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Abstract Land use change simulation is an important
issue for its role in predicting future trends and provid-
ing implications for sustainable land management.
Hybrid models have become a recognized strategy to
inform decision-makers, but further attempts are needed
to warrant the reliability of their projected results. In
view of this, three hybrid models, including the cellular
automata-Markov chain-artificial neural network, cellu-
lar automata-Markov chain-logistic regression, and
Markov chain-artificial neural network, were applied
to simulate land use change on the largest island in
Iran, Qeshm Island. The Figure of Merit (FOM) was
used to measure the modeling accuracy of the simula-
tions, with the FOMs for the three models 6.7, 5.1, and
4.5, respectively. Consequently, the cellular automata-
Markov chain-artificial neural network most precisely
simulates land use change on Qeshm Island and is, thus,
used to simulate land use change until 2026. The simu-
lation shows that the incremental trend of the built-up
class will continue in the coming years. Meanwhile, the
areas of valuable ecosystems, such as mangroves, tend

to decrease. Despite the protection plans for mangroves,
these areas require more attention and conservation
planning. This study demonstrates a referential example
to select the proper land use models for informing
planning and management in similar coastal zones.
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Introduction

Land use/cover change (LUCC) simulation can help
obtain a better understanding and more realistic predic-
tion of future developments (Olmedo et al. 2015;
Newman et al. 2016) and create better plans for solving
environmental problems. Models used to predict LUCC
are considered useful tools for environmental and geo-
science research (Varga et al. 2019; Mustafa 2020).
LUCC maps are applicable to environmental decisions
and support planning for sustainable development
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(Yirsaw et al. 2017). These maps not only help reduce
the unwanted effects of anthropogenic activities on nat-
ural resources but also provide an integral resource for
studies on land resources management (Yang et al.
2012). Today, LUCC is considered one of the most
important environmental concerns of the international
community (Rimal et al. 2018). Accordingly, predicting
the future of LUCC is a current and widespread neces-
sity, wherein experts must rely upon simulation models
(Ghosh et al. 2017).

Although LUCC prediction models have been used
for decades, advances in geospatial technologies and
increased computing power in the GIS environment
have led to the recent development of a wide range of
LUCC models encompassing various processes, analy-
ses, and research questions (Verburg et al. 2004).
Indeed, different types of LUCC prediction models have
been introduced that differ in structure and application.
To simulate LUCC, GIS-based mathematical models,
such as cellular automata (CA) (Aburas et al. 2016),
can be used as well as statistical techniques, such as
Markov chain (MC), logistic regression (LR), machine
learning, and data mining algorithms, including artificial
neural networks (ANNs) and support vector machines
(SVMs) (Shafizadeh-Moghadam et al. 2017). Among
these models, the CA model is the most well-known
(Aburas et al. 2016; Li et al. 2017; Liu et al. 2017), as it
can simulate macro-phenomena (e.g., land use change)
considering the interactions of micro-phenomena (i.e.,
cell state change) through a top-down approach (Xu
et al. 2019).

Each LUCC simulation model has its strengths and
weaknesses and can be used alone or in combination with
other models. For example, the MC approach can predict
the extent of land use change but cannot simulate changes
in spatial distribution (Ghosh et al. 2017). The CAmodel
is a powerful calculating technique that can alone be used
to simulate the spatial variability of an ecosystem
(Kamusoko et al. 2009). Yet, its combination with the
MC model (CA-MC) provides a more accurate simula-
tion of the temporal and spatial patterns of land use
change (Sang et al. 2011; Ghosh et al. 2017). Therefore,
to achieve more precise results, hybrid models designed
by integrating two or more individual parts or models are
often proposed by researchers. Thus, to gain a better and
more accurate understanding of the relationship between
the factors affecting LUCC and the related processes,
complex LUCC spatial models have been developed
and are used nowadays (Verburg et al. 2004).

Despite the numerous applications of LUCC simula-
tion models in recent years, there has yet to be a con-
sensus developed about them; thus, the strengths and
weaknesses of these methods require further discussion
(De Rosa et al. 2016). Though many simulation studies
of LUCC combine cellular automata (CA) with standard
models, such as MC, LR, and ANN, to obtain more
accurate results from the modeling process (Hamdy
et al. 2016; Ghosh et al. 2017), a comparison of the
models has not been sufficiently conducted. For in-
stance, Yan et al. (2019), Karimi et al. (2018), Chu
et al. (2018), and Yirsaw et al. (2017) used a CA-
Markov model to predict LUCC changes in different
areas by combining the CA-Markov model with ANN
and LR to obtain better results in the prediction process.
However, the use of these methods in an integrated
manner and with the same data, with the primary pur-
pose of comparing the accuracy of each, has not been
sufficiently addressed; this gap in comparing LUCC
modeling methods with similar data has also been men-
tioned in the literature (Sun and Robinson 2018).
Moreover, applying several LUCC models on the same
data and comparing the results can help explain the
advantages of each model for various applications.

To obtain better comparisons and make more in-
formed decisions regarding the selection of a LUCC
model type, we focus on this gap in the LUCC model
comparison. Here, emphasis is placed on a comparative
study of hybrid models with similar data; this compar-
ative evaluation was performed first to compare the
accuracy and validity of the models and, then, to pro-
pose the optimum model for modeling LUCC changes
in the region.

Qeshm Island is the largest island in the Persian Gulf
(Ebrahimi-Sirizi and Riyahi-Bakhtiyari 2013; Kokabi
et al. 2016). Because of its diverse landscape, ecological
richness, and unique environment, Qeshm Island is
recognized as a tourist attraction in southern Iran
(Mirza et al. 2019). Among the island’s tourist attrac-
tions are reef colonies, the widest mangrove forests in
Iran, and historical sites (Yazdi and Dabiri 2018), mak-
ing Qeshm Island one of the most visited areas of Iran
and even of the Middle East. Moreover, due to Qeshm
Island’s unique environment, the UNESCO designated
it as the first geopark in the Middle East in 2006
(Pourahmad et al. 2018). Simultaneously, because of
its strategic location and the establishment of active
ports, Qeshm Island was established as part of the
Qeshm Free Trade Zone in the early 1990s and has since
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played an important role in the Iranian economy.
However, the remarkable economic development of
Qeshm Island and the growth of urbanization in coastal
areas have threatened the region’s valuable environ-
ment. Specifically, the research objectives of this study
are to compare three commonly used hybrid models
(namely, cellular automata-Markov chain-artificial neu-
ral network (CA-MC-ANN), Markov chain-artificial
neural network (MC-ANN), and cellular automata-
Markov chain-logistic regression (CA-MC-LR)) and to
inform strategies in environmental conservation for this
region and propose the most accurate model for LUCC
modeling.

Methodology

Study area

The study area is Qeshm Island in the eastern part of the
Persian Gulf, adjacent and proximate to the Strait of
Hormuz (Fig. 1). It is the largest island in the Persian
Gulf under the jurisdiction of the Islamic Republic of
Iran and is located at 55° 14′ 58″ E and 56° 17′ 27″ E
and 27° 00′ 00″ N and 26° 32′ 04″ N. Its area is
1491 km2, about 2.5 times that of Bahrain (the second
largest island in the Persian Gulf). Its length is approx-
imately 115 km and its width 35 km in the widest part
and 10 km in the narrowest part. The annual average
temperature of Qeshm Island is approximately 26 °C,
and the maximum and minimum daily average temper-
atures are 34 and 18.5 °C in July and January, respec-
tively.While the annual precipitation of the Island is less
than the average of the country, and the climate of the
region is classified as warm and dry (Bwh) according to
the Köppen classification, the air humidity is high, and
the average maximum and minimum relative humidities
are 86.5 and 44.4, respectively. According to the 2016
census, the island’s total population is approximately
150,000. The mean annual temperature and average
annual precipitation are shown in Table 1. The island’s
location is also shown in Fig. 1.

Data preparation

Landsat data are an indispensable source of satellite
imagery for LUCC studies because of their high tempo-
ral, spatial, and spectral resolution (Shafizadeh-
Moghadam et al. 2017). Here, Landsat data for 2002,

2008, and 2014 were used to produce LUCC maps as
the inputs for themodel (Table 2). Since Qeshm Island is
located between two Landsat scenes, two scenes were
used for each year as described below. In data selection,
cloud-free images with temporal closeness were select-
ed from the USGS Landsat level-2 archives. To produce
LUCC maps, topographic maps and Google Earth were
also used as complementary data.

Land use/cover maps were generated from the
Landsat images in 6 classes, including built-up, agricul-
ture, dense vegetation, mangrove, water body, and bar-
ren land. To produce these maps, the on-screen digitiz-
ing method was used for the two classes of built-up and
agriculture, and the supervised classification method
(maximum likelihood) was used for the other 4 classes.
In the pre-processing phase, all layers of the Landsat
images were combined by the Layer Stacking com-
mand. Then, we performed mosaicking to join the two
Landsat scenes. Atmospheric and radiometric adjust-
ments were performed in the next step. The study area
was specified on the image and was clipped from other
parts of the image that were not needed in the last part of
the pre-processing phase. It is worth noting that since
Landsat level-1 images were used, no geometric correc-
tions were applied to the images. In the classification
step, a 1:25000 scale topographic map, Google Earth
software, and field data were used to prepare training
points to identify the 4 classes mentioned before. In this
step, we masked the area related to the built-up and
agriculture classes we identified before through the on-
screen digitizing. Finally, we jointed all 6 classes in the
GIS environment and generated the land use maps for
4 years. An error matrix was created to assess the
accuracy of the maps. The corresponding results are
shown in Table 3.

Models description

Cellular automata (CA)

CA is a well-known and common modeling technique
that is defined in raster space and is used today to
simulate many natural and anthropogenic phenomena
(Hu et al. 2018; Shadman-Roodposhti et al. 2019). In
CA, space is defined as a raster grid, with each unit
considered as a cell. The automated cell model is based
on the interaction of the following five components: (1)
the grid space, also known as the lattice, and the cell that
forms it; (2) the state of the cell, which shows the
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properties and modes of each cell; (3) transition rules
that control changes in cell states; (4) time, by which the
state of all cells is controlled and simultaneously up-
dated; and (5) the neighborhood, by which cells change
in status because of the mutual interactions between

target cells and their neighbors which are also under
the influence of transition rules (Keshtkar and Voigt
2016). Transition rules include global rules and local
rules. Here, the MC model is used to derive transition
rules and the multi-layer perceptron artificial neural

Fig. 1 Location of the case study

Table 1 Mean annual temperature and average annual precipitation of Qeshm Island

January February March April May June July August September October November December

Avg. Temperature (°C) 18.5 19.7 23.1 26.4 30.1 32.7 34 33.6 32.4 29.9 24.6 20

Precipitation/rainfall (mm) 42 36 15 7 2 0 0 0 0 2 11 25
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network (MLP-ANN) and LR algorithms to derive local
rules. In the modeling process, the cells of this network
are simultaneously updated at discrete times according
to global and local rules. In this method, the value of
each new cell at the output of the modeling process is
determined by a set of variables, including the values of
the neighboring cells and of the cell itself. The automat-
ed cell model can be obtained from Eq. (1) (Sang et al.
2011; Shadman-Roodposhti et al. 2019):

S t; tþ1ð Þ ¼ f S tð Þ;N
� � ð1Þ

where S is a finite set independent of cell states, N is the cell
ground, t and t + 1 are different times, and f represents the transi-
tion rules of cell states in local space.

Markov chain (MC)

The Markov model is commonly used to predict geo-
graphic features without any secondary effect and has
become an important predictor in geographic research
(Xu et al. 2019). TheMC expresses quantitative changes
in land use from one period to another and uses these
changes as a basis or variable for mapping future chang-
es. This is done by developing a transfer probability
matrix of land use changes from time 1 to time 2 to be
used as a basis for mapping future time periods. Based
on the conditional probability of the Bayes formula,
land use change prediction in the Markov model is
computed using Eq. (2) (Sang et al. 2011):

S tþ1ð Þ¼P ijð Þ*S tð Þ ð2Þ

where S(t) and S(t+1) are the states of the system at
times t and t + 1 and P(ij) is the transfer proba-
bility matrix in a state that is calculated by Eq. (3(
(Sang et al. 2011).

Pij ¼
p11 p12 … p1n
p21 p22 … p2n
… … … …
pn1 pn2 … pnn

2
664

3
775 0≤Pij < 1 and ∑

N

j¼1
Pij ¼ 1; i; j ¼ 1; 2;…; nð Þ

" #

ð3Þ

The MC is considered as an effective tool for model-
ing land use changes and provides indices to determine
the direction and extent of land use change (Benito et al.
2010; Eastman 2015).

Multi-layer perceptron artificial neural network
(MLP-ANN)

An MLP-ANN is used to calculate the transition poten-
tial of land use as well as the position of transferred cells
in this study. An MLP is actually a supervised model
that uses single- or multi-layer perceptron to estimate the
intrinsic relationships of inputs and outputs in a model
(Yuan et al. 2009). The ANN consists of a network of
interconnected processing units that has been simulated
by modeling the network of neurons in the human brain.
Neural networks have a nonlinear structure and function
as a sophisticated mathematical tool in modeling the
conversion of a system’s inputs to users’ desired out-
puts. The MLP approach, which uses back-propagation
(BP) learning algorithms, is one of the most widely used
neural network models (Kazemzadeh-Zow et al. 2017).
Typically, an MLP network consists of one input layer,
one or more hidden layers, and, finally, an output layer
(Eastman 2015), which are used for data entry, data
analysis, and model output, respectively (Hu and
Weng 2009). Here, the input layer includes the land
use changes in previous periods and the criteria that
influence these changes over the study period; the

Table 2 Date, path, and row of Landsat satellite images

No. Satellite Date Row Path

1 Landsat7 05-25-2002 041 172
2 Landsat7 05-09-2002 042

3 Landsat5 05-17-2008 041

4 Landsat5 05-17-2008 042

5 Landsat8 05-18-2014 041

6 Landsat8 05-18-2014 042

Table 3 Overall accuracy for the land use maps

Year Error count Sample count Overall accuracy % User’s accuracy % Producer’s accuracy % K-standard

2002 32 300 89.33 90.35 89.33 0.87

2008 33 300 89.00 89.72 89.00 0.86

2014 27 300 91.00 90.18 91.33 0.89
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hidden layer is used to identify the relationships between
the changed pixels and the criteria used; the output layer
is determined based on a transition potential map
(TPM). See the Manual of IDRISI TerrSet Software
for further details on MLP (Eastman 2015).

Logistic regression (LR)

LR is a multivariate technique that considers different
physical parameters to estimate probability percentages.
This statistical method takes binary and scalar values as
independent variables and allows the use of qualitative
and discontinuous variables in the processes. The ad-
vantage of LR modeling over other multivariate statis-
tical techniques is that this method can be used for
variables that are not fully continuous or are otherwise
qualitative. This model has been widely used in various
fields, including epidemiology, ecology, environmental
monitoring, weather forecasting, and LUCC (Silva et al.
2019). The main point in LR is that the dependent
variable is a two-state variable and can only take the
value of 1, indicating the occurrence of an event, and 0,
indicating the non-occurrence of an event. LR uses the
maximum likelihood estimation method to find the best
set of parameters to run the model. In LR, we can predict
the probability of the occurrence of event Y = 1 by Eq.
(4) (Arsanjani et al. 2013):

P Y ¼ 1jxð Þ ¼ exp ∑BXð Þ
1þ exp ∑BXð Þ ð4Þ

where P is the probability of the dependent variable, X
represents the independent variable, andB represents the
estimated parameters. To linearize the above model and
remove the boundary of 1.0 for the main dependent
variable, which is the probability of occurrence, the
following equation is used to transform Eq. (4)
(Arsanjani et al. 2013):

Logit Pð Þ ¼ ln
P

1−Pð Þ
� �

¼ B0 þ B1X 1 þ B2X 2 þ…

þ BNXN þ ε ð5Þ

Model configuration

Here, different combinations of techniques and models
are used to model land use changes. The hybrid models
used are as follows: (1) CA-MC-ANN, (2) CA-MC-LR,
and (3) the ANN-MC, which is otherwise known as the

Land Change Modeler (LCM). Generally, a number of
elements for modeling land changes are needed, includ-
ing land cover maps, factors affecting land change, the
change interval, numerical estimation of changes in the
simulation or prediction period, and, finally, maps of
transition potentials. Land cover maps and variables
were extracted using baseline data (satellite images,
etc.), and the time intervals of changes were also deter-
mined according to the study objectives. The Markov
technique was used to estimate the numerical changes in
the simulation period for all three hybrid models. Neural
network and LR methods were used separately to pre-
pare the transition potential maps )TPMs). Each of these
methods provides a TPM to predict each of the land use
classes during the simulation period. After obtaining the
above elements, modeling of the change can commence.
For example, in the first hybrid model, the neural net-
work output (TPMs) and the MC (the estimated change
rate for each class of land use) were added as inputs to
the CAmodel. The CAmodel simulates the LUCC over
a defined period. In the second hybrid model, the out-
puts of Markov and LR models were added as inputs to
the CA model, and land changes were simulated.
Finally, in the third hybrid model, Markov and neural
network techniques were used as LCM components and
inputs to simulate changes. To evaluate the accuracy of
each model in simulating the changes, the simulation
results of all three hybrid models were compared with
the observed land cover map in 2014 using the Pontius
and Millones’ method, known as the 3D method. From
this comparison, the most accurate modeling method
was determined. Finally, to predict changes until 2026,
the hybrid model that performs best in the simulation
phase was used. The overall framework of the study is
shown in Fig. 2.

Validation of land change modeling

The validity and accuracy of the modeling results were
evaluated for each of the three methods used in this
study by comparing the modeling simulation results of
2014 with the observed map of the same year. The final
results produced in the simulation process were com-
pared with the observed map, and the simulation accu-
racy was calculated separately for all three methods. To
describe the difference between the simulated and ob-
served maps, the method proposed by Pontius and
Millones was used, also known as the 3D method.
This technique has been used recently in many similar
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studies (Yao et al. 2017; Tajbakhsh et al. 2018; Kourosh
Niya et al. 2019, Varga et al. 2019). The method mea-
sures the agreement and disagreement between the sim-
ulated and observed maps via the calculation of quanti-
fication and allocation errors, which quantify the
accuracy of the modeling process. Quantity dis-
agreement is the number of pixels of a land use
class in a simulated map in disagreement with the
number of pixels in the observed map, ranging
from 0 to 100% (Pontius and Millones 2011),
and allocation disagreement has been defined as
the difference between observed and simulated
maps in the spatial allocation of classes (Pickard
et al. 2017). The Figure of Merit (FOM) index is
known as the index of the ultimate accuracy of
each modeling method and is calculated as shown
in Eq. (6):

FOM ¼ B= Aþ Bþ C þ Dð Þ ð6Þ

where A is the amount of actual change that is
simulated as persistence, B represents the correct
simulated area, C is the area that is simulated as
change but in the wrong class, and, finally, D is
the persistence area that is simulated as change
(Pontius and Millones 2011; Olmedo et al. 2015).

Results

Land use/cover change (LUCC)

An analysis of LUCC over the period 2002–2014 re-
veals that land use changes are coordinated with the
expansion of the built-up class; an increasing demand
for construction and, thus, the expansion of this class
reduces the area allocated to other classes. For example,
in 2002, the area assigned to the built-up class was
5400 ha, which then reached 8215 ha in 2014, an
increase of 52%. Among the six land use classes, the
built-up class is the only class that increased in both
study periods (2002–2008 and 2008–2014).
Simultaneously, the barren land class is the only class
that declined in both periods. Of the other four classes,
the agriculture, dense vegetation, and water classes first
decreased and then increased, and the mangrove class
first increased and then decreased. The amount and
trend of changes over time are shown in Table 4.

Analyzing transition potential maps (TPMs)

ANN and LR methods were used to generate the TPMs.
These methods generate the TPMs for each type of land
use by relating the change map and the variables affect-
ing the land change during the calibration period. As
these methods use a different logic in modeling and
producing TPMs, their outputs are likewise different.
The relative operating characteristic (ROC) method was
used to evaluate and compare the efficiency of these
techniques. ROC can sufficiently evaluate the accuracy
of a model that predicts the location of changes in a land
use class. This is done by comparing a correspondence
or potential map showing the probability of a land use
class per pixel with a Boolean map indicating the actual
location of the pixels belonging to that class (Pontius
and Schneider 2001). Here, the potential or correspon-
dence maps are the ANN and LR output maps. The
Boolean map also shows the location of land use chang-
es during the simulation period. This method uses the
area under the curve (AUC) index to evaluate corre-
spondence maps or TPMs. An AUC value of 1 indicates
a perfect spatial agreement between the Boolean map of
each class and their correspondence maps. An AUC
value of 0.5 and lower indicates that if there is an
agreement between the two maps, this compatibility is
accidental. Figures 3 and 4 show the TPMs derived from
ANN and LR, respectively. The AUC values are shown
as diagrams in Fig. 5 for the TPMs of these two
methods. These values were greater than 0.78 in both
methods and for the potential maps of all land uses. The
comparison of the two methods shows that the TPMs
produced by ANN (except or the vegetation map) were
in higher spatial agreement with the transition Boolean
map than were the LR correspondence maps during the
simulation period. This demonstrates the superior per-
formance of the ANN in producing TPMs to simulate
land changes.

Land change simulation

This study aimed to model LUCC in Qeshm Island,
Iran, and to compare three hybrid models, including
CA-MC-ANN, CA-MC-LR, and MC-ANN (i.e.,
LCM). To calibrate these models, the LUCC map and
variables from the period during 2002–2008 were used
to prepare the simulated maps of 2014. The land cover
maps of 2014 were then simulated using the three con-
sidered models (as shown in Fig. 6).
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To evaluate the accuracy of the simulated maps, the
outputs of all three methods were compared with the
observed land cover maps of the same year (2014). The
land use classes for which the most changes were asso-
ciated are the built-up and barren land use classes; from
2008 to 2014, approximately 2000 ha were added to the
built-up class, and approximately 3000 ha removed
from the barren land class (Table 5). In general, the
results show that modeling of land changes using the
CA-MC-ANN hybrid model is more accurate than that
of the other two models. The area of the correct

simulated changes was calculated 611 ha in the CA-
MC-ANN model, compared to 455 ha for the LCM
and 396 ha fo r t h e CA-MC-LR mode l .
Additionally, separate comparisons of the state of
each land use show that the three models have
different results for each type of land use. For
example, in the CA-MC-ANN and CA-MC-LR
models, the largest correctly simulated area is re-
lated to barren land, but in the LCM, the predic-
tion of the growth of the built-up class is more
accurate than that of the other land use classes.

Fig. 2 Study flowchart
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Validation of land change simulation

The validation results are presented in Table 6. As
shown in the table, more than 96% of the area studied
by all three methods was simulated correctly to be
persistent, including areas that have remained stable
and had no change in the observed and simulated maps.
No change in a majority of the study area has also been
reported in a study by Tajbakhsh et al. (2018).
According to Table 6, the percentage of the correctly
simulated area, marked in the table with the letter B, and
the FOM index, as the ultimate determinant of accuracy
herein, were found to be higher in the results of the CA-
MC-ANN model than in those of the two other models;
the FOM index was 6.7, 5.1, and 4.5 for the CA-MC-
ANN, LCM, and CA-MC-LR models, respectively.
Therefore, the CA-MC-ANN hybrid model has a higher
ability to model and simulate land changes in Qeshm
Island than the other two models. Figure 7 shows each
of the effective factors in the FOM index.

Prediction of land use/cover change (LUCC) in 2026

Because the CA-MC-ANNmodel was found to perform
better than the other two models in modeling and sim-
ulating land changes in Qeshm Island, it was used to
provide a simulated map illustrating the LUCC in
Qeshm Island for the year 2026 (shown in Fig. 8).
This map was compared with the 2014 map to reveal
the extent of the changes in land use. The results of this

comparison are provided in Table 7 and Fig. 9. As with
the changing trends from 2002 to 2008, the barren land
use class is associated with the largest area of land lost
compared with the other classes, providing the land that
other classes acquired. Unlike the barren land class, the
built-up and agriculture classes show a continuing in-
creasing trend; this can be attributed to the region’s
development process and concurrent expanding demand
for building and agriculture. Although a similar trend to
that of the built-up and agricultural classes is evident in
the dense vegetation class, as shown in Table 7, the
uncertainty is high in the modeling results of the dense
vegetation class. This may be attributed to the dense
vegetation class’ dependence on precipitation and the
fact that most of the plants in this class are therophytes.
This is also true for the water class, which is affected by
the tide phenomenon. Significant in Table 7 is the de-
cline in the mangrove class in 2026 compared with
2014. Although the area of the mangrove class increased
between 2002 and 2008, it declined between 2008 and
2014 and then, according to the CA-MC-ANN simula-
tion map, was again predicted to decrease by 2026.

Discussion

To study land use changes in Qeshm Island from 2002 to
2014, images from the Landsat satellite series from 2002
to 2014 were used. After analyzing the images, land use
maps were obtained for these years. Investigations show

Table 4 The amount and trend of changes over the three time periods (unit: hectare)

Land use classes 2002 2008 2014 Trend of changes

Agriculture 4462 4440 4676

Barren land 139534 139354 136061

Built-up 5400 6026 8215

Dense veg. 842 580 1425

Mangrove 6823 7529 6620

Water 91836 90968 91900
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that the process of land use change has occurred rapidly
on Qeshm Island. During this time period, the area
associated with agricultural and built-up land use classes
increased dramatically, with the largest decrease (in
terms of area) related to the barren land use class. The

simultaneous decline in the area of barren land and the
increasing trend of built-up land can be attributed to
significant economic changes and recent developments
on Qeshm Island. The transformation of Qeshm Island
into a strategic and economic hub for both the country

Fig. 3 TPMs’ MLP-ANN: a agriculture, b bare-land, c built-up, d dense vegetation, e mangrove, f water body
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and the region has led to an increase in population in the
region, wherein the population of Qeshm has increased
from approximately 80,000 in 2002 to approximately

148,000 in 2014 (Iran’s Population and Housing
Census, 2016). This population growth has led to wide-
spread land use changes, especially involving the

Fig. 4 TPMs’ logistic regression: a agriculture, b bare land, c built-up, d dense vegetation, e mangrove, f water body
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conversion of natural lands to man-made ones.
Additionally, as listed on Qeshm Island’s Free Area
Organization website, the large number of tourists, who
visit the island every day, intensifies this conversion.

The accuracy of the obtainedmaps (from 2002, 2008,
to 2014) was evaluated using the overall accuracy and

kappa coefficient (Alilou et al. 2018). The evaluation
results showed that the overall accuracy of land use
maps was 89.33 for 2002, 89.00 for 2008, and 90.00
for 2014. The kappa coefficient for these years was 0.87,
0.86, and 0.89, respectively. The overall accuracy and
kappa coefficients obtained in this study showed that the

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Agriculture Barren land Built up Dense

Vegetation

Mangrove Water

ANN LogReg

Fig. 5 Comparison of TPMs,
using area under the curve (AUC)

Fig. 6 Actual and simulated maps of 2014 using three models
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images are of high accuracy and could even be higher
than the standard and what was reported in other similar
studies. For example, the kappa coefficient was reported
as 0.76 by Mitsova et al. (2011), 0.67 by Hyandye and
Martz (2017), and 0.85 by Memarian et al. (2012).
Therefore, the overall results indicate that the maps
obtained herein have high accuracy and precision. It
can, thus, be concluded that Landsat satellite imagery
can be used to monitor land use changes with acceptable
accuracy.

To model and predict future changes in the study
area, the performance and accuracy of three hybrid
models (CA-MC-ANN, CA-MC-LR, and ANN-MC
(i.e., LCM)) were compared. Based on this comparison,
the best model was then selected and used to model
future changes in the study area. Thus, the LUCC map

of 2014 was first simulated using the aforementioned
three methods and past maps from 2002 to 2008. To
evaluate the accuracy of the simulated maps of 2014, the
outputs of all three methods were compared with the
observed map of 2014. The quality of the simulated
LUCC by each of the methods is then evaluated using
transfer matrix features, a validation method, and the
quality of the LUCC transfer correspondence maps.
Therefore, it is necessary to first consider the require-
ments for the creation of an appropriate transfer matrix;
then, this matrix can be used for future predictions
considering the initial state and the possibility of change
(Koomen et al. 2007). Here, the validity of the models’
results was investigated using the Pontius and Millones’
method, i.e., the 3D method. This is one of the most
useful and highly accurate methods that has been used to

Table 5 Comparison between results of the modeling and real map of 2014

Land use/cover
classes

Land covers area (hectare) Correct predicted changes through
modeling methods (hectare)

Observed
change of
2014

Land
2014

CA-MC-
ANN

MC-ANN
(LCM)

CA-MC-
LR

CA-MC-
ANN

MC-ANN
(LCM)

CA-MC-
LR

Agriculture 4676 4415 4277 4488 40 5 0 235

Barren land 136,296 138,930 139,941 140,075 177 144 221 − 3293
Built-up 8216 6648 6044 6030 134 185 0 2189

Dense vegetation 1425 828 537 179 83 16 0 845

Mangrove 6620 8205 8205 8230 114 39 126 − 909
Water body 91,664 89,871 89,893 89,894 63 66 49 931

Total area 248,897 248,897 248,897 248,897 611 455 396 -

Table 6 Agreement and disagreement components in the three used methods for modeling

Component Factor name Agreement/disagreement CA-MC-ANN MC-ANN CA-MC-LR
Proportion (%)

Persistence simulated correctly --- Agreement 96.3433 96.4059 96.5314

Persistence simulated as change D Disagreement 2.4244 2.4244 2.5089

Change simulated as change to wrong category C Disagreement 0.0671 0.0671 0.0702

Change simulated correctly B Agreement 0.245 0.1824 0.1575

Change simulated as persistence A Disagreement 0.9202 0.9202 0.732

Total 100 100 100

Simulated change 2.7365 2.6739 2.7366

Observed change 0.3121 0.2495 0.9597

Allocation disagreement 1.72 1.23 1.15

Quantity disagreement 1.69 2.1 2.17

FOM 6.7 5.1 4.5
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compare and verify the accuracy of land simulation
models in many studies. The results of our study, with
regard to the use of the Pontius and Millones’ method,
are in good agreement with studies on the robustness of
this method’s application to verifying the accuracy of
simulation models. For example, Kourosh Niya et al.
(2019) investigated the validity of different models
using the Pontius and Millones’ method and the FOM
index in the Qeshm Island. They stated that the Pontius
and Millones’ method was highly capable in verifying
the accuracy of the simulated model and that the
majority of the study area was predicted correctly by
this method. Tajbakhsh et al. (2018) used the Pontius
and Millones’ method to evaluate the accuracy of two
types of land use change modeling techniques and
resultantly posited that this method can suitably verify
the accuracy of the models and obtain good results with
regard to land use simulation. Varga et al. (2019) veri-
fied the accuracy of the CA-Markov model using this
method; as a result, the accuracy of the model was

sufficiently verified, and the CA algorithm was found
to be more error-prone than the Markov algorithm.

Comparisons of the results of the methods used in
this study show that the area of the correctly simulated
changes and the results of the land use change in each
model were different. Considering the FOM index and
the agreement/disagreement values obtained from these
three methods, it can be concluded that the CA-MC-
ANN hybrid model is more accurate than the other two
models and more capable of modeling future changes.
According to the results (Table 6), the values of agree-
ment that show the change simulated correctly are
higher in the CA-MC-ANN method than in the other
two methods. Additionally, the FOM value, which
shows the accuracy of the model, is higher in the CA-
MC-ANN than in the other two methods.

Similar studies investigated the validity of different
models using the Pontius and Millones’method and the
mentioned factors. By examining agreement and dis-
agreement values for the CA-Markov model, Hyandye

0
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1.5
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4

123

Change simulated as
persistence

Change simulated correctly

Change simulated as change
to wrong category

Persistence simulated as
change

Fig. 7 Graphs of agreement and
disagreement components: (1)
CA-ANN, (2) LCM, (3) CA-
Markov-LR

Fig. 8 Predicted map of 2026—using integration of CA-Markov-ANN
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andMartz (2017) concluded that the quantity agreement
is larger than the allocation agreement. They attributed
this to the calibration process, which results in the
creation of a simulation model that ultimately increases
the model’s performance in determining the correct
values of quantity compared with that of allocation.
Similar results have been reported in the studies of
Memarian et al. (2012) in Malaysia, where high values
of quantity/allocation disagreement and low values of
FOM were found, showing that the CA-Markov model
alone is not suitable for simulating and expressing
LUCC dynamics.

Although some studies have been performed to com-
pare different LUCC modeling methods, few studies
have compared models proposed by different studies
with similar data. This was an important gap that served
as one of the main objectives of this study. Xu et al.
(2019) investigated and simulated urban land use chang-
es in the southern city of Auckland in New Zealand
using the CA-MC-ANN model. The validation results
showed that the combination of the ANN with the CA-
MC model is more capable of simulating land use
changes than conventional models, such as the

Analytical Hierarchy Process (AHP) and LR-CA-MC.
Tajbakhsh et al. (2018) used MC in combination with
Fuzzy-AHP and ANN-MLP to simulate land use maps
in the urban watershed of Birjand, Iran and compared
these models. Simulation and validation results showed
the superior performance of MLP-ANN compared with
Fuzzy-AHP; FOM values for the MLP-ANN and
Fuzzy-AHP were 5.69 and 5.18, respectively. Another
similar study by Mustafa et al. (2018) compared CA-
SVMs and CA-LR methods to investigate LUCC
changes. The combination of CA with both SVM and
LR models was highly capable in investigating land use
changes and analyzing controlling factors. By examin-
ing the validity of the two models, the performance of
CA-SVMs was found to be better than that of CA-LR.

By careful examination of the validity and reliability
of the models used in this study, the CA-MC-ANN
method was found to be the most accurate; the LUCC
map for 2026 in the study area was then simulated with
the CA-MC-ANNmethod. The simulated map indicates
that, as before, the barren land class lost most of its area
to other land use classes, particularly the built-up and the
agriculture classes. The results also showed that the

Table 7 Comparison of the area of each land use class between 2014 and 2026 (unit: hectare)

Class name 2014 2026 Gains Losses Net change

Agriculture 4676 5120 836 − 392 444

Barren land 136,296 130,813 2074 − 7557 − 5483
Built-up 8216 12,119 3903 0 3903

Dense veg. 1425 2402 1592 − 615 977

Mangrove 6620 5394 666 − 1892 − 1226
Water 91,664 93,049 2736 − 1351 1385

Total 248,897 248,897 11,807 − 11,807 0

Fig. 9 Gains and losses between
2014 and 2026 (hectares) for each
land use class
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mangrove class decreased, as seen in the previous period
(from 2008 to 2014). The decreased area of this valuable
ecosystem can seriously damage the environmental val-
ue of the area. Direct factors, such as deforestation, and
indirect factors, such as sea pollution caused by marine
transportation, have caused damage to the ecosystem.
On the other hand, conservation programs led by
national and international organizations have been
effective in preserving this valuable ecosystem. Studies
have been conducted to investigate the areas of
mangrove forests and their threatening factors. For
example, Khoorani et al. (2015) investigated mangrove
forests using satellite imagery from 1984 to 2009 and
reported a variable trend over the period; it was shown
that anthropogenic factors have contributed to the de-
cline of mangrove forests in the area, while the decline
in precipitation in recent years has also contributed to
the decline of mangrove forests in the area (Khoorani
et al. 2015). In another similar study, Mafi-Gholami
et al. (2019) investigated the relationship between
drought and mangrove forests and found that the area
of mangrove forests was significantly associated with
decreases in annual precipitation and the subsequent
drought in the area. Additionally, Etemadi et al. (2018)
examined the changing pattern of land use in the
Mangrove forest located in the coastal region in south-
ern Iran over 14 years (from 2000 to 2014) and predicted
future losses and gains in land type uses up until the year
2026. They noted that an obvious change had not been
observed in the mangrove area and that the relative sea-
level rise had acted as the predominant influencing
factor of converting mangrove forest area to water area.
In a similar study conducted by Bihamta Toosi et al.
(2019), the results of the change detection showed an
increase in total mangrove areas but a decrease in man-
grove forests near the coastal areas, mainly because of
significant human activities over the past two decades.

Much of the LUCC over the past two decades has
been due to the establishment of the Qeshm Free Trade
Organization. As a result of the transformation of Qeshm
Island into a free trade zone and its subsequent develop-
ment, increased economic and commercial activity, and
increases in industrial activities and national and interna-
tional investments, the land use/cover on Qeshm Island
has undergone extensive changes. These dramatic devel-
opments have led to an increase in the population of the
region. According to statistics from the National
Statistical Center of Iran, the region’s population has
nearly doubled in the past two decades: the population

of Qeshm City in 1996, 2006, and 2016 was 73,000,
105,000, and 149,000, respectively. This rapid popula-
tion growth has led to the conversion of barren land to
built-up and agricultural land uses. The growing popula-
tion also raises concerns for the future with regard to
environmental sustainability and will play an important
role in future LUCC developments. Additionally, natural
parameters, such as the decreased precipitation men-
tioned in the study of Mafi-Gholami et al. (2017), have
affected LUCC in the study area and, if climate change
intensifies, may have more negative environmental im-
pacts in the future. Therefore, to preserve valuable envi-
ronmental resources and create a sustainable develop-
ment on the Qeshm Island, it is important to maintain a
proper balance between the region’s environmental
health and its developments. This balance can be
achieved through sufficient management plans and ef-
forts, such as environmental impact assessment of pro-
jects, the participation of local residents in conservation
projects, development of land reclamation plans, assess-
ment of the ecological potential of the area, determination
and estimation of carrying capacity, and land use plan-
ning. Additionally, national and international organiza-
tions should contribute to the planning and conservation
of mangrove habitats in the study area.

Conclusions

Here, the performance and accuracy of three hybrid
methods for modeling land use change were investigat-
ed in an application to Qeshm Island, the largest Persian
Gulf island; these methods are the CA-MC-ANN, the
CA-MC-LR, and the ANN-MC (otherwise known as
the LCM). The performance and validity of the models
were evaluated using optimum methods and different
factors. The overall results indicate that the combination
of CA-MC with the ANN portrays LUCC dynamic
changes with higher accuracy compared with the other
two methods. Therefore, using the CA-MCC-ANN
method, future land use changes in the study area were
predicted for the year 2026. Although this serves as a
case study conducted in Qeshm Island, Iran, the hybrid
models used in this study and the performance evalua-
tion of the models can be applied in other areas.

Spatial and temporal surveys of land use changes in
the study area show that the level of agriculture and built-
up land use classes increased dramatically from 2002 to
2014, while the land use type with the largest decrease
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was associated with the barren land class. The economic
and industrial development in recent decades and invest-
ments have been the most important anthropogenic fac-
tors of land use change in the study area; such factors
have played an important role in the increasing demand
for the expansion of the agriculture and built-up land use
classes to take advantage of the opportunities and re-
sources available in the region. This trend is expected to
continue in the future, where there is an expected increase
in the conversion of barren land use to anthropogenic
uses. Regarding changes in land use classes, an important
point to consider is the reduction of the mangrove class
by 2026, which is predicted to decrease in a similar
manner as in the 2008–2014 period. Although there are
plans to protect this ecosystem, the predicted continuing
decrease in the area of this valuable ecosystem raises
concerns; national and international conservation pro-
grams should, thus, continue with a greater emphasis on
preventing the destruction of mangrove forests.

Although the combination of CA-MC with ANN
simulated LUCC with acceptable accuracy and relative
superiority among other methods in the study area,
further studies are needed in the field of land use change
modeling to better understand the performance and ca-
pabilities of this method. It is strongly recommended
that the method used in this study be applied to other
regions, especially coastal regions with climates that are
both similar and different to that considered in the
present study. This would not only allow further assess-
ment of the validity and usefulness of the model but also
assist in identifying the tools needed for the planning
and management of various areas and ecosystems.
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