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Abstract Drought, which has become one of the most
severe environmental problems worldwide, has serious
impacts on ecological, economic, and socially sustain-
able development. The drought monitoring process is
essential in the management of drought risks, and
drought index calculation is critical in the tracking of
drought. The Palmer Drought Severity Index is one of

the most widely used methods in drought calculation.
The drought calculation according to Palmer is a time-
consuming process. Such a troublesome can be made
easier using advanced machine learning algorithms.
Therefore, in this study, the advanced machine learning
algorithms (LR, ANN, SVM, and DT) were employed
to calculate and estimate the Palmer drought Z-index
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Highlights
• The Palmer Drought Severity Index (PDSI) was modeled to
reduce mathematical computational complexity through four
machine learning algorithms (LR, ANN, SVM, and DT).
• In the studied models, the meteorological variables were used
as input data.
• Palmer’s drought computing approach has been re-coded in the
Matlab environment. And runoff (RO) and Palmer Index data
were obtained by using this software.
• In the study, the best correlation coefficient was obtained in the
ANN algorithm with 0.98. The MSE value was 0.40 at this
success.
• A novel training data using meteorological variables were
developed and shared online.
• By using the developed training data, Palmer drought index
values for other regions will be able to be calculated by re-
searchers easily.
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values from the meteorological data. Palmer Z-index
values, which will be used as training data in the classi-
fication process, were obtained through a special-
purpose software adopting the classical procedure. This
special-purpose software was developed within the
scope of the study. According to the classification re-
sults, the best R-value (0.98) was obtained in the ANN
method. The correlation coefficient was 0.98, Mean
Squared Error was 0.40, and Root Mean Squared Error
was 0.56 in this success. Consequently, the findings
showed that drought calculation and prediction accord-
ing to the Palmer Index could be successfully carried out
with advanced machine learning algorithms.

Keywords Drought . Palmer Drought Severity Index .

Regression . Artificial Neural Network . Support vector
machine . Linear regression . Decision trees

Introduction

In recent years, the increase of severity and frequency of
the drought and flood disasters, which are considered
important extreme climatic events, have caused signifi-
cant damage to humanity globally. This increasing trend
is expected to continue with climate change and to pose
more risks to the environment, to the economy and,
consequently, to society, depending on water resources
(Choubin et al. 2014; IPCC 2014).

A drought is defined as a natural phenomenon that
adversely affects land, water resources, and production
systems because of precipitation fall significantly below
the normal levels, and leading to serious hydrological
imbalances (GDWM 2018). It is not easy to determine
the onset, duration, and termination of the drought
event, as its effects are gradually emerging (Parry et al.
2016). Drought has broad effects on many sub-parts
placed under the main headings such as environment,
economy, and society. Therefore, the analysis of
drought and wet periods with the rainfall-runoff rela-
tionship is very important.

Drought monitoring is an important process in
dealing with problematic climatic conditions as it
enables early warning (Hao et al. 2017). Using the
drought indices, which have a complex relationship
with climate and environment, is stated as an effec-
tive way to detect drought (Alam et al. 2017). It is
expressed that 10 indices from a total of 20 indices

are used frequently in the drought analysis of all parts
of the hydrological cycle (Wanders et al. 2017).
Furthermore, Palmer Drought Severity Index (PDSI)
developed by Palmer (1965) and Standardized Pre-
cipitation Index (SPI) developed by McKee et al.
(1993) are the most commonly used drought indices
so far (Tirivarombo et al. 2018). Since drought is
dependent on temperature and precipitation, it is stat-
ed that PDSI is more suitable for use in assessing the
potential impact of climate change on future droughts
than SPI (Mishra and Singh 2011). While the SPI is
an index computed with only monthly precipitation,
the PDSI is calculated based on precipitation and
evapotranspiration. In addition, in the calculation of
PDSI, how these two first parameters change over
time, runoff, moisture supply, and the water holding
capacity of the soil at the desired location are used as
the input variables (Vicente-Serrano et al. 2010;
Wells et al. 2004). PDSI has been widely used and
accepted with complaints, criticisms, and improve-
ments until today (Ma et al. 2016). Many studies
have modified and improved PDSI (Mo and
Chelliah 2006; Yan et al. 2013; Yang et al. 2017;
Yu et al. 2019). However, PDSI does not take into
account the spatial change of soil, vegetation, topog-
raphy, and hydrological processes of the basin in
drought calculations. It is also calculated by meteo-
rological records on the point scale (Yan et al. 2013).
Although the above disadvantages cannot be elimi-
nated, given the aforementioned advantages of the
PDSI over the SPI, the PDSI was the drought index
chosen to forecast in this study.

With the ongoing global climate change, the devel-
opment of new and more usable methodologies for
assessment of drought conditions and their easier use
has become a priority in terms of time constraints and
applicability. It is a known fact that SPI is widely used
for this reason. However, this raises the issue of reduc-
ing the use of indices that have very complex mathe-
matical operations such as PDSI. Although PDSI is
modified and updated, it has no widespread solution
proposal for the complicated mathematical process
(Liu et al. 2017; Mika et al. 2005; Olukayode
Oladipo 1985). As drought is important for global
climate variability and the need for continuous
monitoring, we offer new machine learning model
approaches where PDSI drought assessment, which
is a versatile drought-monitoring tool, can be used
more quickly and easier.
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An accurate prediction model trained and evaluated
for water scarcity can be an important tool for successful
drought and water management (Kisi et al. 2019). Dur-
ing the recent years in which modeling studies have
been intensified, different types of drought indexes have
been developed and applied with different modeling
techniques for drought assessment and monitoring at
the regional and global scale. Modeling methods such
as Artificial Neural Network (ANN) (Ali et al. 2017;
Sigaroodi et al. 2014; Zhang et al. 2019), support vector
machine (SVM) (Feng et al. 2019; Roodposhti et al.
2017), linear regression (LR) (Cui et al. 2017; Liu et al.
2019), and decision tree (DT) (Nourani and Molajou
2017; Rhee and Im 2017) algorithms were researched
for monitoring, assessing, and forecasting of drought.
These data-driven models have become increasingly
popular in drought prediction because they are effective
in dealing with the non-linear characteristics of PDSI
calculation. The PDSI was calculated and estimated
from the meteorological data using the advanced ma-
chine learning methods in this study, because of Palmer
Index has a complex structure with a very long memory.
Many drought estimation models using Palmer Index
have been developed in literature (Basakin et al. 2019;
Mehr and Kahya 2014; Ozger et al. 2012; Rao and
Padmanabhan 1984). However, meteorological data
were never used as input data in the prediction processes
of these studies. Besides, none of these studies presented
an approach that calculated the Palmer index value with
advancedmachine learningmethods andmeteorological
data. Unlike the studies in literature, the Palmer drought
index value was predicted and easily calculated using
meteorological data in this study. Alternative machine
learning methods in PDSI estimation were also applied
in the study. Moreover, PDSI computation, which has a
complex calculation process, has been made easier with
comprehensive and different input data generated from
the models. This study presents a pioneering modeling
work that will lead to new modification and improve-
ment efforts to address the deficiencies in the PDSI
computations.

Materials and methods

Case study

Adiyaman province is located (38° 11′ and 37° 25′
north latitudes and 39° 14′ and 37° 31′ east

longi tudes ) wi th in the Middle Euphra tes
Section of the Southeastern Anatolia Region. The
area of Adıyaman province is 7.606 km2 and its
altitude is 669 m. In the north of Adıyaman, there
are Malatya Mountains, which are extensions of
the Taurus Mountains. The elevation in the region
decreases from north to south, and wide flat ter-
rains are seen after the end of the mountains.
Atatürk Dam Reservoir, which is 180 km long,
817 km2 of area and 48.7 km3 of volume, is
located in the southeast of the city. It is Europe’s
and Turkey’s largest dam reservoir and also the
sixth largest dam reservoir in the world. The cli-
mate of Adıyaman is partly Mediterranean and
partly shows continental climate characteristics
(DSİ 2014; Tufaner and Dabanlı 2018). Figure 1
shows the location of the study area, its topo-
graphic structure, streams and rivers, Atatürk
Dam reservoir location, and the location of the
meteorological station from which the study data
are taken.

The average annual total precipitation amount
has been found to be 704 mm based on 56 years
(1962–2017) of measured rainfal l data at
Adıyaman station. During this period, 14 drought
incidents occurred, the most severe being in 2017
(368.3 mm). According to SPI 12, 8 moderate, 4
severe, and 2 very severe drought were observed in
this period (Tufaner and Dabanlı 2018). This situ-
ation leads to negative economic losses and social
consequences in this region such as water scarcity,
deterioration of water quality, lowering of the
Atatürk dam water budget, and agricultural irriga-
tion failures.

Data

The 1980–2011 meteorological data in Adıyaman
province were used in the study. The data were
obtained from the Turkish State Meteorological Ser-
vice (TSMS), (http://www.mgm.gov.tr/). The data of
monthly average temperature, monthly average
actual pressure, monthly average wind speed,
monthly average relative humidity, monthly total
rainfall, the potential evapotranspiration (PE),
available water capacity (AWC), runoff (RO), and
PDSI index (Z) were used in the study. In the
computation of adjusted potential evapotranspiration,
the Thornthwaite formula (Thornthwaite 1948) was
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employed. Because it was easily calculated with a small
number of inputs (Eqs. 1–4).

ji ¼
ti
5

� �1:514

ð1Þ

J ¼ ∑
12

i¼1
ji i ¼ 1; 2; 3;…12ð Þ ð2Þ

a ¼ 675� 10−9
� �

J 3− 771� 10−7
� �

J 2 þ 179� 10−4
� �

J þ 0:492

ð3Þ

PEad ¼ 16c
10ti
J

� �a

ð4Þ

where c is a latitude improvement coefficient to account
for the different day length between months, ti (°C) is the
average temperature for the imonth, ji is the monthly heat
index, J is the annual heat index computed using Eq. 2, and
a is an exponential coefficient calculated as a function of J.

Available water capacity (AWC) data were obtained
from the 1-m soil depth dataset of the OakRidge National
Laboratory Distributed Active Archive Center (ORNL
DAAC) in the USA (55–109 mm for Adiyaman region)
(Webb et al. 2000). In addition, since the AWC value was
given as a range of values in the ORNL DAAC, the
AWC was calculated according to the following Eqs.
(5–6) (Briggs and Shantz 1912) using the average per-
centage of sand, silt and clay ratios Çelik et al. (2017).

Moisture holding capacity

mm ¼ 0:03sand %ð Þ þ 0:35 silt %ð Þ þ 1:65 clay %ð Þð Þ þ 21ð
ð5Þ

Maximum available moisture mmð Þ
¼ moisture holding capacity� 0:65ð Þ þ 7 ð6Þ
The data used in this study are available to access

online and are used to calculate the Palmer drought
index in the subsequent studies [data]. These
accessible data can be used as training data in machine
learning studies related to drought. The data used in the
study are summarized in Table 1.

Palmer drought severity index

Palmer Drought Severity Index (PDSI) is a widely used
meteorological drought index calculated by soil

moisture and precipitation data of previous months.
The positive and negative PDSI values respectively
indicate the severity of wet and dry conditions as they
move away from 0. Comprehensive analysis taking into
account precipitation, surface runoff, and evaporation
conditions can be performed with the PDSI calculation
based on a long and complex algorithm. And in this
way, PDSI is capable of assessing the water potential
held in the soil, in other words, drought. The algorithm
of PDSI is first developed according to Palmer (1965).
In this algorithm, the soil is divided into two parts. The
amount of water in the previous month of each section
affects the calculation of the following month. Within
the scope of the study, special algorithms that can cal-
culate the Palmer drought index by months have been
re-developed in theMatlab environment. Special figures
and outputs of these algorithms are presented in the
following sections. The possible scenarios based on
monthly total precipitation and adjusted potential evapo-
transpiration for the divided parts of the soil are shown
in Fig. 2.

PDSI expresses the difference between the observed
precipitation amount and the atmospheric evaporating
demand (the required precipitation). The required pre-
cipitation is calculated using a complex algorithm that
takes into account the soil properties. In this algorithm,
besides potential evaporation, the duration, the date and
the amount of precipitation, and the wetness of the soil
determine the direction of the scenario. In the algorithm,
potential evaporation is the key forcing factor (Wang
et al. 2019).

In Fig. 2, P and PEad represent the total amount of
precipitation and evaporation for a month, respectively.
According to Palmer, the surface and underlying layers
of the soil are both getting wet and dry from the top to
bottom when the P value is either bigger or higher than
PEad value. Accordingly, if the soil receives more rain
(5f) than the water holding capacity, more rainfall will
flow. This situation is shown as runoff in the scenario
(Fig. 2). In the scenario, the water amount entering the
soil (P < PEad) is shown by the blue arrows and the
water amount exiting from the soil (PEad > P) by the
red arrows at the end of the month. Water follows the
top to down path while entering and exiting both layers
of the soil. For example, in the case of Fig. 2 (7a), if
water enters the soil, the water condition in the soil
layers will be as in (6c). So, the water wets the top of
the top layer. If there is water inlet again next month,
(7c) is observed. Also, in case of (7a), if there is water
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out of the soil, (1f) situation is observed. In other words,
the water inlet and outlet at the end of the month are
shaped as in the Fig. 2 scenario.

The computation algorithms of the PDSI proposed
by Palmer (1965) are developed in the scope of the
study. The flowchart of the developed algorithm is
shown in Fig. 3.

In Fig. 3, T: temperature, P: precipitation PEad: poten-
tial evapotranspiration, AWC: available water capacity,
Ssi-1: available moisture stored in the surface layer at the
start of the month, Ssi: available moisture stored in the
surface layer at the end of the month, Sui-1: available
moisture stored in the underlying layer at the start of the
month, Sui: available moisture stored in the surface layer
at the end of the month, S: available moisture stored in the
soil layers at the end of the month, PRO: potential runoff;
PR: potential recharge, R: recharge, PL: potential loss, L:
loss, ET: evapotranspiration, RO: runoff, PCAFEC: precip-
itation in climatically appropriate for an existing condi-
tion, d: precipitation excesses and deficiencies,D: month-
ly mean of absolute precipitation excess and deficiency
values (d), K′-K: monthly weighting factors, Z: the mois-
ture anomaly index, Uw: effective wetness, Ud: effective
dryness, and PDSI: Palmer Drought Severity Index.

The input data in PDSI is the monthly precipitation
sum P, PEad calculated by Thornthwaite, and AWC

calculated by the soil’s sand, clay, and silt ratio. Then,
the water potential status is determined for the two
layers of soil separated with the input data according
to the scenario in Fig. 2. Hydraulic accounting and
potential values (PRO, PR, R, PL, L, ET, RO) are
calculated according to the input data and the water
status in the two layers of the soil. In the next step, the
CAFEC (Climatically Appropriate For Existing Condi-
tions) coefficients (α, β, γ, δ) are calculated with these
values and PEad. In the next step, the monthly precipi-
tation excesses and deficiencies (d) are calculated with
CAFEC precipitation (PCAFEC) and monthly total pre-
cipitation (P). In addition, the climate characteristic
coefficient (K) varying according to the measured sta-
tion is calculated. Therefore, self-calibrating (SC) PDSI
which adjusts the coefficients in the PDSI to vary with
respect to the measuring station has been developed
(Wells et al. 2004). Finally, the moisture anomaly index
(Z) is calculated and then PDSI is reached.

Support vector machine

A support vector machine (SVM) can be used in a
regression application by searching an optimum hyper-
plane between classes. While it is doing that, it maxi-
mizes the margin between different groups of data. The

Fig. 1 Location of the study area with its topography, streams, and rivers; Atatürk Dam reservoir; and meteorological station
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hyper-plane found by this method is described by the
support vectors (Cortes and Vapnik 1995). The first
thing to do when applying this method is defining a
hyper-plane and maximizing the margin between data
groups. In the second step, it extends the hyper-plane
defined for the different data groups in non-linearly
separable problems. And to do this, it has a penalty term
for the misclassification data. In the last step, it maps the
data to a high dimensional space where the instances are

accurately classified. The set of equations that mathe-
matically express this method is given below.

wxþ b≥1;∀x of class1 and wxþ b≤−1;∀x of class2

max 2= wk kð Þ; and min
1

2
wk k2

ð7Þ
In the cases of excellent classification result is not

reached, SVM finds the hyper-plane maximizing the

Table 1 The abstract of the data used in the study

Months
(dates)

Monthly average PE AWC Runoff Z

Temperature
(°C)

Pressure
(hPa)

Wind speed
(km/h)

Humidity
(%)

Total rainfall
(mm)

(Inch) (Inch) (Inch) Moisture
anomaly
index

1 (Jan. 80) 1.9 940.2 21.5 69.4 125.2 0.03 2.33 4.9 − 2.07
2 (Feb. 80) 5.2 937.9 13.1 65.8 146 0.2 2.33 5.55 − 0.69
3 (Mar. 80) 8.5 935.8 19.7 70.1 186.6 0.63 2.33 0 1.92

10 (Oct. 11) 17.90 938.50 10.80 40.40 40.80 2.41 2.33 0.00 − 0.83
11 (Nov. 11) 8.10 940.80 12.70 56.00 90.70 0.47 2.33 3.10 0.48

12 (Dec. 11) 6.50 943.50 9.80 58.80 67.60 0.31 2.33 2.36 − 2.01
Avg 17.24 935.92 15.62 50.38 57.77 3.36 2.33 1.47 − 0.63
Min 0.40 926.50 5.60 13.80 0.00 0.00 2.33 0.00 − 4.17
Max 33.50 944.20 32.20 81.00 348.50 10.53 2.33 13.17 8.66

Std 9.49 4.35 4.03 15.72 64.03 3.13 0.00 2.42 1.71

Fig. 2 Possible scenarios based on monthly total precipitation and adjusted potential evapotranspiration
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margin and decreasing the false-positive rates. To do so,
the slack variables (εi) are kept to zero. While this
operation maximize the margin, it does not minimize
the misclassification. In that case, SVM uses kernel
functions (Meenal and Selvakumar 2018).

yi wxþ b≥1−εið Þ;∀xi where εi≥0 and min
1

2
wk k2 þ C∑iεi

k xi:x j
� �

; k is a kernel function:

ð8Þ

Linear regression

Linear regression is a fundamental method in statistics.
In this method, a class of data including features that
multiplied by the predefined weights is stated. A linear
equation representing such a class is given below.

x ¼ w0 þ w1 f 1 þ w2 f 2 þ…þ wn f n ð9Þ
where f1, f2, …, fn are the feature values in the class x,
and w1, w2, …, wn are the weights. In a regression
process, the weight values are estimated from the

training data. A procedure is needed to state the feature
values related to each training sample in the process. To

give an example, let xk is a class for sample k, and f k1;
f k2;…; f kn are the feature values in this class. The weight
multiplier of f0 feature is always one. The estimation
equation related to class k is defined as given below. In
the last stage, these estimated values for each training
instance are subtracted from actual values.

w0 f 0
k þ w1 f 1

k þ w2 f 2
k þ…þ wn f n

k ¼ ∑
j

i¼0
wi f i

k ð10Þ

Artificial neural network

In order to estimate drought, Multi-Layer-
Perceptron (MLP) method (Choubin et al. 2016)
known as a feed forward Artificial Neural Network
(ANN) model (Sigaroodi et al. 2014) was used in
the study. This model works well, when the input
is discrete and the output is real. In addition, when
this method is used, potential noises on the input
are also reduced. The reason why such a method
is preferred is that the data is not linearly separat-
ed in the classification process. In an MLP neural
network, hidden layers are also found except the
input and output layers. In such a network, let an
input vector is defined as X = (x1, x2,…, xn) and
parameter vector is defined as W = (w1, w2,…,
wn); these vectors are separately multiplied to ob-
tain cross product. The results are summed by bias
vector, and they are applied to input of activation
function for obtaining the regression output (Li
et al. 2019).

There were one input layer, one hidden layer,
and one output layer in the ANN model structure.
The hidden layer contained four nodes. In the
network, sigmoid function was preferred as activa-
tion function. MLP method was designed for re-
gression since the data used for the study contains
only numeric values. In order to classify the data
set, a learning model with backpropagation and
supervised was used for the analysis process. In
the developed neural network model, the number
of validation tests was adjusted to 20. And the
learning rate for updating the weights in the model
was set to 0.3. The ANN model was concluded
with 500 iterations. And finally, 90% and 10% of

Fig. 3 PDSI computation procedure
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the data were randomly selected for training and
testing, respectively.

Decision tree

A decision tree is a hierarchical model for supervised
learning in which the local region is defined in fewer
steps and recursive branching sequences. A decision
tree consists of internal decision nodes and termination
branches. This method can be used in studies requiring
classification and regression analysis according to the
field of application. In regression studies, a tree structure
similar to the classification tree is created, but the mea-
sure of impurity needed for classification should be
replaced with another criterion in regression applica-
tions. To express this algorithm mathematically, let it
said that Xm is subset ofm-node to which X reaches. The
x ∈ X array satisfies all the conditions in the decision
nodes found on the path from the root to the m-node.

bm xð Þ ¼ 1; if x∈Xm : x reaches node m
0; otherwise

�

ð11Þ

The branching of a decision tree is decided by the
mean squared error obtained from the predicted values.
In a regression process, when the gm value is taken as the
predicted value in m-node, the obtained equation would
be as follows;

Em ¼ 1

Nm
∑n

k¼0 rt−gmð Þ2bm xtð Þ; Nm ¼ jXmj

¼ ∑n
k¼0bm xtð Þ ð12Þ

The Em value in the equation is related to the variance
in the m-node. The average of the desired output of the
instances reaching a node is used again in this node.

gm ¼ ∑tbm xtð Þrt
∑tbm xtð Þ ð13Þ

If the error value is acceptable for a node (Em = θr), a
leaf node is created and this leaf value stores the gm
value. Thus, a discontinuous pieced fixed approach
model is structured in leaf boundaries. If the error is
not of acceptable size, the data reaching to m-node are
further divided so that the sum of the errors in the
branches is at the smallest level (Gunaydin et al. 2019).

Finding and discussions

In this study, the drought estimation models were de-
veloped using the advanced machine learning algo-
rithms. In the model, the meteorological data recorded
between 1980 and 2011 years belonged to Adiyaman, a
province in the southern part of Central Anatolia, Tur-
key, and the Palmer Z-Index values were used. In the
analysis process, four different regression algorithms
which were LR, ANN, SVM, and DT were employed.
The total number of instances (samples) used in the
study was 384. In the regression studies, 85% of these
instances were used for training, and 15% for testing.
The input variables were monthly average temperature
(T), monthly average actual pressure (Pa), monthly av-
erage wind speed (WS), monthly average relative hu-
midity (H), monthly total rainfall (RF), potential evapo-
transpiration (PEad), available water capacity (AWC),
and runoff (RO). Besides, Palmer’s drought Z-index (Z)
value was used as the output variable in the model.
Palmer drought Z-index values were calculated with
the help of a specially developed software in Matlab
platform. Detailed information related to the developed
software is given in the “Data” section. A linear corre-
lation between inputs and output is shown in Fig. 4.

In Fig. 4, a strong positive correlation is seen between
RF and Z-index values, and theR-value is 0.80. However,
while the correlations betweenH and Z-index (R-value is
0.47), and between T and Z-index (R-value is 0.31) is
weak, the correlations between other inputs and Z-index
are weaker. The humidity and temperature are meaning-
ful in the estimation of Z-index, but not for rainfall. In the
SVM regression model, the polynomial kernel was used
as the kernel function. This algorithm was applied with-
out any hyper-parameter tuning process.When this meth-
od was applied, target attributes were normalized as well
as the other attributes for determining optimum noise
levels easier. Auto-replacing the missing values by global
mode variables and auto-converting the nominal instance
to numeric ones were applied in the model. Furthermore,
kernel caching was turned off, and the number seed was
one. The number of decimal places was adjusted as two
for the output. The size of the batch was equal to a
hundred in the training data set. In the developed model,
the training data set was normalized before regression.
Before regression, the model was built and regression
capability was set to false. In the SVM implementation,
the regression analysis was performed by a percentage
split method. This process was done as follows: training

Environ Monit Assess (2020) 192: 576576 Page 8 of 14



and testing sets were adjusted as 90% and 10% of the all
data sets, respectively. It was observed that the SVMwas
having a robust regression ratio (R-value) with 0.92.
Besides, in Z-index estimation, Pearson’s correlation (r)
was 0.96; the mean absolute error (MSE) was 0.54, and
the root mean squared error (RMSE) was 0.72. Regres-
sion plot, prediction values, and error rates are given in
Fig. 5a and b, respectively. In Fig. 5b, it is observed that
there is a tiny fluctuation in the change between actual
and predicted samples. Moreover, the changes in errors
are realized at low rates.

In the application of the linear regression method, the
Akaike method was used to choose a relative model. In
the algorithm, the number of decimal places was set to 4.
The preferred number of instances was adjusted to 100
for performing batch prediction in the algorithm. The
ridge value was optimized to stabilize degenerate into
cases and to reduce overfitting large coefficients. In the
model, the attribute selection process was realized by
using the M5 decision tree method. In addition, colinear
attributes were auto-eliminated in the algorithm. A per-
centage split approximation was employed to adjust
training and testing sets in the method too. 90% of all
data were used for training and the rest were used for
testing. According to the obtained results, the R-value

was 0.94; Pearson’s correlation (r) was 0.97; MSE was
0.54, and RMSE was 0.72. And the minimum and
maximum prediction values varied in low rates. Besides,
the worst error rate is 61%, and the best error rate is
100% in Z-index estimation. The images summarizing
these results are given in Fig. 6. As a result, it can be said
that there is a strong correlation between actual outputs
and predictions in the LR method. According to this
method, the linear estimation model is given in Eq. 14.

Z−Index ¼ 0:04xT−0:11xP þ 0:02xWS

þ 0:03xRFþ 0:04xPEþ 0:04*M

þ 98:67 ð14Þ

In the ANN regression model, a multi-layer perceptron
and the backpropagation algorithm were used to classify
instances. The sigmoid equation was the activation func-
tion in the model. The initial weights of the connections
between nodes were not set in the model. The momentum
value of the model was set to 0.2 to update weights. There
was one hidden layer in the network. The validation set
was adjusted 20 for error could not get worse before
training was terminated. Moreover, the normalization pro-
cess was applied to attributes in the model for improving

Fig. 4 Pearson correlation matrixes between inputs and output data

Fig. 5 Regression plot (a), predictions and error values for each test point (b) in SVM
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performance in the network. Since instance size was too
much, the sample size to be trained at once was chosen as
100. Furthermore, the sample size for validation was zero,
and so the network was trained for 500 epochs. Since the
instances were too much, the sample size to be trained at
once was chosen as 100. The sample size for validation
was zero, and so the network was trained through 500
epochs. In themodel, the learning rate was 0.3 for updating
weight. The regression analysis was performed by a per-
centage split method. Namely, the rates of training and
testing data were adjusted as 90% and 10%, respectively.
According to the obtained results, the R-value was 0.95,
and this rate was the highest among all runs in the present

study. Furthermore, in Z-index estimation, Pearson’s cor-
relation coefficient (r) was 0.98; the mean absolute error
(MSE) was 0.40, and the root mean squared error (RMSE)
was 0.56. The regression plot is shown in Fig. 7a. And the
estimation values and error rates are plotted together in Fig.
7b. It is seen from the figures that there is almost no
difference between actual and estimated data. Moreover,
the error rates are lower in this model than others.

Another regression method used in the study for
estimating drought was the Decision Tree algorithm.
This algorithm was implemented with a decision-
making logic that works from top to bottom. In other
words, this algorithm examined the highest level and

Fig. 6 Regression plot (a), predictions and error values for each test point (b) in linear regression

Fig. 7 Regression plot (a), predictions and error values for each test point (b) in ANN
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then the lower levels when dividing the data set used in
the study. In this algorithm, the tree was developed to
classify the data. The decision tree employed within the
scope of the study is shown in Fig. 8.

In the tree structure, the unpruned tree was generated,
and the preferred number of instances was 100 to pro-
cess since batch prediction was being performed. The
minimum number of instances was 4 for allowing at a
leaf node. The rules (decision list) rather than a tree were
generated in the model. These rules are given in Table 2.

The decision-making mechanism of the tree is as
follows: if the RF value is higher than 82.45, Rule-3
works. If not and RF value is smaller or equal to 82.45,
the algorithm evaluates the T parameter. If the T value is
higher than 28.80, Rule-2 works. If not and T value is
smaller or equal to 28.80, Rule-1 works. As can be seen
from the rules, two parameters come to the fore during
the decision-making process. These are RF and T
values. According to the obtained results, the R-value
was 0.94, and this rate was the second highest among all
runs in the present study. Furthermore, in Z-index esti-
mation, Pearson’s correlation coefficient (r) was 0.97,
the mean absolute error (MSE) was 0.45, and the root
mean squared error (RMSE) was 0.61. The regression
plot is shown in Fig. 9a. And the estimation values and
error rates are plotted together in Fig. 9b. It is seen from
the figures that there is almost no difference between

actual and predicted data. Moreover, the error rates are
lower in this model than in others.

Drought Z-index values obtained according to the
Palmer’s drought method were analyzed by using four
different regression algorithms. A table comparing the
results of these methods is given below (Table 3).

According to these results, Multi-Layer-Perceptron
method gave the best performance with 0.95 rate in
drought prediction. The correlation coefficient was
0.98 at this success. Besides, it is seen that error values
are lower in this success compared with that of other
methods. In addition, it is observed that there is no
obvious success difference between the methods. When
the Palmer index estimation results developed in this
study are compared with similar studies in the literature,
some original aspects of the application arise in this
study. We can compare the originality points of the
present study by looking at the table below (Table 4).

When the table is examined, it is seen that the highest
estimation result and the lowest error rate were obtained
in the present study. Unlike the literature, meteorological
data were used as the input data in the model of the
present study. The data developed in our study can be
used in the training phases of other drought regression
studies, and the Palmer drought index can be easily
calculated from the meteorological data for the studied
area. Also, the model developed in the study gave a
considerable success for drought prediction. However,
uncertainties about meteorological data and measurement
errors can affect model performance in the study area. For
this reason, the data of different stations should be tested
in different study areas. In addition to large-scale climate
signals, large-scale research is recommended to see if the
model forecasts can be improved (Choubin et al. 2014).

Conclusions

The estimation of drought with regression modeling is
an essential process because some crucial outputs can be

Fig. 8 Decision tree structure

Table 2 Decision tree rules

Z − Index = − 0.0022xT − 0.1224 x Pa + 0.0281xWS+ 0.0385 x RF+ 0.1053xPEad + 0.0795xM
− 0.2461 ∗ RO + 110.6418

Rule-1 (LM-1)

Z − Index = − 0.0085xT − 0.0305 x Pa + 0.0043xWS+ 0.0093 x RF+ 0.0571xPEad − 0.2929xM
− 0.0603 ∗RO+ 29.5176

Rule-2 (LM-2)

Z − Index = 0.1352xT − 0.0837 x Pa − 0.0227xWS+ 0.0326 x RF − 0.2452xPEad + 0.0052xM
− 0.0139 ∗RO+ 75.7719

Rule-3 (LM-3)
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obtained from the adjusted input valueswithout the need
of time-consuming drought calculation with the regres-
sion modeling process. In this study, the PDSI parame-
ters were estimated and calculated using four different
regression methods, which are frequently used in
modeling methodology: LR, ANN, SVM, and DT.
These LR and SVM methods were used the first time

in the estimating of PDSI. PDSI is estimated from the
input variables: monthly average temperature (T),
monthly average actual pressure (Pa), monthly average
wind speed (WS), monthly average relative humidity
(H), monthly total rainfall (RF), potential evapotranspi-
ration (PEad), available water capacity (AWC), runoff
(RO) and months (M).

Fig. 9 Regression plot (a), and predictions and error values at each test point (b) in DT

Table 3 Comparison of the test results according to the estimation methods

SVM Linear regression Multi-layer perceptron Decision tree

Correlation coefficients (%) 0.96 0.97 0.98 0.97

R-value (%) 0.92 0.94 0.95 0.94

MSE 0.54 0.45 0.40 0.45

RMSE 0.72 0.61 0.56 0.61

Relative absolute error 36.38 29.96 26.67 30.18

Root relative squared error 30.58 25.12 23.02 24.98

Total number of instance in test 38 38 38 38

Table 4 A comparison of PDSI estimation in the study with its counterparts in the literature

Study Lead time Input/output data Methods Successes

Present study Long Meteorological data/PDSI ANN, SVM, linear regression, decision tree 0.98 (R-value)
0.40 (MSE value)

Rao and Padmanabhan (1984) Short PDSI/PDSI AR Models 0.92 (MSE value)

Ozger et al. (2012) Short PDSI/PDSI Wavelet and fuzzy logic 0.89 (R-value)

Mehr and Kahya (2014) Long PDSI/PDSI Gene-wavelet model 0.80 (R-value)

Basakin et al. (2019) Short PDSI/PDSI Wavelet-KNN 0.99 (MSE value)
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According to the regression results, the best R-value
was obtained with 0.95 when the ANN method was
applied. The correlation coefficient was 0.98 at this
success. Besides, the MSE value was also the best with
0.40 in this method. Also, in the application of LR and
DTmethods, the second-best R-value was obtained with
0.94. And MSE value was 0.45 in these methods. Al-
though the SVMmethod has the lowest result with 0.92,
it can be expressed that this rate is successful in drought
prediction studies. As a result, we concluded that PDSI
could be estimated at about 90% rates from the meteo-
rological data.

In the study, it was confirmed that the findings ob-
tained from the algorithms were compatible with PDSI
results. Besides, the regression methods and input data
are shown to facilitate PDSI calculations and will also
assist in calculating PDSI parameters for drought anal-
ysis in subsequent studies. In this way, input parameters
considered to affect drought will be fed into the regres-
sion model, and the drought index values will be able to
be calculate. In this context, the study offers a
pioneering and innovative approach.
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