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Development of a multiple regression model to calibrate
a low-cost sensor considering reference measurements
and meteorological parameters
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Abstract Low-cost air quality sensors are widely used
to improve temporal and spatial resolution of air quality
data. In Lima, Peru, only a limited number of reference
air quality monitors have been installed, which has led
to a lack of data for establishing environmental and
health policies. Low-cost technology is promising for
developing countries because it is small and inexpensive
to operate and maintain. However, considerable work
remains to be done to improve data quality. In this study,
a low-cost sensor was installed with a reference monitor
station as the first stage for the calibration process, and a
multiple regression model was developed based on ref-
erence measurements as an outcome variable using sen-
sor data, temperature, and relative humidity as the pre-
dictive parameters. The results show that this particular
technology exhibits a promising performance in mea-
suring PM2.5 and PM10 (particulate matter with diameter
aerodynamic less than 2.5 μm and 10 μm, respectively);
however, the correlation for PM2.5 appears to be better.
Temperature and relative humidity data from the sensor
were only partially analyzed due to the evident low
correlation with the reference meteorological data. The
objective of this study is to begin analyzing the perfor-

mance of low-cost sensors that have already been intro-
duced to the Peruvian market and selecting those that
perform better to provide for informed decision-making.

Keywords Calibration . Low-cost sensor . Particulate
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Introduction

Air pollution causes 7 million deaths worldwide every
year (WHO (World Health Organization) n.d.). The
2018 Lancet Commission on pollution pointed out that
air pollution accounts for 16% of all deaths worldwide,
with 4.2 million deaths due to ambient air PM2.5

(Landrigan et al. 2018). Clear evidence of the potential
negative health effects of air pollution, such as chronic
obstructive pulmonary disease (COPD), lung cancer,
and cardiovascular disease, has been widely reported
in the literature (Costa et al. 2017; Ierodiakonou et al.
2016; Kim et al. 2017; Nyhan et al. 2013). According to
Romero et al. 2019, the transportation sector corre-
sponds to one of the main pollutant sources in the Lima
Metropolitan Area (LMA); however, spatial and tempo-
ral emission concentration disaggregation must be per-
formed to update transport and environmental regula-
tions. Air quality station data are needed to analyze the
regulations implemented on air quality and health. In
Peru, only a few air quality stations are operated by the
National Meteorological and Hydrological Service
(SENAMHI). Therefore, low-cost air quality sensors
could represent an important resource to assess air
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quality at high spatial and temporal resolutions, partic-
ularly for the evaluation of vehicle emissions
(Velásquez et al. 2020).

Low-cost sensors are characterized by their small size
and weight, relatively low power requirements, short
response time, and real (or close to real)-time network
adaptability (Snyder et al. 2013; Sheats et al. 2010).
These sensors have the following benefits: It delivers
highly precise real-time data, and it is easy to use, with
fast sampling (Idrees and Zheng 2020); besides the
advantage of low-cost sensors is the significant amount
of sensors that can be deployed for pollution mapping
(Li et al. 2020), this information with a correct correla-
tion methodology can be calibrated with a reference
meteorological station simultaneously, especially for
particle matter concentration (Romero et al. 2020). Al-
though they have several benefits, challenges still re-
main regarding their usage, which is due to the sensor
data quality (Snyder et al. 2013). Low-cost air quality
sensors need calibration to validate the reliability of their
data, and such validations are performed through simple
linear regressions and multiple linear regressions. Sim-
ple linear regression models can be used to correct
slopes and offsets, whereas multiple linear regression
models, which can include other pollutants measure-
ments and meteorological parameters, show a better
performance (Munir et al. 2019). In the multi linear
regression model (MLRM), the meteorological param-
eters usually include temperature and relative humidity
(Badura et al. 2018; Munir et al. 2019; Snyder et al.
2013) because they affect the functioning of the elec-
tronics (Badura et al. 2018). Therefore, by including
these parameters in the MLRM, a higher correlation of
determination and a lower Root mean square error
(RMSE) can be obtained (Panem et al. 2020). For each
sensor, a calibration function is specified assuming that
the sensor responses are linear with the reference mea-
surement for each contaminant. Ordinary linear regres-
sion is performed by minimizing the square residuals of
the sensor responses versus the reference measurements.
The calibration functions are of the type Rs = a · X + b,
where Rs represents the sensor responses and X is the
corresponding reference measurement of the air
pollutant.

Multiple regression is applied in several calibration
process with success, for example, in reduced-spaced
Gaussian (Arias Vel et al. 2020), with interpolating
nitrogen dioxide concentration for temporal-spatial
analysis (Weissert et al. 2020), also compared with

multilinear analysis or artificial neural networks ap-
proaches for low-cost calibration. Therefore, the regres-
sion in calibration models is capable of modeling ex-
tremely complex functions that are very suitable for the
calibration of a group of sensors. In the study conducted
by Spinelle et al. (2015), two types of Artificial Neural
Network (ANN) architecture (recommended in
diagnosis analysis with ANN for linear regression
analysis, Arias Velásquez and Mejia Lara 2018) were
considered: radial functions and multilayer perceptron
(MLP). MLP shows a better performance and represents
the network architecture used today, and it originates
from the work of Rumelhart and McClelland
(Rumelhart 1986). This architecture consists of artificial
units that receive a number of inputs and typically a
hidden layer with hidden units. To send an activation
signal, the MLP performs an activation function to
produce the output of the unit and obtain training algo-
rithms that use interactive techniques called “back
propagation.”

In this research, we developed a multiple linear re-
gression to analyze the performance of a particular
technology called PurpleAir sensors (PurpleAir 2019).
We have considered low-cost sensor and its calibration,
due to government requirements to several universities;
researches are focusing on developing procedures that
allow remote sensor calibrations (Weissert et al. 2020).
Therefore, we have progressively introduced it to the
case scenario of Lima, Peru, associated to the main
avenues and meteorological stations, for traffic assess-
ment (Arias Vel et al. 2020). In the following research,
we proposed the development of more advance tech-
niques by taking into account the existing reference
monitors, meteorological parameters, and other pollut-
ants to ensure the accuracy of the sensor data relative to
reference measurements with PurpleAir sensors and the
performance for measurement PM2.5 and PM10

(Table 1).

Material and methods

Characterization of the study site

To assess the performance of low-cost sensor technolo-
gy via comparisons with a reference monitor, a
PurpleAir sensor was installed next to the Campo de
Marte Air Quality Station (AQSMarte), which is cur-
rently under the supervision of SENAMHI. About the



T
ab

le
1

S
ta
tis
tic
al
m
et
ri
cs

su
m
m
ar
y
fo
r
ai
r
qu
al
ity

re
fe
re
nc
e
an
d
av
ai
la
bl
e
m
ea
su
re
m
en
ts
of

P
M

2
.5
an
d
P
M

1
0
tr
af
fi
c-
re
la
te
d
po
llu

ta
nt
s.
P
M

1
0
a
an
d
PM

2
.5
a
co
m
e
fr
om

th
e
“A

”
ch
an
ne
l,
an
d

P
M

1
0
b
an
d
P
M

2
.5
b
fr
om

th
e
“B

”
ch
an
ne
lo

f
th
e
Pu

rp
le
A
ir
se
ns
or
s.
C
on
ce
nt
ra
tio

n
da
ta
ar
e
in

μ
g/
m

3

M
O

M
M

SD
O

S
D
M

M
B
E

M
A
E

R
M
SE

N
M
B
E

C
V
M
B
E

N
M
A
E

C
V
M
A
E

N
R
M
S
E

C
V
R
M
SE

R
2

T
S
T
O
N
E

P
M

1
0
a

35
.9
48

34
.4
51

25
.3
75

17
.2
06

−
1.
69
8

9.
62
9

24
.3
41

−
0.
00
3

−
0.
04
7

0.
01
7

0.
26
8

0.
04
3

0.
67
7

0.
40
0

1.
83
0

P
M

1
0
b

35
.9
48

37
.3
20

25
.3
75

18
.0
46

1.
17
5

10
.1
64

24
.6
63

0.
00
2

0.
03
3

0.
01
8

0.
28
3

0.
04
4

0.
68
6

0.
39
5

1.
24
8

P
M

2
.5
a

24
.5
28

27
.0
65

10
.7
73

12
.3
18

2.
39
3

5.
64
4

7.
81
5

0.
02
7

0.
09
8

0.
06
4

0.
23
0

0.
08
9

0.
31
9

0.
80
0

8.
41
7

P
M

2
.5
b

24
.5
28

28
.0
79

10
.7
73

12
.4
98

3.
41
0

6.
06
0

8.
32
6

0.
03
9

0.
13
9

0.
06
9

0.
24
7

0.
09
4

0.
33
9

0.
79
7

11
.7
48

Environ Monit Assess (2020) 192: 498 Page 3 of 11 498

study site, the AQSMarte is located in the middle of
Lima city, in “JesusMaría” district, so, it is one of the 43
districts, with a population of 75,359 (INEI 2018), with
industrial facilities, mainly plastic, electric furnaces, and
3 several avenues across Lima city. In Fig. 1, this sensor
allows to evaluate the main effect on traffic associated to
“Paseo de la República” avenue, “Salaverry” avenue,
and “Brasil” avenue, the roads with the greatest traffic
problem in the city of Lima with a calibrated meteoro-
logical station online (Arias Vel et al. 2020).

The evaluation was carried out over a period of
3 weeks fromOctober 3rd to October 24th in 2019. This
study was developed by only one institution; however, a
following step in collaboration with the Ministry of
Environment of Peru will include various private com-
panies and academic institutions to assess different low-
cost air quality sensor technologies currently in the
Peruvian market.

Technical specifications of the reference monitors

Ambient PM2.5 and PM10 mass concentrations for
AQSMarte were measured with the leading Automated
Measurement System (AMS), GRIMM EDM 180 tech-
nology. This system offers outstanding features, such as
simultaneous PM measurements in 31 particle size
channels, 0.1 μg/m3 resolution, dust mass detection of
0–100 μg/m3, and an isothermal inlet with an integrated
Nafion dryer. This sensor can measure values in a range
of 0.25 to 32 μm with regard to particle size and has
selectable storage intervals between 6 s and 60min. This
sensor works in a temperature range of − 20 °C to 50 °C
and consumes approximately 160 W of power with a
maximum current of 1.4 A. The measurement principle
of this technology is based on light scattering of single
particles, detection volume with an aerodynamic focus,
and no border zone error.

In addition, a meteorological station is in operation
next to the reference monitor station, and it provided
data for the measurement of temperature, relative hu-
midity, wind speed, and wind direction.

Technical specifications of the low-cost
sensor—PurpleAir Technology

In this study, a PurpleAir sensor (Fig. 2) was chosen.
These are low-cost, small, and portable sensors. The
portability allows for the development of a dense air
quality sensor network, and the sensor provides an
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internal data storage to record data with or without a
WiFi connection and a free platform to visualize real-
time data for all parameters (particulate matter, temper-
ature, and humidity), with high consistency as a function
of temperature. PurpleAir is a local community organi-
zation that operates an air quality monitoring network
based on PMS sensors from PlanTower. Currently, they
provide one new sensor, i.e., PurpleAir I-PA-Indoor
(PMS 1003), and two new sensors, i.e., PurpleAir II-
PA and II-PA/SD (PMS 5003), for outdoor and/or in-
door evaluations. The last two sensor models are com-
posed of the sensors PMS 5003 (particle counter) and
BME 280 (for temperature and humidity) for measuring
PM1, PM2.5, and PM10, temperature and humidity in
near real time. However, the PurpleAir II-PA-SD sensor
model is capable of storing data on an SD card with or
without a WiFi connection (PurpleAir PA-II-SD n.d.).
PMS 5003 is a digital particle concentration sensor
based on a laser scattering physical principle, and it
measures 90° light scattering with a photodiode detector
that converts the scattered light into a voltage pulse. This
sensor counts the number of particles of a certain diam-
eter (0.3 to 10 μm) in the air (by counting the pulses
from the scattering signal) and outputs them into a
digital interface (PurpleAir PA-II-SD n.d.).

Dynamic light scattering is needed for the laser light
source, and the PMS 5003 sensor use laser radiation as
the light source at a wavelength of 680 to 30 nm for
scattering intensity measurements, and radiation inter-
acts with the different particles suspended in the air. The
scattered light is collected at a certain angle by a light
scattering measuring cavity to finally obtain the curve of
the scattering light change as a function of time. The
equivalent particle diameter and the number of particles
with different diameters per unit volume are calculated
by a microprocessor based on MIE Theory, and the
results have a maximum error per module of 10% at a
temperature range of 10 to 40 °C, as shown in Fig. 8,
according the Manual of the PMS50003, a laser counter
manufacturer, and calibrated by PlanTower (2016). Ac-
cording to the manufacturer, the PMS50003 response
time is less than 10 s, from which we can infer that the
sensor has some limitations in rapidly changing envi-
ronments. The concentrations uncertainties for PM2.5

are in the range 100 to 500 μg/m3, and PM10 are in the
range from 0 to 100 μg/m3 (PlanTower 2016).

BME 28 is a digital pressure, temperature, and hu-
midity sensor with high performance, and the size and
low power consumption are key design advantages for

mobile applications. These sensors excel in their fast
response time for temperature and humidity, which is
advantageous for fast context awareness applications,
and high overall accuracy over a wide temperature and
humidity range.

The PurpleAir sensor has two different “channels” or
identical laser counters that measure data: channel A and
channel B. As shown on the PurpleAir web page
(PurpleAir PA-II-SD n.d.), both channels contain pri-
mary and secondary type data. Certain differences be-
tween the two channels may indicate that an error is
occurring in one of the channels. For the different
“fields” of data, “ATM” or “Atmospheric” type data
are used for outdoor applications and CF = 1 is meant
to be used for indoor or controlled environment
applications.

In Peru, the government entrusts themonitoring of air
quality to SENAMHI, which continuously monitors air
quality and was the main reference source for testing the
accuracy of the mobile sensor units deployed for this
study.

Model establishment and validation

A multiple regression model was developed to analyze
the relationship between the sensor data and the refer-
ence measurements (PM2.5 and PM10) and meteorolog-
ical parameters, such as temperature and relative humid-
ity. Two regression models, model 1 and model 2, were
developed (see Eq. 1), and they are summarized in
Table 2.

Y i ¼ β1i � X i þ β2i � temþ β3i � humþ β0i ð1Þ

Yi corresponds to the reference PM measurement for
a diameter of i μm, μg/m3; Xi refers to the sensor
measurement by the PurpleAir sensors for Channel
“A,” μg/m3; tem represents temperature; and hum rep-
resents the relative humidity recorded at AQSMarte.

According to the results shown in Table 2, Model 1
and Model 2 are equal to < 2.2e−16, which is highly
significant because it means that at least one of the
predictor variables (Xi, tem, and hum) is significantly
related to the outcome variable (Yi). For both models,
the Xi and tem predictor variables are more significant
for the Yi variable.



Fig. 1 a Reference air quality
station, b low-cost air quality
sensor installation (at approxi-
mately 2 to 3 m under the
ground), and c location of the
reference and PurpleAir sensor
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Results and discussion

Results obtained by reference monitors

Figure 3 shows the hourly and daily average PM2.5 and
PM10 concentrations during the study period (October
3rd to October 24th). The daily average concentration of
PM2.5 during this period was 24.5 μg/m3 and ranged
from 14.4 to 36.4 μg/m3. According to the environmen-
tal legislation, during this period, the air quality regula-
tions for PM2.5 were not violated because, on any day,
the daily average exceeded 50μg/m3 (MINAM2017); it
has been verified in the last research in Peru with mete-
orological stations (Arias Vel et al. 2020) and temporal
and spatial analysis of traffic in the last 5 years since
2020 (Romero et al. 2020). Moreover, the maximum
PM10 daily concentration did not exceed the regulation
of no more than 100 μg/m3 during our 3-week study
period, which showed a daily average concentration of
34.6 μg/m3 and a range of 19.7–48.7 μg/m3.

During our study period, we measured a relatively
low temperature between 13.7 and 21.1 °C (average
16 °C), high relative humidities between 64 and 97%
(average 86%), wind direction between 3 and 357.0°
(average 216.7°), and wind speed ranging from 0 to
5.5 m/s, with an average of 2.4 m/s. The meteorological
parameter variations (temperature, relative humidity,
wind speed, and wind direction) from the reference
monitors are shown in Fig. 4.

Results obtained by PurpleAir sensors

The complete data provided by the PurpleAir sen-
sor must be considered. As briefly mentioned in
the “Technical specifications of the low-cost
sensor—PurpleAir Technology” section, the two
different channels “A” and “B” correspond to
equal laser counter sensors, which must be com-
parable. In this particular study, the ATM data
from Primary Channels “A” and “B” were chosen
for analysis due to the outdoor condition (ATM).
PM2.5a and PM10a correspond to Channel “A”,
and PM2.5b PM10b correspond to Channel “B.”

This performance evaluation was carried out using
data observed by the sensor platforms and data obtained
from the reference monitor, which were statistically
analyzed and compared.

PMs—particle matter with diameters less than 2.5 μm
and 10 μm

Figure 5 shows the trends of air quality data from the
PurpleAir sensor versus the reference measurements.
The results show that positive correlations occur be-
tween PM10 and PM2.5 (for both channels of PurpleAir
sensor) and the reference measurement; however, the
“A” channel presents the highest correlations for PM2.5a
and PM10a of 0.8 and 0.4, respectively; therefore, we



recommend to use the A channel for outdoor PM2.5 and
PM10 studies.

Based on the multiple regression model developed in
the “Model establishment and validation” section and
the summary of the results in Table 2, the following
figures can be analyzed. Figures 6 and 7 show the
multiple regression model diagnostics. For both cases,
the developed models present a very good performance,
according to the Normal quantile–quantile (Q-Q) anal-
ysis; it demonstrates the distribution of the data against
the expected normal distribution. A linear regression
approach is appropriated for the standardized residuals
analysis on PM2.5 and PM10 data.

The residuals versus fitted graphs demonstrate that
the difference between the dependent (Yi) variables and
predictor variables (Xi, tem, and hum), which can be

interpreted for Model 1 and Model 2, for both predic-
tions was too high (residuals near 0), and it suggests that
there are no outliers for linear predictor and residual
analysis. Normal Q-Q graphs show that the residuals
are close to 0 because they follow a straight line for
Model 1 and Model 2. In both cases, the result is that all
the predictor variables have a considerable influence on
the developed regression models (Figure 8).

Conclusions

Developing low-cost sensors represents a potential al-
ternative that can complement reference air quality mon-
itor stations worldwide because of the low cost and
minimal maintenance requirements during operation.

Table 2 Parameters from the multiple regression Model 1 (PM2.5) and Model 2 (PM10) developed for the study

Models Parameters Std. Error t value Pr(> |t|) Multiple R2 p value β1i β2i β3i β0i

Model 1 PM2.5a (Xa) 0.020 34.908 < 2e−16 0.6477 < 2.2e−16 0.704 1.027 0.119 −21.517
Tem 0.347 2.957 0.00321

Hum 0.075 1.580 0.11461

Model 2 PM10a (Xb) 0.052 11.493 < 2e−16 0.1711 < 2.2e−16 0.600 2.491 0.194 − 42.424
Tem 1.256 1.984 0.0477

Hum 0.272 0.715 0.4749

Fig. 2 PurpleAir II-AP/SD sensor and an overview of the PMS5003 working principle
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This study shows that different low-cost technologies
have already been introduced for informative and re-
search purposes in Lima, Peru; however, previous stud-
ies have performed data comparisons of their perfor-
mance versus the performance of reference monitors,
such as those from SENAMHI, which manages the

reference air quality monitoring stations. It is important
to point out that air quality data are required to be
collected at high spatial and temporal resolution to de-
velop better assessments and provide information to
private and public sectors because of the effects of air
quality on health.

Fig. 4. Temporal distribution of the hourly average of temperature, relative humidity, wind speed, and wind direction variations during the
study period for the meteorological monitoring sensor

Fig. 3 Temporal distribution of the hourly and daily average PM2.5 and PM10 concentrations for the reference monitor during the study
period. In a and b, the left column refers to hourly averages and the right column refers to daily averages

Environ Monit Assess (2020) 192: 498 Page 7 of 11 498



The results show that a high positive correlation
occurs between sensor data and reference measurements
for PM2.5 and PM10, especially for PM2.5 (r

2 = 0.8) for

the “A” and “B” channels. Two multiple regression
models (Model 1 and Model 2) were developed by
taking into account the sensor data (PM2.5 and PM10

Fig. 6 Diagnostic of the regression model developed for PM2.5a sensor measurements (Model 1)

Fig. 5 Sensor air quality data comparedwith referencemeasurements. PM2.5a and PM10a from the “A” channel and PM25b and PM10b from
the “B” channel

498 Page 8 of 11 Environ Monit Assess (2020) 192: 498



concentration) and meteorological parameters, such as
temperature and relative humidity. In both cases, a good
performance was identified for the models, and temper-
ature was shown to be a more influential meteorological
parameter compared with relative humidity. The
PurpleAir sensor shows a good performance for the
measurement of PM2.5 and PM10 but not for temperature
and relative humidity.

Additional studies must be performed to ensure the
accuracy of sensor data relative to reference measure-
ments. A following study that uses machine learning
techniques will be performed to compare the

performance of the multiple regression model with ma-
chine learning techniques.
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