minis-
try of Water Resources of the People’s Republic of
China (Table 1).

Data and data preprocessing

The GIMMS NDVI3g with the longest time series ac-
cumulation (1982~2015) was downloaded from the
NASA website (http://glcf.umd.edu/data/gimms/). The
datasets involve 816 phase images from January 1982 to
December 2015 with 8-km spatial resolution and semi-
monthly temporal resolutions. It has been subjected to
radiation correction, set correction, and image enhance-
ment and other preprocessing (Du et al. 2016). We
firstly used the maximum value composite method to
produce monthly NDVIs, then accumulated NDVIs
from April to October each year to obtain the annual
growing seasonal NDVI datasets (ASNDVI). Each time
series ASNDVI trajectory (TSNDVI) has 34 points
corresponding to the 34 years from 1982 to 2015. The
TSNDVI could well record vegetation dynamic in a
local and global scale and widely used in research about
vegetation dynamic analysis (Forkel et al. 2013;
Prajjwal and Bardan 2012),

Precipitation and temperature were treated as two
representative vegetation-related climate variables in
this paper. Monthly precipitation dataset (P) and month-
ly mean temperature dataset (T) from 1982 to 2015 were
downloaded from the website of the China Meteorolog-
ical Data Service Center (http://data.cma.cn/). Each
dataset contains records of 138 meteorological stations
located within the YRB. The quality of the datasets was
tested and missing data at the beginning or end of the
trajectory were replaced by the average value of those
months in all other years with data while remaining
missing data were filled using the linear interpolation
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Fig. 1 Location of the YRB in China

Table 1 The sub-basins in YRB

Mark Sub-basins Streams

Sub-basin 1 The upstream of Jingsha River system The upper stream (sub-basins 1~6)
Sub-basin 2 The downstream of Jingsha River system

Sub-basin 3 The Min and Tuo River system

Sub-basin 4 The Jialing River system

Sub-basin 5 The Wu River system

Sub-basin 6 The Yibing-Yichang water system

Sub-basin 7 The Dongting lake system The middle stream (sub-basins 7~10)
Sub-basin 8 The Han River system

Sub-basin 9 The Poyang lake river system

Sub-basin 10 Yichang-hukou sub-basin

Sub-basin 11 The Hukou downstream area The downstream (sub-basins 11~12)
Sub-basin 12 Taihu lake water system
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method (Hu et al. 2015). Because of the lag effect of
vegetation growth to climate variable, 45 indices with
different temporal combinations (Xu et al. 2018) were
calculated for P and T, and then, the indices in each
station were interpolated by the inverse distance
weighting method to obtain overall 90 climate raster
grids with the same resolution as the NDVI dataset. In
each pixel, there are 45 T-series and 45 P-series from
different temporal combinations.

The 1:1,000,000 scale ecological map for YRB, pro-
duced by the Chinese Academy of Sciences (2001), was
used to identify ecological zones in the optimized
Restrend method (Xu et al. 2018). The MCD12Q1 land
cover maps of 2001 were obtained from the MODIS
website (https://modis.gsfc.nasa.gov/about/), with
processed yearly observation data from the Terra and
Aqua satellites applied to depict land cover types.
Annual cloud-free composite stable Defense Meteoro-
logical Satellite Program (DMSP)/Operational Linescan
System (OLS) nighttime light brightness products from
1992 to 2012, which were widely used to investigate
socioeconomic change and urbanization at different
temporal-spatial scales, were downloaded from the
website (https://ngdc.noaa.gov/eog/dmsp.html). The
DMSP/OLS datasets under the WGS84 coordinate ref-
erence system were nocturnal luminosity with a 30 × 30
arc-second (approximately 0.8 km × 0.8 km at the 40°N
area) spatial resolution ranging from 0 to 63. The orig-
inal dataset was corrected by using empirical cross-
correction based on binomial fitting to eliminate signal
drift and degradation caused by different sensors and
inter-annual fluctuation (Ma 2019). Point of interest
(POI), i.e., pixels in the Tai lake system with a digital
number (DN) larger than 50, were treated as human
settlements according to previous related study (Shu
et al. 2011). The human settlement time series from
2000 to 2009 was constructed by normalizing the num-
ber of POI pixels in corresponding years. Besides, the
social-economy datasets of the Tai lake system, includ-
ing the area of cropland and built-up land in Wuxi,
Changzhou, and Suzhou, were obtained from local eco-
nomic statistical datasets from 2000 to 2009.

Methods

Bfast method

The pixel-based Bfast method was used to detect GCs
and ACs in TSNDVI from 1982 to 2015. The model

was developed from econometric models and had been
proven to be a powerful method to detect structural
changes in time series NDVI datasets on large scale
(Verbesselt et al. 2010a, b). Bfast used iterative strate-
gies to gradually find breakpoints based on a trend-
seasonal decomposition model (Equation 1) and struc-
tural change detection model (Jong et al. 2013; Zeileis
et al. 2002, 2005; Zeileis 2005).

yt ¼ a1 þ a2tþ ∑k
j¼1r jsin

2πjt
f

þ δ j

� �
þ εt ð1Þ

where yt is the time-series observations, a1 is the inter-
cept, a2 is the slope of the trend, rj is the amplitude, δj is
the phase (i.e., season), k is the harmonic terms, f is the
frequency (e.g., f = 12 in the monthly precipitation series
and monthly mean temperature series), and εt is the
unobservable error at time t, i.e., standard deviation (σ).

The MOving SUMs (MOSUM) of the ordinary least
square (OLS) residual process (OLS-MOSUM) was
used to determine structural change breakpoints (α =
0.05 in this study). The OLS-MOSUMprocess is sum of
a fixed number of residuals in a temporal windowwhose
size is determined by the bandwidth parameter (it was
set to 0.15 in this study). The final output model was
determined by a best-fit model, i.e., the Bayesian infor-
mation criterion (BIC) in Equation 2.

BIC ¼ 2ln Lð Þ þ k ð2Þ
Significant GCs were simultaneously derived by

models based on trajectories without breakpoints. In
detected pixels with GC, we also calculated change rate
determined using Equations (3) and (4):

SΔNDVI ¼ β � tn þ að Þ− β � t1 þ að Þ
β � t1 þ a

� 100 ð3Þ

a ¼ X−β � t ð4Þ
where SΔNDVI is the NDVI change rate (percentage of
ASNDVI increase over the study period), X is the mean
of the time series of NDVIs, t is the mean value of the
dates, and t1 and tn are the start and end years of the time
series, respectively.

Optimized Restrend method

In the GCs areas, we used ‘optimized Restrend’ (Xu
et al. 2018) to discriminate naturogenic and
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anthropogenic driving forces. This method inherited the
philosophy of original Restrend and improved the orig-
inal model by optimizing the strategy to automatically
define flexible spatial homogeneous neighborhoods.
Details of this method are described in the previous
study of authors (Xu et al. 2018). First, pixel-based
correlation analysis between TSNDVI and 90 climate
series (i.e., 45 T-series and 45 P-series) were conducted
to determine the most related period of T-series and P-
series for ASNDVI.

Then, we usedmultiple regression analysis to build the
pixel-level climate–vegetation model as in Equation 5:

y ¼ β0 þ β1P þ β2T ; ð5Þ

where y is the TSNDVIs of the ‘reference pixel’, which
refers to the maximum value ASNDVIs within the ho-
mogeneous spatial neighborhood of the target pixel; P
and T are the normalized values of the most related P-
series and T-series, respectively; and β0, β1, and β2 are
the parameters of the model. The location of a corre-
sponding reference pixel for a specific pixel x was deter-
mined by three steps as described in the previous study
(Xu et al. 2018).

Finally, the residual analysis was conducted. Residuals
refer to the differential value between the potential
ASNDVIs and the actual ASNDVIs. A significant de-
creasing or increasing trend in residuals indicated that
vegetation change is driven mainly by human activities
(Evans and Geerken 2004). If there was no trend in the
residual series, changes that happened during the study
period were driven mainly by climate change (Wessels
et al. 2012).

Results

Separate ACs from GCs in YRB

ACs in YRB

There were 2.83% of the total area in YRB that went
through significant ACs during the past 34 years. Fig-
ure 2 shows most of AC pixels commonly distributed
along rivers such as Jingsha River and Xiang River, or
around the top three freshwater lakes in YRB (i.e.,
Poyang, Dongting, and Tai Lake). The most intensive
and dramatic ACs happened in plains of downstream,

which is the most developed and densely populated area
in YRB.

As regards to the years of ACs, results showed that
the ACs not equally happened in each year during the
study period. The majority of ACs happened in the year
1998 (30.2%), then in 2003 (10.4%), and 2002 (7.6%).
ACs that happened in these 3 years accounted for 48.2%
of the total detected ACs (Fig. 3), which was a strong
cue to indicate that ACs did not happen randomly and
might be related to some specific events in these years.

The spatio-temporal distribution of ACs was quite
various in different sub-basins. Figure 4 e shows detect-
ed ACs in different streams (upper stream > middle
stream > downstream). It indicated that the upper stream
of YRB experienced more dramatically external inter-
ferences than the downstream during the past 34 years.
Although there were more ACs happened in the middle
stream than in the downstream according to Fig. 4e, the
downstream area deserved more attention because ACs
in the downstream area located more concentrated than
those in the middle stream. Further results in Fig. 4a
showed that sub-basins 1, 12, and 7 had large areas with
ACs with rates up to 21.0%, 18.4%, and 13.3% of total
ACs, respectively, while sub-basins 8, 6, and 5 kept
more stable ecosystems with ACs only up to 3.1%,
1.2%, and 0.1%, respectively.

Figures 4 b, c, and d further demonstrate that the main
change years in the three typical sub-basinswere obviously
different. Specifically, Fig. 4b shows that the ACs in sub-
basin 1 mainly happened in the year 1994. However, the
main change years in the sub-basin 12 and the sub-basin 7
were 2003 and 1998, respectively (Fig. 4c and d). Com-
pared with results in Fig. 3, ACs happened in 1998 on the
YRB located in the middle stream and downstream, while
ACs happened in 2002 and 2003 on the YRB that were
mainly located in the downstream.

The change characteristics in the temporal field were
also various in different sub-basins. The sub-basin 1 had
ACs in almost every year. Excluding the most dramatic
changes in 1994, there were still dramatic changes in
2008 and 2009 as shown in Fig. 4b. However, ACs in
sub-basin 12 mostly happened in 2003 and partly con-
centrated in 1998 and 2002. We could, therefore, con-
clude an obvious periodical temporal pattern in this sub-
basin according to Fig. 4c, that is, ACs are more com-
mon in the period 1982 to 2003 than the period 2003 to
2015. In sub-basin 7, almost all the ACs happened in the
year 1998 and there were rare ACs in other years as
shown in Fig. 4d.

Environ Monit Assess (2020) 192: 6426 Page 6 of 1842



Figure 5 further shows the location of ACs in sub-
basins 1, 12, and 7 in different years. It showed that ACs
mainly happened around the city Shanghai in 2002 and
2003, while it happened mainly at the southwest of the
sub-basin 12 in 1998 (Fig. 5b). However, the ACs
mainly happened along the Xiang River in 1998 in
sub-basin 7(Fig. 5d). In sub-basin 1, the ACs almost
happened every year and there was dramatic AC that
happened in 1994 (Fig. 5f).

GCs in YRB

From 1982 to 2015, the vegetation changes in YRB
were mainly characterized by a significant increasing
trend, which reflected the gradual improvement of veg-
etation coverage in the study area during the past
34 years (y = 0.0177x − 27.385, R2 = 0.49). About
66.7% of YRB (1,190,692.2 km2) showed significant
GCs, within which there were 94.8% of the GCs that

Fig. 2 ACs in YRB from 1982 to 2015

Fig. 3 Years of ACs in YRB
from 1982 to 2015
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showed positive trend and only 5.2% of the GC regions
showed a negative trend (Fig. 6).

Change rates in different areas of YRB were not
synchronous (Fig. 6). In the upper and middle streams,
vegetation cover had a significant increase. But in the
downstream, vegetation cover remained stable during
past 34 years. The change rate in the middle stream (y =
0.0244x − 40.038, R2 = 0.50) was higher than that of the
whole YRB, while the change rate in the upper stream
(y = 0.018x − 28.147, R2 = 0.49) was closer to that of the
whole YRB.

Strong spatial heterogeneity of GCs was demon-
strated by sub-basin analysis. Results showed that
vegetation cover in sub-basin 6 of the upper stream
experienced the fastest increase (y = 0.0313x −
53.561, R2 = 0.55), while vegetation cover in sub-
basin 1 (y = 0.004x − 3.4438, R2 = 0.17) and sub-
basin 2 (y = 0.008x − 8.3556, R2 = 0.15) experienced
the slowest growth. Other areas such as sub-basin 5
(y = 0.0273x − 45.549, R2 = 0.44), sub-basin 4 (y =
0.0268x − 44.717, R2 = 0.52), and sub-basin 9 (y =
0.0262x − 43.595, R2 = 0.58) in the middle stream
also had a high change rate. It was especially notice-
able that the average value of NDVIs in sub-basin 12
(y = − 0.0033x + 12.843, R2 = 0.02) showed a

negative trend, which contrasts to trends in all the
rest sub-basins.

Although the change rate in the upper stream had the
most consistency with that in the whole YRB during the
past 34 years, it had the strongest spatial heterogeneity.
Sub-basins with the highest change rates, such as sub-
basins 6, 5, and 4, and the sub-basins with the lowest
change rates (i.e., sub-basin 1) were all located in this
area. The change characteristics in the middle stream
had the weakest spatial heterogeneity and almost all the
sub-basins increased simultaneously during the past
34 years. However, overall stable change in downstream
(y = 0.0034x + 0.2091, R2 = 0.02) was resulted by offset
effect from the positive trend in sub-basin 11 and the
negative trend in sub-basin 12.

As regard to the rates of GCs, the absolute value of
increase rates in positive GC areas was overall higher
than the absolute value of decrease rates in negative GC
areas. A dramatic vegetation increase and a moderate
vegetation decrease happened during the past 34 years.
Specifically, in the positive GC areas, area with rate
between 10 and 20% was the largest class with reaching
47.8% of the total positive GCs areas; area with rate
between 0 and 10% was about 40%; area with rate
between 20 and 40% accounted for 6.7%, and area with

Fig. 4 Total number of pixels with ACs in YRB. a ACs in
different sub-basins with marks as section 2.1; b AC years in
sub-basin 1; c AC years in sub-basin 12; d AC years in sub-

basin 7; e ACs in upper stream, middle stream, and downstream
of YRB
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rate above 40% was only 0.23%. While in the negative
GC areas, area with rate between − 10% and 0 was the
largest class with reaching 3.7% of the total negative GC
areas; area with rate between − 20 and − 10% accounted
for about 1.3%; area with rate below − 40% was only
0.01%; there were only 0.17% of negative GC areas
with rate between − 40 and − 20% (Table 2).

Positive GCs were mainly concentrated in the middle
stream and the eastern upper stream (Fig. 6). Vegetation
cover in the middle stream was mainly positive and
there were large areas with GC rate exceeding 10%.
The most significant vegetation increases happened in
sub-basin 2 and in sub-basin 6. The change rate in these
areas usually exceeded 20%. It was worth noting that the
most significant vegetation decreases happened in sub-
basins 1, 3, and 12.

Table 2 further evidences that about 50% of the total
GC changes in sub-basins such as sub-basins 1, 3, and

the 10 were between 0 and 10%. It indicated that al-
though large areas in these sub-basins went through
significant GCs, the degree of vegetation change was
not dramatic. It was also noticeable that pixel-based
vegetation cover changes in sub-basins 4, 5, and 6 all
showed increasing and there were no vegetation degra-
dations that happened in these areas during the past
34 years. In addition, there were 55.7%, 62.0%, and
58.7% of GC rates concentrated between 10 and 20%
with a relatively intense degree of vegetation change.
There was even 12.1% of the change in the sub-basin 4
increased over 20%, which was the most typical area
with rapid vegetation cover growth in the YRB.

The vegetation change in sub-basin 12 was the most
complicated in the study area: on the one hand, about
60.85% of GC areas showed vegetation decrease and
there were 30.2% ofGC area decreasemore than − 20%;
on the other hand, this area had the highest percentage of

Fig. 5 ACs and TCs in different sub-basins of YRB. a TCs in sub-basin 12; b AC areas and years in sub-basin 12; c TCs in sub-basin 7; d
AC areas and years in sub-basin 7; e TCs in sub-basin 1; f AC areas and years in sub-basin 1
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decrease area with GC rate over 40%. It went through
coexisted and complex increase and decrease of GC
(Table 1). Areas with a negative rate between − 10%
and 0 accounted for 39.7% of the total GCs in the basin,
while the proportion of areas with a rate between 0 and

10% of the total change area was 17.1%. The sum of
areas with these two types of moderate change rates had
exceeded more than half of the total change area. In
areas with drastic changes, there were 30.1% of total
change areas with a rate below − 10%, while at the same

Fig. 6 GCs in YRB from 1982 to 2015

Table 2 Change rates in GC study area

Sub-basins Increase (%) Decrease (%)

> 40% 20~40% 10~20% 0~10% − 10~0% − 20~− 10% − 40~− 20% <− 40%

1 0.59 5.84 31.13 48.98 11.17 2.20 0.08 0.00

2 0.08 11.25 32.66 39.33 14.43 2.02 0.23 0.00

3 0.40 4.55 38.91 47.82 4.55 3.07 0.69 0.00

4 0.40 11.70 51.66 36.19 0.06 0.00 0.00 0.00

5 0.00 1.94 61.98 35.69 0.39 0.00 0.00 0.00

6 0.00 8.88 58.68 32.44 0.00 0.00 0.00 0.00

7 0.03 4.94 55.09 39.36 0.34 0.20 0.03 0.00

8 0.00 6.06 54.45 38.00 1.19 0.30 0.00 0.00

9 0.64 9.08 47.96 41.95 0.16 0.05 0.11 0.05

10 0.00 2.62 46.53 47.13 2.62 1.01 0.10 0.00

11 0.16 4.04 32.97 44.48 11.82 5.29 1.24 0.00

12 1.01 1.01 11.06 17.09 39.70 28.64 1.51 0.00

Overall 0.23 6.72 47.84 40.03 3.72 1.27 0.17 0.01

Note: the marks of sub-basin records corresponding to the mark of 12 sub-basins in Table 1
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time, there were 13.1% of total change areas with rate
more than 10%.

Dominant drivers in GCs areas

Results of optimized Restrend showed that climate fac-
tors (54.1%) contributed more to GCs than human ac-
tivities (45.9%). The vegetation changes driven by these
two different factors may have different characteristics
of spatial agglomeration. In general, human-induced
GCs had stronger spatial agglomeration than climate-
induced GCs. The latter located evenly and scattered
throughout the whole basin (Fig. 7 a and b).

Human-induced GCs mainly happened in the middle
stream (Figs. 7a and 9a), and most of them turned to
have a positive trend, especially in sub-basins 8 and 5.
Human-induced negative GCs were mainly in sub-basin
12 of downstream (Fig. 7c). However, climate-induced
GCs located evenly in each sub-basin (Fig. 9a), with
climate-induced negative GCs mainly located in the
upper stream of YRB (Fig. 7b).

Human activities influence vegetation dynamics in a
more dramatic way than climate factors because abso-
lute change rates in human-induced GCs are obviously
higher than absolute change rates in climate-induced
GCs. As shown in Fig. 7 c and d, majority of human-
induced greening areas increased by more than 20%,
while the majority of climate-induced greening areas
increased by 10~20%. At the same time, majority of
human-induced browning area decreased − 10~− 19%
and more, while the majority of climate-induced brow-
ning area decreased − 9%~0.

Discussion

Specific climate and human-induced drivers in GCs

Correlation analysis between different climate variables
and vegetation cover in Fig. 8 further demonstrated that
GCs were more controlled by temperature than by
precipitation in the study area. This finding is
corresponding to results in previous studies. Cui et al.
(2019) found that the overall increase of vegetation
cover in YRB was closely correlated with temperature
extremes (i.e., maximum temperature and minimum
temperature). Yuan et al. (2019a). further proved that
the start of growing season (SOS) of vegetation in YRB
was the key period which is more sensitive to

temperature than to precipitation. The precipitation-
related vegetation decrease mainly happened in the
north part of sub-basin 8, north part of sub-basin 6,
and areas between Xiang River and Gan River(α <
0.05). Meanwhile, the precipitation-related vegetation
increases mainly located in the north area of sub-basin
1. It is indicated that excessive precipitation may have a
negative effect on vegetation cover in areas with enough
water resources such as the middle stream and down-
stream, while it may have positive effect on vegetation
cover in arid/ semi-arid area such as northern sub-basin
1. Figures 8 a and c also show that the decrease in
vegetation cover in the sub-basins 4 and 12 had a
significant negative correlation with temperature. The
Hengduan Mountain area was typical because of the
significant negative influence of both precipitation and
temperature. In the majority of northern sub-basin 1,
both precipitation and temperature had a significant
positive influence to vegetation growth during the past
34 years.

As overlaying two layers, i.e., human-induced GCs
(Fig. 7a) and the land cover map of 2001, it indicated
that human-induced GCs mainly happened in forestland
(50.7%), and then in farmland (27.1%) and grassland
(21.0%). Changes that happened in these three classes
overall accounted for 98.8% of total human-induced
GCs. In YRB, grassland land cover is mainly in the
upper streams, while farmland and forestland mainly
located in the middle stream. The downstream is the
most developed area with plenty of urban/built-up areas.
Excluding the dramatic ACs happened in downstream
which could be more directly related to human-induced
land cover transitions, it seems that the GCs in middle
stream could be also more induced by human activities
than climate in an indirect way. Figure 9 a clearly
demonstrates that the human-induced areas are mainly
located in sub-basins 5, 7, 8, and 9 in the middle stream.
Previous research (Hu et al. 2019) proved that grain
production in the middle stream of YRB increased dra-
matically from 1990 to 2015 because of the increasing
sown area, agriculture fertilizer, and population.

Besides, the eco-policies about regulating three types
of national key ecological function areas (NKEFAs) in
YRB since 2010 also contributed to GCs (Fig. 9d). The
main reason for setting these NKEFAs is to protect and
restore the local environment. In different NKEFAs,
different policies and strategies were implemented with
different extents of human intervention, according to
their specific ecological situation and environmental
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problems. Results in Fig. 9c showed areas of human/
climate driving GCs in different NKEFAs, which could
be correspondingly confirmed by different extents of
human intervention form eco-policies. Specifically, in
the soil and water conservation area, more GCs area
related to human activities (Fig. 9c). Figures 6 and 7 a

and b show that northern sub-area 6 has the most relative
higher and more dramatic influence from human activ-
ities than climate. Correspondingly, eco-policies in this
NKEFA were more focused on ‘restoration’: (1) pro-
moting water-saving irrigation and rainwater gathering
system, developing dry farming and water-saving

Fig. 7 a Human-induced vegetation change; b climate-induced vegetation change; c change rates in human-induced area; d change rate in
climate-induced area

Fig. 8 a The correlation coefficient (r) between temperature and NDVI; b the correlation coefficient (r) between precipitation and NDVI; c
statistical significance (p) of r between temperature and NDVI; d statistical significance (p) of r between precipitation and NDVI
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agriculture, limiting steep slope reclamation, and over-
load grazing; (2) strengthening the comprehensive man-
agement of small watersheds, i.e., implement mountain
closure, grazing prohibition, and restore degraded veg-
etation; (3) strengthening the supervision of energy and
mineral resources development and construction pro-
jects, increase the efforts of mine environment remedi-
ation and restoration, and minimize the new soil erosion
caused by human factors; (4) broaden farmers ‘income-
increasing channels, solve farmers’ long-term liveli-
hoods. These deeply human-involved strategies, com-
bined with climate factors, contributed to the GCs in this
NKEFA (Fig. 9c). However, in the other two NKEFAs,
the main policies were more focused on ‘protection’
with decreasing influence by human with less interven-
tion. Therefore, the percentages of human-induced GCs
areas were relatively low as shown in Fig. 9c.

The different performances of human/climate-
induced GCs in the upper and middle stream (Fig. 9b)
are also corresponding to the population distribution
pattern. The sub-basins 1~3 in upper stream has the
lowest residential density in YRB; therefore, most GCs
were driven by climate. While in the middle stream,
human activities contributed slightly more than climate

factors to GCs. The situation in downstream has another
different scene; less GCs related to human may come
from the fact that human activities here had more direct
ways which related to the densely ACs, which are
further discussed in section 4.2.

The importance of detecting ACs before Restrend

Although there were a relatively lower percentage
(2.83%) of the area in YRB that went through signifi-
cant ACs during the study period, it is still necessary to
detect ACs before the driver discrimination processes
because of two reasons. The first reason is that exclud-
ing of detected ACs from the driver discrimination
processes could avoid possibilities of over/under-
estimate human effects in the 2.83% of areas. ACs
hidden in TSNDVI may influence the linear regression
relationship between climate and vegetation, which is
the basic of Restrend (Wang et al. 2018). Results, there-
fore, might be unreliable when these interferences hap-
pened. The second reason is that AC areas and AC years
are also very important change signals for local eco-
restoration and eco-management because these kinds of
information can usually be related to specific human
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activities or big natural disasters happened in the study
area. Previous work (Qu et al. 2018) detects AC year
(i.e., year 1994) on the regional scale, while in our
results, we found that ACs in 1994 mainly happened
in the sub-basin 1 (Fig. 4b) and AC years in the other
sub-basins were obviously diverse. It seems that detec-
tion of ACs only on regional scale will not only induce
uncertainty of results but also cover up the specific
drivers in different sub-basins.

In YRB, the year 1998 is the most extraordinary year
according to our analysis. About 30.2% of detected ACs
happened in 1998 (Fig. 3). In the middle stream and the
downstream, the year 1998 also should not be ignored
(Fig. 4c, d). The widely happened ACs in 1998 may be
caused by the extremely global flood disaster in YRB,
which is the second-largest flood disaster in this century
since the year 1954, according to the government’s
historical records. In 1998, the annual precipitation
amount is about 1216.7 mm/m2, with 11.5% higher than
the multiyear average amount. While the land surface
water amount is about 13,004 × 108 m3, with 27.4%
higher than the multiyear average amount. Furthermore,
the large amounts of precipitation are abnormally con-
centrated in summer 1998. It is shown that about 358.6
million acres cultivated lands in YRB were underwater,
within which about 295 million acres happened in the
middle stream and the downstream during the flood.

According to Figs. 2 and 3, there are about 10.4% of
detected ACs that happened in 2003 in YRB and most
of them happened in sub-basin 12. Evidence in Figs. 4c
and 5b further proved this claim. Change of vegetation
cover usually could represent the change of land cover
to some extent. The densely happened ACs in 2003 in
sub-basin 12 may be related to land cover changes
caused by high-speed urbanization in this area, which
is also stressed by the previous study (Yuan et al.
2019b). According to statistical data in Wuxi, Chang-
zhou, and Suzhou in this area from 2000 to 2009, the
total area of cultivated land in this three areas decreased
25.2% from 7.0 × 105 to 5.2 × 105 ha; meanwhile, the
total built-up area increased dramatically according to
analysis of DMSP/OLS datasets (Fig. 10). The year
2003 is a key year with high speed of increasing of
built-up area and decreasing of cultivated area.

Limitations and further research

This paper provides a knowledge background on eco-
evolution and influences from external drivers at a

relatively long perspective. It is therefore meaningful
for decision making on management and restoration of
the ecosystems in YRB. However, this paper has some
weaknesses which could be the aim of future studies.

First, we treated vegetation change detection and
discriminating drivers as a chain process based on the
causalities between them. Trajectory analysis methods,
i.e., Bfast, were conducted to detect ACs and GCs
before Restrend to avoid over/under-estimation of con-
tributions from human activities. However, Bfast is not
sensitive to ACs happened in the beginning or end of the
study period, which may cause uncertainties to some
extent. In addition, detected ACs can hardly be defined
the “from–to” land cover change; therefore, they could
only be indirectly related to specific ecosystem changes
or land cover conversion caused by human activities or
extremely climate events (Xu et al. 2016). As a result,
their potential drivers could only be indirectly verified
instead of directly interpreted, which makes the proce-
dure of driver discrimination in ACs less automatic.
These weaknesses may be improved by developing
change detection methods.

Second, we only involved precipitation and tempera-
ture as two representative vegetation-related climate var-
iables in the optimized Restrend model. It may cause
uncertainties where other climate variables such as solar
radiation or wind related to the interface processes in the
vegetation-climate system. This limitation could be de-
veloped by importing the philosophy of some complicat-
ed models based on earth-climate system. Validation is
not only hard for the ACs, but it is also hard when it
comes to validate the human-induced GC. In fact, GCs
could be influenced by policies, local eco-organization,
social activities, e.g., surrounding vegetation could be

Fig. 10 Normalized area of cultivated land and urban land in
Wuxi, Changzhou, and Suzhou of sub-basin 12 from 2000 to 2009
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nurtured greening by a dam built in YRB, grassland
biomass decrease caused by increasing livestock resulted
from the increasing price of meat, patches of low yield
farmland become scaled and organized foster land be-
cause of land-leveling policies in YRB, settlement shift
and gathering caused by ecological migration policy,
integrated basin management, and unified streams sched-
uling. All those indirect human activities possibly happen
but hard to quantify and be combined with the pixel-
based analysis. Social surveymethod could be used in the
future to improve description of these factors.

Third, uncertainty of results could also be caused by
our data sources. For example, the coarse spatial reso-
lution of the NDVI dataset (i.e., 8 km) and relatively
sparsely distributed meteorological stations make the
results hard to be validated by other reference data.
Seasonal accumulated remote sensing NDVI may ig-
nore the fluctuation within seasonality of vegetation
cover. Well-produced time-series Landsat archive with
more fine spatial resolution or addition with a dataset
from more dense meteorological stations may improve
our study. Further research could be conducted on the
Google earth engine platform, on which the easily ac-
cessible time series Landsat datasets, open-source
change detection algorithms, and the powerful computer
sever support could improve the certainty of our study.
Satellite-based DMSP/OLS dataset was used to analyze
temporal change of human settlements as an informative
proxy way, based on the theory that there are notable
quantitative relationships between anthropogenic noc-
turnal radiance and the degree of human activities at
different scales (Ma 2018). However, the threshold
method (i.e., DN > 50) we used to define human settle-
ments in this paper may cause some uncertainty because
of subjective perspective. Accurate human settlement
dataset, site investigation, and questionnaire survey are
all very important studies in future studies.

Conclusions

Studies on vegetation change detection and driver dis-
crimination should be treated as follow-up flow for there
are inner causality mechanisms between them. This
paper chose YRB as the study area, aimed to profile
vegetation dynamic and their potential dominant drivers
from 1982 to 2015. Results were as follows:

There were 2.83% of the total area in YRB that went
through significant AC, and the dramatic ACs happened

in 3 years: 1998 (30.2%), 2003(10.4%), 2002 (7.6%);
ACs were quite various in different sub-basins (upper
stream >middle stream > downstream). Sub-basins 1,
12, and 7 had large ACs with rates up to 21.0%,
18.4%, and 13.3% of total ACs, respectively. ACs in
sub-basin 1 mainly happened in the year 1994, and the
main change years in sub-basins 12 and 7 were 2003
and 1998, respectively.

About 66.7% of YRB went through significant GCs
during the past 34 years, within which there were 94.8%
of GCs showed a positive trend (middle stream > upper
stream > downstream) and only 5.2% of the GC regions
showed a negative trend. In the upper and middle
streams, vegetation cover increased significantly. But
in the lower stream, vegetation cover remained stable.
Sub-basin 6 in the upper stream went through the fastest
growing of vegetation cover, while sub-basins 1 and 2
went through the slowest vegetation cover growing. The
overall stable change in downstream was resulted by the
offset effect from a positive trend in sub-basin 11 and a
negative trend in sub-basin 12. Sub-basin 12 is the most
serious area about vegetation decrease, compared with
the rest sub-basins. But it is also the largest area with a
rapid increase of vegetation (rate > 40%). It is indicated
that in this area, human activities have the highest de-
gree of impact and the impacts are mainly negative.

Climate factors (54.1%) contributed more to vegeta-
tion GCs than human activities (45.9%). The human-
induced negative GCs were mainly in sub-basin 12.
However, climate-induced GCs located evenly in each
sub-basin and the climate-induced negative GCs mainly
located in the upper stream. GC areas controlled by
human activities may have more dramatic change rates
comparing with the areas controlled by climate factors.
GCs mainly happened in the forestland (50.7%), farm-
land (27.1%), and grassland (21.0%), which indicate the
good effects of eco-projects in YRB. Majority of
climate-induced GCs controlled by temperature, while
human-induced GCs more related to different local eco-
policies and residential density. Widely happened ACs
in 1998 may be caused by the extremely global flood
disaster in YRB and the densely happened ACs in 2003
in sub-basin 12 may be related to land cover change
caused by high-speed urbanization in this area. The
above results indicate strong spatial and temporal
heterogeneous.

Although there were a relatively lower percentage
(2.83%) of the area in YRB that went through signifi-
cant ACs, it is necessary to separate ACs from GCs
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before Restrend model. Weaknesses may be improved
by developing change detection methods and using the
philosophy of some complicated models based on earth-
climate system. Accumulating accurate human settle-
ment datasets, site investigation, and questionnaire sur-
vey are important in future studies. Future models could
be conducted on the Google earth engine platform to
improve the certainties of our results.
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