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Abstract Reports of environmental problems
occasioned from gold mining activities had prompted
the groundwater vulnerability prediction/assessment of
the study area. This was with a view to identifying
factors responsible for the probability of groundwater
contamination as well as developing empirical (LR)
model and map that predict the probability of occur-
rence of contaminant(s) with respect to threshold level
in the groundwater resources in the study area. In order
to achieve the objectives of the study, logistic regression
was applied to independent variables obtained from
results of the analysis of remote sensing and geophysical
data on one hand and dependent variables obtained from
analysis of water samples on the other hand. The results
of the analysis obtained from water chemistry
established that all the physio-chemical parameters and
major metallic ions are within the permissible limit.
However, zinc concentration (Zn), being the only de-
pendent variable that had two categorical outcomes, was
the contaminant utilized for the study. Similarly, only
five (5) independent (predictive) variables, which are
percent clay in soil, drainage, slope, unsaturated zone
thickness, and total longitudinal conductance, were
established to have good correlation and statistically
significant with the dependent variable, the

contaminant, and thus utilized in logistic regression
model development. The quantitative assessment of
the developed model established that the overall model
prediction accuracy was 85.7% suggesting that the mod-
el had a very good fit. The probability prediction model
was also accurate and reliable with percentage reliability
established to be 90%. In conclusion, it is evident from
the results obtained from the study that since the model
developed was assessed to be accurate and reliable, the
model, and hence the technique, can be replicated in
another area of similar geologic condition.

Keywords Logistic regression analysis . Groundwater
vulnerability . Hydrogeological indices . Groundwater
quality . Groundwater contamination

Introduction

Interest in predicting groundwater vulnerability has in-
creased because of widespread detection of contami-
nants and the implications for human and aquatic health
and resources. Report of environmental problems asso-
ciated with mining communities had prompted the
groundwater vulnerability study of basement aquifers
in Ilesa gold mining area of southwestern Nigeria. The
evaluation of the natural vulnerability of aquifers to
contamination is a function of space and time (Civita
1987). In most cases, an accurate prediction of ground-
water vulnerability is not feasible due to complexity of
groundwater systems. In order to provide accurate and
reliable vulnerability prediction in a given area, a
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suitable model that will account for the sub-surface
geology, groundwater flow, and pollutant transport for
the area needs to be developed.

A fundamental difficulty in groundwater vulnerabil-
ity prediction model is the intertwined processes of
groundwater flow and pollutant transport, which reflect
in the influencing factors (Shih-Kai et al. 2013). Most of
these factors are often evaluated by a number of experts
using different approaches. It is important to note that
the degree of contribution of one or more factors to
groundwater vulnerability is not the same and this may
also vary from one location to the other. Furthermore,
the effects of all the important factors that can influence
the groundwater contamination in the area must be
integrated to develop a reliable model. Groundwater
vulnerability study is a spatial problem that requires data
input, processing, and solution from many experts.

A variety of methods have been developed and used
for assessing aquifer vulnerability to contaminants
(Twarakavi and Kaluarachchi 2005). Previous methods
to estimate aquifer vulnerability to contamination may
be classif ied into the following categories:
hydrogeological complex and setting (HCS) methods,
parametric system or overlay/index methods, numerical
or process-based methods, and statistical methods. HCS
methods which were developed based on criteria found
to be representative of groundwater vulnerability under
certain hydrogeological condition (Gogu and
Dassargues 2000). The overlay/index models such as
the multi criteria decision analysis (MCDA) in the con-
text of analytic hierarchy process (AHP) (Adiat et al.
2012; Adiat et al. 2013; Akinlalu et al. 2017; Adiat et al.
2018) and DRASTIC model (Mohammad 2017; Malik
and Shukla 2019; Hassan et al. 2019) are based on
combining maps of various physiographic attributes
and assigning weights to each attribute to obtain a final
score (Connell and Van den Daele 2003; Thapinta and
Hudak 2003; Twarakavi and Kaluarachchi 2005). The
methods are largely dependent on data availability and
expert judgment rather than the controlling physical
processes (Twarakavi and Kaluarachchi 2005). Numer-
ical or process-based methods are usually more elabo-
rate than simple overlay or index methods. They require
analytical and/or numerical solutions to the governing
mathematical equations that represent coupled process-
es of contaminant transport. (Meeks and Dean 1990;
Twarakavi and Kaluarachchi 2005). These methods are
computationally costly and demand substantial data.
Furthermore, the process-oriented numerical models

also suffer from flaws of being used for site-specific
studies and not for evaluating vulnerability on a large
scale. All the aforementioned methods suffer from flaws
of inability to capture the probabilistic nature or the
uncertainty of groundwater vulnerability consequent
upon which validation may be inherently impossible
for this category of methods that assess vulnerability
outside of a probabilistic framework (Worrall 2002). On
the other hand, statistical methods are flexible and better
suited to accommodate uncertainty in the data than the
former methods.

Uncertainty is inherent to predictions of groundwater
vulnerability (Loague 1991; Loague et al. 1996), yet few
groundwater vulnerability assessments have accounted
for, or reported, associated uncertainty. Statistical
methods are based on the concept of uncertainty, which
is described in terms of probability distributions for the
variable of interest (National Research Council NRC
1993). One possible goal in applying statistical methods
to vulnerability assessment is to identify variables that
can be used to define the probability of groundwater
contamination (Burkart et al. 1999). Statistical methods
use response variables such as the frequency of contam-
inant occurrence, contaminant concentration, or con-
tamination probability.

Statistical methods range from simple summary or
descriptive statistics of concentrations of targeted con-
taminants to more complex regression analyses that
incorporate the effects of several predictor variables
(Worrall 2002; Worrall and Kolpin 2003). A significant
benefit of statistical method is that predictions of vul-
nerability are expressed in probabilistic terms. However,
all uncertainty is not inherently represented within the
resulting probabilistic predictions because unavoidable
model and data errors propagate through its calculations
make predictions of vulnerability best estimates. It is
therefore reasonable to say that the prediction of ground-
water vulnerability is best estimated using statistical
approaches because they cater for series of uncertainties
and complexities of the hydrogeological environment.
Examples of statistical analysis methods utilized in
groundwater resources research are cluster analysis, fac-
tor analysis, discriminant analysis, regression analysis,
fuzzy recognition, and back propagation (BP) neural
networks (Gui and Chen 2007; Chen et al. 2013; Adiat
et al. 2020).

One of the common statistical methods to estimate
aquifer vulnerability is the technique of binary logistic
regression or commonly called logistic regression (LR).
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LR models relate the probability of a contaminant con-
centration to exceed a threshold concentration to a set of
possible influencing variables. LR analysis is a model
structuring technique for modeling and analyzing sev-
eral variables. LR analysis predicts the probability of a
binary or categorical response based on independent or
predictive (influencing) variables. LR analysis, with its
advantage of being more simple than other analyses and
its regression logic, has an important place in categorical
data analysis. Therefore, LR is well suited for analysis
of groundwater vulnerability assessment because the
binary response or categorical response in the case of
ordinal logistic regression can be established using a
threshold that represents a drinking water standard, lab-
oratory detection level, or relative background concen-
tration (Twarakavi and Kaluarachchi 2005). Often, the
objective of a groundwater vulnerability assessment is
to predict the occurrence of a water quality constituent
above a certain level or threshold. This method allows
us to develop an acceptable model, which could define
the correlation between dependent (predicted, i.e., con-
taminant) and independent (predictive) variables in best
fit with the least variable. LR has been used by re-
searchers to solve problems related to groundwater stud-
ies in different geologic environments in various parts of
the world. Twarakavi and Kaluarachchi (2005) used
ordinal LR to assess aquifer vulnerability to heavy
metals in Washington, USA. Ozdemir (2016) adopted
the methodology of LR to map sinkhole susceptibility in
Konya, Turkey. Qian et al. (2018) used LR to predict
water shortage risk in situations with insufficient data in
Beijing, China. Chenini and Msaddek (2019) mapped
groundwater recharge susceptibility using LR and
bivariate statistical analysis in Tunisia. Kim et al.
(2019) used the technique of LR to assess impacts of
climate change on a complex river system in South
Korea. However, within the context of the literature
review done for this study, the application of LR to
predict/assess groundwater vulnerability to contamina-
tion resulting from gold mining activities in a typical
basement complex geologic environment has hitherto
not been reported in the current study area. Consequent-
ly, attempt would be made to utilize the methodology of
LR to predict/assess vulnerability of the aquifer to con-
taminant(s) in the gold mining area of Ilesa, a typical
basement complex of southwestern Nigeria. The Ilesa
Schist belt is one of the major schist belts in Nigeria that
have been extensively mapped and studied in detail. The
belt consists of several occurrences of primary and

alluvial gold workings. (Akinlalu et al. 2018). Gold
mining operations started in the area in early 1950s
(Makinde et al. 2014). This had resulted to various
degree of land degradations (Adeoye 2016) and ground-
water contamination (Makinde et al. 2016). The objec-
tives of the study are the following:

i generate factors/parameters (independent variables)
that can be used to predict aquifer contamination if
there is any

j identify factors (dependent variable(s)) responsible
for the probability of groundwater contamination

k develop empirical (LR) model and map that predict
the probability of occurrence of contaminant(s)
(identified in ii above) with respect to threshold level
in the groundwater resources in the study area and

l quantify the prediction accuracy and reliability of the
model developed.

Study area description

The study area is located in the south-western part of
Ilesa, Osun state, Nigeria. It lies between longitude 4°
38′ 0″ E and 4° 43′ 0″ E and latitude 7° 31′ 30″N and 7°
36′ 0″ N (Fig. 1). The area is sparsely inhabited, and
most of the economic activities engage by the inhabi-
tants are agriculture and mining. Numerous minerals
such as gold (Au), lead (Pb), iron (Fe), nickel (Ni),
cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn),
and manganese (Mn) had been reported by the Nigeria
Geological Survey Agency (NGSA) to be deposited in
the area (Adekoya et al. 2003). The Ilesa Schist belt of
southwestern Nigeria has complex geology and miner-
alization potential. The study area is located in one of
the major schist belts in Nigeria and has been extensive-
ly mapped and studied in detail; others are Maru, Anka,
Zuru, Kazaure, Kusheriki, Zungeru, Kushaka, Iseyin,
Oyan, and Iwo schist belts. The belt consists of several
occurrences of primary and alluvial gold workings. The
primary gold commonly occur in quartz veins within
several lithologies, and the host rocks to the veins in-
clude fine-grained mica schists, amphibolite schists, talc
tremolite schists, and several varieties of gneisses
(Akinlalu et al. 2018). Gold mining operations started
in the study area in early 1950s (Makinde et al. 2014).
More than fifty mining sites located in various parts of
the study area were visited. Most of these mining pits
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were open-pit, and the average depth of the mining pits
was 3.4 m, while an estimate of 25.8 ha of land was
degraded in the entire mining sites (Adeoye 2016).

In terms of structural features, lithology, and miner-
alization, the schist belts of Nigeria show considerable
similarities to the Achaean green stone belts (Rahaman
1989; Olusegun et al. 1995). The area is known to have
variable metamorphic mineral assemblages ranging
from green schist—to amphibolite—facies (Ajibade
et al. 1987). Four major rock types are present in the
area, and these are the amphibolite and the amphibolite
schist, the undifferentiated migmatite gneiss, the quartz-
ite, and the quartz schist (Fig. 1). Geology is an impor-
tant factor that controls groundwater accumulation in an
environment especially in terms of quality and quantity.
The schist belts, which form part of the Precambrian
basement rock units, are notable for clay-rich weathered
horizons. The degree of fracturing and weathering of
rocks influence the rate of percolation and infiltration.

The topography of the area varies from heavily for-
ested mountains, and gently rolling hills to a vast
stream/river coastal plain. The topographic elevation of
the area ranges from 278 and 490 m above mean sea
level. The drainage pattern of the area is largely dendrit-
ic typical of highly fractured bedrock with flat and
undulating terrain.

Methodology

The study was undertaken in two phases which include
the data acquisition/processing phase and assessment of
groundwater vulnerability through the application of
logistic regression phase. The research utilizes the inte-
gration of ancillary data, water sample, remote sensing
data, and subsurface geophysical data to derive depen-
dent and independent variables. Logistic regression
techniques were applied to the results obtained from
the analysis of these data to develop groundwater vul-
nerability prediction models with a view to selecting a
final model based on maximization of test statistics.

Data acquisition and processing techniques

The ancillary data utilized for the study were the geo-
logical map, soil distribution map, and the boreholes
information of the available wells drilled across the area.
These ancillary data were processed to extract the geo-
logical map, soil distribution map, and the boreholes

information of the well drilled across the study area.
The geological map and soil distribution maps were
georeferenced, clipped to required boundary and
digitized.

The soil distribution map was categorized based on
the two soil associations present in the area. The remote
sensing data utilized for the study were the Landsat
ETM image, Advanced Space borne Thermal Emission
and Reflection Radiometer (ASTER), and digital eleva-
tion model (DEM) image. The lineaments and drainage
were extracted from the LANDSAT-TM images, while
DEM was used for producing the slope map of the area.
The remote sensing data were processed using ArcGis
10.1, Envi 4.5, and PCI Geomatica 2012. Computer-
assisted methods for the detection of structural linea-
ments were exclusively based on edge enhancement or
spatial filtering techniques (directional and/ or gradient
filters). These methods produced edge maps requiring
further processing for lineament segments to appear
with one-pixel thickness. Optimal edge detectors, e.g.,
the Canny algorithm (Canny 1986), have already been
successfully applied on natural scenes with satisfactory
results. A composite band combination was used (Süzen
and Toprak 1998). Directional filtering and edge sharp-
ening enhancement algorithm of PCI Geomatica were
utilized to extract the lineament for analyses (Abdullah
et al. 2010). Slope was extracted from DEM using the
slope algorithm of ArcGis 10.1. The density of the
lineaments and the drainage were obtained by dividing
the summation of the total lengths of the lineaments and
drainage by the coverage area of the environment under
consideration respectively (Adiat et al. 2012, 2013).
Krigging technique was used to produce the lineament
and drainage density maps.

Electrical resistivity data were acquired using the
Ohmega Terrameter and its accessories. A total of sev-
enty (70) Vertical Electrical Sounding (VES) stations
were occupied (Fig. 1). The Schlumberger array was
adopted with electrode spacing (AB/2) ranging from 1
to 100 m. The coordinates of measurement stations were
taken using Garmin GPS 7.0. The data acquired were
processed and plotted. Quantitative analysis, involving
partial curve matching and computer iterations, using
win RESIST software developed by Vander Velpen
1998, was adopted to determine the geo-electric charac-
teristics of the study area. From this information, aquifer
resistivity, aquifer thickness, unsaturated zone thick-
ness, total longitudinal conductance of the unsaturated
zone, and total transverse resistance of the unsaturated
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zone were estimated. The aquifers were identified by
using resistivity range of the subsuface layer as the
criteria. This was however guided by the well informa-
tion obtained from the area. The unsaturated zone thick-
ness was calculated using the summation of the thick-
ness of the overlapping layers. The longitudinal conduc-
tance (S) and transverse resistance (TR) of the unsatu-
rated zone were calculated from the results of resistivity
data using Eqs. 1 and 2 below:

S ¼ h�
ρS ¼ ∑

n

i¼1

hi
ρi

ð1Þ

Transverse unit resistance (TR) was determined from
the layer parameters as (1):

TR ¼ ρ*hTR ¼ ∑
n

i¼1
ρi*hi ð2Þ

where ρi and hi are resistivity and thicknesses of ith
layer, respectively.

A total of ten (10) domestic drinking water wells
were randomly collected from water sources available
at the mining sites and their host communities (Fig. 1).
The depths of the wells vary from 10 to 15 m. It is also
important to add that all the wells tap water from

localized unconfined aquifer. The water samples were col-
lected on April 21, 2016. A plastic bottle (2 l) was washed
with dilute HCl acid of 0.5 mol/dm3 and rinse with distilled
water. These samples, stored in a distilled plastic bottles,
were taken to the laboratory for analysis to determine the
safety or otherwise of the groundwater resources of the area.
In the laboratory, the samples were digested for water
quality test. Physiochemical parameters test was performed
on all the water samples. The following physiochemical
parameters were tested: temperature, turbidity, conductivity,
pH, chloride, total hardness, sulphate, nitrate, phosphate,
total solids, total dissolved solids, total suspended solids,
and total alkalinity. In addition to these parameters, some
inorganic metals (Na, K, Ca,Mg, Zn, Fe, and Cu) were also
tested. Also, atomic absorption spectrometer test was con-
ducted on the samples to test for the presence of heavy
metals such as Cd,Mn, and Pb. The tests were conducted at
the Central Research Laboratory of Federal University of
Technology, Akure, Nigeria. In order to determine whether
the water in the study area was contaminated or safe for
consumption, the water quality results obtained were com-
pared with maximum permissible levels for safe drinking
water by Nigerian Standard for Drinking Water Quality
Threshold values guideline (NSDWQ) 2007. Kurtosis and
Spearman’s rank correlation analysis were employed to

Fig. 1 Geological map of the study area showing borehole/well and VES locations (modified after geological map of Ilesa SW Sht. 243)
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determined non-normality of the physiochemical parameters
and major metallic ions obtained from the water samples
and relationship between the two input variables at the two-
tailed significance (i.e., α= 0.05) level. The results of the
analysis will produce the dependent variables that will be
utilized for groundwater vulnerability modeling.

Methodologies/steps of logistic regression as adopted
in the study

The concept and procedures of logistic regression re-
quire several steps to be conducted and this has been
explained in detail in Park (2013). Some of these steps
found to be suitable to the nature and structure of the
data set adopted for this study are presented as follows:

1 Examination of the basic assumptions of logistic
regression which include:

(a) Binary categorization of dependent variable
and

(b) Examination of the non-normality of the de-
pendent variables and relationship between the
dependent and independent variables

2 Development of logistic regression prediction model
3 Statistical assessment of the prediction model devel-

oped which involves (a) model significance; (b)
results for the Hosmer–Lemeshow goodness-of-fit
test statistic, R-square values, and model accuracy;
and (c) assessment of the reliability of the prediction
model.

4 Groundwater vulnerability prediction map and
5 Validation of the groundwater vulnerability predic-

tion map

The statistical package for social scientists (SPSS)
was used for the statistical analysis.

Results and Discussions

Independent variables utilized in groundwater
vulnerability modeling

The results of the ancillary data are discussed based on
the independent variables utilized in groundwater vul-
nerability modeling. The result of the percentage of clay
and particle size distribution present in each soil

association was adopted to establish the top soil charac-
teristics of the study area (Ogunsanwo 1989). Two types
of soil series (Itagunmodi and Egbeda series) are obtain-
able in the study area.

The borehole records show that there are two aquifer
systems in the area and these are unconfined aquifer and
confined aquifer. The depth of occurrence of the uncon-
fined aquifer ranges from 10 to 15 m, and the depth of
occurrence of the confined aquifer is at 30–40 m. It was
however observed that most of the hand dug wells in the
study area terminate in the unconfined aquifer layer,
while the boreholes terminate in the confined aquifer
layer. Therefore, hand dug wells are more susceptible to
groundwater contamination than the borehole in the
area.

The independent variables obtained from the remote
sensing data are lineament, drainage, and slope
representing geomorphological parameters that influ-
ence groundwater vulnerability.

The distribution of the lineaments in the study area
concentrated in the southern and western parts of the
study area, with few lineaments in the northern and
eastern parts of the area. The study area is relatively
dense in terms of lineament, and the lineament is denser
in the eastern and central parts of the study location
(Fig. 2). Groundwater of the area with high lineament
and lineament density is relatively vulnerable to surface
contaminants due to secondary porosity and permeabil-
ity developed by the lineament features.

The system of the drainage is largely dendritic typical
of structurally controlled drainage along the sheared
zone of metamorphic rock. The drainage system in an
area is strictly dependent on the slope, the nature/attitude
of bedrock, and the regional as well as local fractures
pattern. The study area is well drained. Area of high
drainage density is indicative of area with a relative poor
groundwater infiltration (Fig. 3). This implies that
groundwater in area with high drainage density is not
vulnerable to surface contaminant. The dominant direc-
tion of the drainage pattern in the area is southeast–
northwest direction. This suggests that the river/stream
is structurally controlled. Four classes of slope obtained
in the area are 0–2, 2–8, 8–15, and 15–30 representing
flat, undulating, rolling, and moderately steep classifi-
cations, respectively (Adiat et al. 2012). The study area
is largely characterized with flat to undulating slope,
having small amount of runoff and high amounts of
infiltration. Areas with low slope tend to retain water
for long periods of time. This favors infiltration of water
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recharge and contaminant migration. Therefore, the flat
to undulating slope characterizing the study area sug-
gests that groundwater in most of the area is relatively
vulnerable to groundwater contamination.

The geophysical parameters that influence
groundwater vulnerability as obtained from the re-
sults of the interpretation of VES are the unsaturated
zone thickness, aquifer resistivity, aquifer thickness,
longitudinal conductance, and transverse resistance.
Based on the depth of occurrence or thickness of the
unsaturated zone, the aquifers in the area can be
categorized into shallow and deep aquifers with
thicknesses ranging between 1.2–10 m and 10.1–
42.8 m, respectively. Deep seated aquifers are char-
acterized by high thickness of unsaturated zone.
Groundwater in the deep seated aquifers are more
protected because the contaminants will take a lon-
ger time before they percolate into the aquifer,
whereas the shallow seated aquifers are more vul-
nerable to groundwater contamination because the
contaminants will percolate within a very short time.

In the study area, three aquifer types were identified.
The aquifer media were delineated based on the

resistivity value of the geo-electric layers obtained from
the study. The resistivity ranges of 67–150 Ωm, 150–
600 Ωm, and 600–859 Ωmwere classified as weathered
basement, fractured basement, and partly weathered
basement aquifers, respectively. The aquifers thick-
nesses vary between 1.2 and 42.8 m. In general, the
larger the thickness of the aquifer, the higher the trans-
missivity of the aquifer media. Consequently, the great-
er the pollution potential. The unsaturated zone layer
constitutes the main protective unit.

Total longitudinal conductance and total transverse
resistance of the unsaturated zone helped us to charac-
terize the study area. Total longitudinal conductance
map was grouped into four vulnerability classes based
on the model of Antonio and Richard (2014). The four
classes obtained are < 0.1, 0.1–0.3, 0.3–0.7, and 0.7–2.5
representing extreme, high, moderate, and low classifi-
cations, respectively. Areas with low longitudinal con-
ductance value have high permeability and are more
vulnerable. The study area is mainly characterized with
extreme to high vulnerability class (Fig. 4).

The total transverse resistance of the unsaturated
zone of study area was classified into high and low

Fig. 2 Lineament density map of the study area
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transverse resistance areas. Total transverse resistance
value above 1000 Ωm2 is classified as high transverse
resistance, while values less than 1000 Ωm2 are classi-
fied as low transverse resistance. High total transverse
resistance dominated the entire study area with excep-
tion of some few pockets of low total transverse resis-
tance at the central part of the study area. Areas with
high total transverse resistance are classified as areas of
low infiltration, due to their low permeability. Conse-
quently, these areas are less vulnerable to surface
contaminant.

The results of the analysis obtained fromwater chem-
istry laboratory are presented in Table 1. Physico-
chemical parameters evaluated were temperature, tur-
bidity, conductivity, pH, chloride, total hardness, sul-
phate, nitrate, phosphate, total solids, total dissolved
solids, total suspended solids, and total alkalinity. In
addition to these, major metal concentrations, which
include sodium, calcium, magnesium, iron, and heavy
metals that include copper, zinc, cadmium, lead, and
manganese, were also evaluated. The results of the
major and heavy metals analysis obtained from the
water chemistry are presented in Table 2. The results

were compared with the maximum permissible level for
safe drinking water established by the Nigerian Standard
for Drinking Water Quality Threshold values guideline
(NSDWQ) 2007, to determine which of the physio-
chemical parameters and major and heavy metals pres-
ent in the water samples had exceeded the maximum
permissible level. It was observed that all the physio-
chemical parameters are within the permissible limit.
The results of the comparison ofmajor and heavymetals
with maximum permissible level are presented in Ta-
ble 3. The table shows that all water samples containing
Mg, Cd, and Pb exceeded the permissible limit except
where they were not detected.

All water samples containing Na, Ca, Fe, Cu,
and Mn are within the permissible limit. On the
other hand, some of the water samples containing
Zn are within the permissible limit while some
exceeded the permissible limit. This implies that
zinc concentration (Zn) is the only dependent var-
iable that had two categorical outcomes. It also
established that there is relationship between the
mining activities and high zinc concentration in
the areas.

Fig. 3 Drainage density map of the study area
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Results of logistic regression as adopted in this study are
as follows

Results of binary categorization of dependent variable

In logistic regression model development, two cat-
egorical outcomes of the dependent variable must
be satisfied. From the results presented in Table 3,
zinc concentration is the only dependent variable
that satisfied the condition of an outcome variable
with two possible categorical outcomes binarily
categorized as 0 and 1 (Table 4). Thus, zinc con-
centration was selected to be the dependent
(predicted) variable (i.e., the contaminant that
would be utilized for the regression model devel-
opment). The convention is to associate 1 with
“success” (i.e., vulnerability test is passed; zinc
concentration maximum permitted level is not
exceeded), and 0 with “failure” (i.e., vulnerability
test is failed; zinc ion concentration maximum
permitted level is exceeded) as presented Table 4.

Results of examination of the non-normality
of the dependent variables and relationship
between the dependent and independent variables

The results of non-normality tests for physico-chemical
parameters andmajor ion concentration show that all the
kurtosis values deviated from zero; this indicates that the
datasets are not normally distributed. This makes them
applicable in logistic regression modeling. The non-
normality implies that the relationship between the in-
dependent and dependent variables is non-linear. It is
important to emphasis that non-linear relationship be-
tween independent and dependent variables is one of the
assumptions of logistic regression (Park 2013).

It further implies that major ion concentration present
in the water samples are not from the same aquifer
system, and these established the disjointed relationship
between the aquifer systems in the study area. It also
depicts the non-parametric nature of the groundwater
system in the study area. Since none of the data were
normally distributed, the Spearman’s rank correlation

Fig. 4 Total longitudinal conductance map of the study area
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coefficient measure was used to determine the relation-
ship between the dependent variable and each of the
independent (predictive) variables. The result obtained

from the Spearman’s rank correlation shows that five (5)
independent (predictive) variables (percent clay in soil,
drainage, slope, unsaturated zone thickness, and total

Table 1 Physio-chemical parameters obtained from the samples collected from the study area on April 16, 2016

Well Temperature
(°C)

Turbidity
(NTU)

Conductivity
(μohms/cm)

pH Chloride (mg/L) Total hardness
(mg/L)

Sulphate
(mg/L)

W1 26 0.02 570 7.85 19.88 50 19.5

W2 26 0.03 720 8.01 8.88 66 19.65

W3 26 0.03 500 6.98 19.7 60 19.8

W4 26 0.04 510 7.5 31.95 96 12.5

W5 25 0.04 790 8.04 11.01 38 19.6

W6 26 0.03 520 7.9 11.54 170 19.8

W7 25 0.04 460 6.92 11.01 34 9.3

W8 25 0.03 730 7.12 19.53 100 14.5

W9 25 0.04 630 8.32 11.01 34 18.5

W10 26 0.03 540 7.57 7.99 46 12.5

Well Nitrate
(mg/L)

Phosphate
(mg/L)

Total solids
(mg/L)

Total dissolved
solids (mg/L)

Total suspended
solids (mg/L)

Total alkalinity (mg/L)

W1 6.5 6.2 155.2 140.3 14.9 112

W2 6.35 5.8 160.5 148.7 11.8 100

W3 6.2 6.6 112.6 98.4 14.2 84

W4 6.2 3.5 85.3 65.8 19.5 70

W5 6.3 5.8 113.2 96.5 16.7 60

W6 6.2 6.5 51.5 32.22 19.28 65.5

W7 3.3 3.5 150.5 132.3 18.2 111

W8 6.2 4.3 113.2 96.5 16.7 60

W9 6.2 5.4 87.6 69.8 17.8 68

W10 6.2 3.5 138.6 108.6 30 92

Table 2 Major metals and heavy metal concentration obtained from the samples collected from the study area on April 16, 2016

Major metal concentration (mg/L) Heavy metal concentration (mg/L)

Na Ca Mg Fe Cu Zn Cd Pb Mn

W1 20 54.3 42.4 0.13 0.02 2.6 nd nd nd

W2 18.7 43.3 40.2 0.11 nd 2.3 0.43 0.13 nd

W3 21.3 38.5 50.3 0.13 nd 3.5 0.50 0.10 nd

W4 18.6 42.3 38.5 0.12 nd 3.5 nd nd nd

W5 20.3 53 35.5 0.13 nd 3.5 0.42 0.13 nd

W6 19.4 47.8 37.3 0.11 nd 2.6 0.40 0.10 nd

W7 18.5 37.5 45 0.1 nd 2.5 nd nd nd

W8 20.5 43.5 52.2 0.08 nd 3.5 nd nd nd

W9 20.3 50.3 45.5 0.12 0.01 3.5 0.4 0.1 nd

W10 19.3 45.5 37.6 0.11 nd 2.7 nd nd nd

nd not detected
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longitudinal conductance) have good correlation with
the dependent variable (zinc concentration). Their re-
spective correlation coefficients at two-tailed signifi-
cance (i.e., α = 0.05) are − 0.699, − 0.047, − 0.009, −
0.535, and 0.817. This makes them statistically signifi-
cant, and consequently, they will be utilized in logistic
regression model development.

Results of logistic regression prediction model
development

The final model has the following independent variables
as members of its group: total longitudinal conductance,
unsaturated zone thickness, slope, percent of clay in soil,
and drainage as presented in the model in Eqs. 3 and 4.

Logit pð Þ ¼ ln
P

1−P

� �
¼ α þ b1x1 þ b2x2 þ b3x3

þ b4x4 þ b5x5 ð3Þ

Therefore,

P ¼ e αþb1x1þb2x2þb3x3þb4x4þb5x5ð Þ

1þ e αþb1x1þb2x2þb3x3þb4x4þb5x5ð Þ ð4Þ

The constant (intercept) of the prediction model is
21.323, and the gradient coefficient of each predictive
variable “bi” is the log odds obtained for the indepen-
dent variables of the final model. The log odds coeffi-
cients of total longitudinal conductance, unsaturated
zone thickness, slope, percent of clay in soil, and drain-
age are 193.397, − 2.481, − 2.193, 25.156, and −
11.933, respectively. From the log odd coefficient, each
independent variable contribution to measure of varia-
tion of the dependent variable was estimated. Substitut-
ing these values shown in Eq. 4 give

Table 3 Comparison result of major and heavy metal concentration obtained from the water samples collected from the study area with
maximum permitted level

Major metal concentration (mg/L) Heavy metal concentration (mg/L)

Well samples Max. Permitted level Na Ca Mg Fe Cu Cd Zn Pb Mn

200 150 0.02 0.3 1 0.003 3 0.01 0.2

W1 20.0✓ 54.3✓ 42.4✘ 0.13✓ 0.02✓ nd 2.6✓ nd nd

W2 18.7✓ 43.3✓ 40.2✘ 0.11✓ nd 0.43✘ 2.3✓ 0.13✘ nd

W3 21.3✓ 38.5✓ 50.3✘ 0.13✓ nd 0.50✘ 3.5✘ 0.10✘ nd

W4 18.6✓ 42.3✓ 38.5✘ 0.12✓ nd nd 3.5✘ nd nd

W5 20.3✓ 53✓ 35.5✘ 0.13✓ nd 0.42✘ 3.5✘ 0.13✘ nd

W6 19.4✓ 47.8✓ 37.3✘ 0.11✓ nd 0.40✘ 2.6✓ 0.10✘ nd

W7 18.5✓ 37.5✓ 45.0✘ 0.10✓ nd nd 2.5✓ nd nd

W8 20.5✓ 43.5✓ 52.2✘ 0.08✓ nd nd 3.5✘ nd nd

W9 20.3✓ 50.3✓ 45.5✘ 0.12✓ 0.01✓ 0.40✘ 3.5✘ 0.10✘ nd

W10 19.3✓ 45.5✓ 37.6✘ 0.11✓ nd nd 2.7✓ nd nd

nd not detected

✓ = indicates the heavy metals that passed in terms of relationship to maximum permissible level i.e falls below maximum limit

✘ = indicates the metals that failed i.e concentration exceeds maximum permissible limit

Table 4 Binary categorization of zinc concentration with the
maximum permitted level as the threshold for categorization

Zn concentration (mg/L)

Max. permitted level 3 Binary codes

W1 2.6✓ 1

W2 2.3✓ 1

W3 3.5✘ 0

W4 3.5✘ 0

W5 3.5✘ 0

W6 2.6✓ 1

W7 2.5✓ 1

W8 3.5✘ 0

W9 3.5✘ 0

W10 2.7✓ 1

✓ = implies that the Zn concentration was below the maximum
permitted level

✘ = implies that the Zn concentration had exceeded the maximum
permitted level
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P ¼ e 21:323þ193:397x1−2:481 x2−2:193 x3þ25:156x4−11:933x5ð Þ

1þ e 21:323þ193:397x1−2:481 x2−2:193 x3þ25:156x4−11:933x5ð Þ

ð5Þ
The value of predictive variables for each well point

was substituted in Eq. 5, and the result of the probability
prediction (p) of dependent variable (zinc concentration)
not exceeding 3 mg/L in groundwater sample of the
study area is presented in Table 5. If the p results
obtained (last column of Table 5) is approximately equal
to 1 (i.e., 0.5 ≤ p ≤ 1.0) as obtained inW1,W2,W5,W6,
W7, andW10, it implies that the zinc concentration was
below the maximum permitted level (i.e., zinc concen-
tration ≤ 3 mg/L). On the other hand, if the p results
obtained (as shown in Table 5) is less than 1 (i.e., 0 ≤
p ≤ 0.4) as obtained in W3, W4, W8, and W9, it implies
that the zinc concentration was above the maximum
permitted level (i.e., zinc concentration ≥ 3 mg/L).

Also, odds ratio of each independent variable was
calculated by using the regression coefficient of the
independent variables “b” as the exponent or exp (b).

Odds ratio ¼ exp bið Þ ð6Þ
The odds ratios of total longitudinal conductance,

unsaturated zone thickness, slope, percent of clay in
soil, and drainage are 9.800e8, 0.084, 0.112, 8.416e10,

and 0.002, respectively. The significance of the odd
ratio can be expressed in terms of the change in odds.
When the independent variable increases by one unit,
the odds that the case can be predicted increase by a
factor of odds ratio times, when other variables are
controlled. Therefore, increase in values of total longi-
tudinal conductance and percent of clay in soil will
significantly increase the odds of the groundwater sam-
ple not exceeding 3 mg/L by factors of 9.800e8 and
8.416e10, respectively; also, increase in unsaturated
zone thickness and slope will slightly increase the odds
of the groundwater sample not exceeding 3 mg/L by
factors of 0.084 and 0.112, respectively. While increase
in the values of drainage will significantly decreases the
odds of the groundwater sample not exceeding 3 mg/L
by factors of 0.002.

Results of statistical assessment of the developed
prediction model

Results of model significance

Statistical assessments utilized to assess the predicted
model are presented in Table 6. All values for the
significant test for the model were statistically signifi-
cant at α = 0.05 level of significance. The Wald chi-

Table 5 Probability prediction of zinc concentration not exceeding 3mg/L in groundwater sample of the study area using themodel in Eq. 5

Logistic
Regression 

Constant (α) 
=21.232 

Total 

Longitudinal 

conductance

unsaturated 

zone 

thickness

Slope Percentage 

clay in soil

Drainage

Density

Probability that zinc

concentration  ≤ 

3mg/L utilizing all 

the variables (x1, x2, 

x3, x4, and x5) 
Gradient 
Coefficient 

(b1) = 193.397 (b2) = 
-2.481 

(b3) = 
-2.193

(b4) = 
25.196 

(b5) = 
-11.933 

Independent
variables

(x1) (x2) (x3) (x4) (x5) p 

W1 0.49 20.94 3.84 0.74 0.32 1.00

W2 0.01 2.15 2.48 0.53 1.73 0.91

W3 0.05 7.67 6.05 0.74 1.77 0.00

W4 0.02 3.81 8.36 0.53 1.73 0.00

W5 0.06 4.84 8.10 0.53 1.47 0.69

W6 0.03 4.99 4.36 0.74 1.61 0.88

W7 0.29 22.04 2.37 0.53 1.47 0.99

W8 0.01 15.57 1.73 0.53 1.55 0.00

W9 0.11 11.79 3.40 0.53 1.57 0.02

W10 0.08 2.77 2.15 0.74 0.92 1.00

- passed
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square values of total longitudinal conductance, unsatu-
rated zone thickness, slope, percent of clay in soil, and
drainage were 1.07, 1.13, 0.42, 0.61, and 0.41, respec-
tively, while the P values obtained were respectively
0.03, 0.029, 0.052, 0.035, and 0.052 indicating that all
the independent variables are statistically significant
(P ≤ 0.05); i.e., the independent variable has a signifi-
cant effect.

Results of Hosmer–Lemeshow goodness-of-fit test
statistic, R-square values, model accuracy

The model had 0.99 P value associated with the Hosmer–
Lemeshow goodness-of-fit test. This value, being greater
than 0.05, indicates that the estimates for the model fit the
original data at an acceptable level. The R-square values
(Cox and Snell R square and Nagelkerke R square) for the
models were 0.65 and 0.87, respectively, indicating that
the model had a moderately strong predictive power. The
overall model prediction accuracy was 85.7%, meaning
that the model had a good fit. Due to the model’s satisfac-
tory assessment and hence, strong prediction capability,
the model was chosen as the final model for the study.
Based on this level of reliability, the model can be used to
predict the probability of zinc concentration above or
below 3 mg/L in area that water samples were not taken,
having knowledge of the independent variables in the area.

Results of the assessment of the reliability
of the prediction model

Tables 4 and 5 are used to explain the results of the
accuracy assessment of the model developed.Whenever

the vulnerability test is passed (i.e., the Zn concentration
maximum permitted level is not exceeded, as shown in
the second column of Table 4), the value of the p, shown
in the last column of Table 5, is expected to be approx-
imately equal to one (i.e., 0.5 ≤ p ≤ 1.0). If vulnerability
test is failed (i.e., the Zn concentration maximum per-
mitted level is exceeded, as shown in the second column
of Table 4), the value of the p, shown in the last column
of Table 5, is expected to be approximately less than one
(i.e., 0 ≤ p ≤ 0.4).

It was observed from the Table 5 that zinc concen-
tration value obtained showed agreement with the mod-
el predicted probability that Zn concentration ≤ 3 mg/L
in nine out of the ten locations. The disagreement ob-
served at location W5 (Table 4) may be due to other
hydrologeological factors, which though may not be
significant in the final model, but might contribute to
high zinc concentration being greater than 3 mg/L in the
groundwater. On this basis, the probability prediction
model is not only accurate but also reliable with per-
centage reliability of 90%.

Results of the groundwater vulnerability prediction map

The study area was gridded to grid size of 500 m with
the center of each grid being used as the measuring point
for the grid. The values of independent variables for
each grid point were estimated and substituted into the
model equation to obtain predicted probability used to
produce the zinc concentration probability prediction
(groundwater vulnerability prediction) map shown in
Fig. 5. High concentration of zinc (i.e., above permissi-
ble level) typical of contamination dominated the

Table 6 Various statistical assessments utilized to assess the predicted model

Variables in model Model significance Hosmer–
Lemeshow
goodness-of-fit
test statistic

R-squared values Percentage of prediction
accuracy

Wald chi-
square

P
value

Chi-
square

P
value

Cox and Snell R
square

Nagelkerke R
square

Overall percentage

Total longitudinal
conductance

1.07 .030 0.54 0.99 0.65 0.87 85.7

Unsaturated zone
thickness

1.13 .029

Slope 0.42 .052

Percent of clay in soil 0.61 .035

Drainage 0.41 .052
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eastern, western, central, south-western, and north-
eastern part of the study area. It was observed that most
of the parts dominated by high zinc concentration being
predicted by the model are communities where gold
mining activities are taken place.

Results of the validation of groundwater vulnerability
prediction map

The validation of the predictive model was achieved by
using independent variables associated with a given
location within the study area to predict for groundwater
quality of the location. Imagine a hydrogeological
system at well “W6” whose total longitudinal con-
ductance was 0.0279, percent of clay in the soil
was 0.74, the unsaturated zone thickness was
4.99 m, the slope of the area was 4.358, and the
drainage density of the area was 1.6. In order to
examine whether or not the groundwater quality
would pass the test for zinc concentration permit-
ted level (i.e., belong to category 1 or 0), the
values of the independent variables for the location
(i.e., “W6”) are substituted into the model equation

thus obtain:

P ¼ e 21:323þ193:397x1−2:481 x2−2:193 x3þ25:156x4−11:933x5ð Þ

1þ e 21:323þ193:397x1−2:481 x2−2:193 x3þ25:156x4−11:933x5ð Þ ð7Þ

P ¼ e 21:323þ193:397 0:0279ð Þ−2:481 4:99ð Þ−2:193 4:358ð Þþ25:156 0:74ð Þ−11:933 1:6ð Þð Þ

1þ e 21:323þ193:397 0:0279ð Þ−2:481 4:99ð Þ−2:193 4:358ð Þþ25:156 0:74ð Þ−11:933 1:6ð Þð Þ

ð8Þ

P ¼ e 21:323þ5:395−12:380−9:557þ18:615−19:093ð Þ

1þ e 21:323þ5:395−12:380−9:557þ18:615−19:093ð Þ

¼ e 4:303ð Þ

1þ e 4:303ð Þ ¼ 0:98 ð9Þ

Therefore, the probability that groundwater quality of
well “W6” passed the test for zinc concentration permit-
ted level is 98%, or 98% of such independent variables
will be expected to produced groundwater quality that
passed the test for zinc concentration based on the
threshold of the maximum permitted levels of inorganic
concentration for safe drinking water by Nigerian

Fig. 5 Zinc concentration probability prediction (groundwater vulnerability prediction) map of the study area
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Standard for Drinking Water Quality (NSDWQ) 2007
(Fig. 6).

Also, for well “W4”whose total longitudinal conduc-
tance was 0.023, percent of clay in the soil was 0.53, the
unsaturated zone thickness was 3.806 m, the slope of the
area was 8.356, and the drainage density of the area was
1.728. Substituting these values in model equation, we
get

P ¼ e 21:323þ193:397 0:023ð Þ−2:481 3:806ð Þ−2:193 8:356ð Þþ25:156 0:53ð Þ−11:933 1:728ð Þð Þ

1þ e 21:323þ193:397 0:023ð Þ−2:481 3:806ð Þ−2:193 8:356ð Þþ25:156 0:53ð Þ−11:933 1:728ð Þð Þ

ð10Þ

P ¼ e 21:323þ4:448−12:380−9:443þ13:333−20:620ð Þ

1þ e 21:323þ4:448−12:380−9:443þ13:333−20:620ð Þ

¼ e −3:337ð Þ

1þ e −3:337ð Þ ¼ 0:03 ð11Þ

It therefore implies that the probability that ground-
water quality of well “W4” passed the test for zinc
concentration permitted level is 3%, or 3% of such
explanatory variables will be expected to produced
groundwater quality that passed the test for zinc con-
centration permitted level. Therefore, the groundwater
quality of well “W4” failed the test for zinc concentra-
tion based on the threshold of the maximum permitted
levels of inorganic concentration for safe drinking water

by Nigerian Standard for Drinking Water Quality
(NSDQW) 2007 (Fig. 6).

Conclusions

Reports of environmental problems associated with
mining communities had prompted the groundwater
vulnerability study of the Ilesa gold mining area in Ilesa
schist belt, southwestern Nigeria. The objectives of the
study were to generate factors/parameters that can be
used to predict aquifer contamination in the area, iden-
tify which of the factors generated is/are responsible for
the probability of groundwater contamination, develop
empirical (LR) model and map that predict the proba-
bility of occurrence of contaminant(s) with respect to
threshold level in the groundwater resources in the study
area, and quantify the prediction accuracy and reliability
of the model developed. In order to achieve the objec-
tives of the study, the integration of remote sensing,
geophysical method, and chemical analysis of water
samples was undertaken. Data management and result
integration were carried out in GIS environment. The
concept of logistic regression was applied to the results
obtained to develop groundwater vulnerability model
for the area. Analysis of remote sensing and geophysical
data assisted in generating factors/parameters

Fig. 6 Zinc concentration probability prediction map with binary categorizes of zinc concentration of the study area
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(independent variables) that can be used to predict aqui-
fer contamination in the area; these factors include
lineament/lineament density, drainage/drainage density,
slope, rock types (geology/lithology), and soil type as-
sociation obtainable in the area, aquifer resistivity and
thickness, longitudinal conductance, transverse resis-
tance, and coefficient of anisotropy. On the other hand,
analysis of water samples assisted in generating the
dependent variables (contaminants) utilized in the study.
Of all the dependent variables, zinc concentration (Zn)
was the only variable that had two categorical outcomes,
since two categorical outcomes of dependent variable(s)
are a necessary condition for logistic regression model
development; Zn was the contaminant utilized for the
study. Similarly, only five (5) independent (predictive)
variables, which are percent clay in soil, drainage, slope,
unsaturated zone thickness, and total longitudinal con-
ductance, were established to have good correlation and
statistically significant with the dependent variable, the
contaminant, and thus utilized in logistic regression
model development. The quantitative assessment of
the developed model established that the overall model
prediction accuracy was 85.7% suggesting that the mod-
el had a very good fit. The probability prediction model
was also accurate and reliable with percentage reliability
established to be 90%. In conclusion, it is evident from
the results obtained from the study that since the model
developed was assessed to be accurate and reliable, the
model, and hence the technique, can be replicated in
another area of similar geologic condition.
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