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Abstract Multiple factors including natural and
human-induced ones lead to land cover change in the
landscape. Therefore, identifying the pattern of land
cover change can help inform land-use management
and prevent associated issues which can affect the nat-
ural resources of the landscape. The aim of this study is
to assess land cover change in the Qeshm Island in
southern Iran by combining the resulting outputs of
multiple modeling methods, cellular automata (CA),
Markov chains, and artificial neural networks (ANN)
based on land cover maps for the years 1996, 2006, and
2016 that have been extracted from satellite imagery
(Landsat 5, 7, and 8). In order to evaluate the accuracy
of modeling, the Kappa coefficient was calculated to be
0.8. Then, land cover changes for 2025 were predicted
by a hybrid model (CA-Markov-ANN). The results
indicate that the classes of built-up areas, vegetation,
and mangrove forests have changed more significantly
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from 1996 to 2016 compared with other classes. Land
cover maps generated in this study showed that built-up
areas have grown significantly in recent decades due to
the region’s growing population and development of
ports, commercial, and industrial areas. Due to the cli-
mate change, the land area covering vegetation has
decreased dramatically. The size of the mangrove forests
has increased over the time period of the study (1996—
2025). The findings of this study can inform land-use
planning decisions by providing them with a compre-
hensive overview of land cover conditions in the future.

Keywords Land management - Cellular automata -
Markov chains - Artificial neural networks - Qeshm
Island

Introduction

Land use and land cover change (LULCC) are the most
substantial issues resulting from human activities on the
Earth (Grigorescu et al. 2019; Li et al. 2016a). It influ-
ences the Earth’s ecosystems through a wide range of
human activities including deforestation, desertification,
urban expansion, and agricultural development. LULCC
also has an additive effect on global warming and climate
change through destroying the natural environment and
expanding human-made structures (Cheng et al. 2018;
Jagarnath et al. 2019; Nkya et al. 2017). The changes in
land cover have increased in recent decades due to pop-
ulation growth, industrialization, and economic develop-
ment (Hashem and Balakrishnan 2015). LULCC is
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directly or indirectly caused by human activities and, in
some cases, it results from natural factors (Osman et al.
2018; Valdez et al. 2019). Climate change and drought
are also two factors that can change the land cover type
on the Earth. For example, farmers in agrarian areas leave
their lands during drought. Climate change can convert
many agricultural areas and forests to barren lands (Nkya
et al. 2017; Cheng et al. 2018; Jagarnath et al. 2019),
forcing rural communities abandon their lands. Human-
induced land cover change mainly occurs due to destruc-
tion of vegetation, rangelands, agricultural, and forest
areas resulting from human activities such as expansion
of urban areas, development of industries and ports,
desertification, deforestation, and expansion of agricul-
tural lands (Flores-Casas and Ortega-Huerta 2019;
Grigorescu et al. 2019).

Remote sensing is one of the most effective ways by
which land cover change can be assessed over a speci-
fied period of time (Shimizu et al. 2018; Wu et al. 2019).
In fact, there are many different types of satellite images
in different governmental and non-governmental data-
bases which are available for researchers and decision-
makers that have made it easy to study land cover
changes in different parts of the world (Lin et al. 2019;
Singh et al. 2018). The application of remote sensing
data has many advantages, including access to low-cost
data of a given area at different temporal scales and also
reducing the time required to conduct a study (Jensen
2015). Many studies have used remote sensing for ana-
lyzing land cover change (Coppin et al. 2004; Lu et al.
2004; Valdez et al. 2019). For example, this method has
been used for modeling land-use changes in urban areas
(Guodong et al. 2018; Jagarnath et al. 2019), forest areas
(Flores-Casas and Ortega-Huerta 2019), and coastal
areas (Singh et al. 2018). It has also been used for
identifying changes that have occurred in coastal urban
areas (Feng et al. 2018), assessing the extent of defor-
estation (Wyman and Stein 2010), and examining urban
sprawl and urban land-use changes (Bununu 2017; Du
et al. 2018; Munroe et al. 2005).

Maps extracted from satellite images can also be used
to predict future land cover changes (Singh 1989; Abd
El-Kawy et al. 2011). Land change prediction is an
effective method to develop various scenarios that pro-
vide a fairly clear perspective of the coming-years’
situations in different ecosystems (Lin et al. 2019;
Singh et al. 2018). This information can inform land
use planners and decision-makers by providing them
with a comprehensive overview of future land cover
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conditions. Different approaches for simulating and
predicting LULCC can be categorized into three classes
(Kazemzadeh-Zow et al. 2017). The first group of meth-
odologies uses regression or Markov chains to assess the
change in land cover types. Because of the simplicity of
these models, they are unable to model complex chang-
es in real, complex ecosystems. These simple methods
are no longer used as stand-alone techniques for model-
ing LULCC (Kazemzadeh-Zow et al. 2017). The second
group of approaches is defined based on dynamic
models such as cellular automata, agent-based models,
artificial neural networks, system dynamics, and opti-
mization algorithms such as ant colony optimization
(Carvalho et al. 2019; Du et al. 2018; Feng and Tong
2018; Ke et al. 2017; Kolb et al. 2013). Since these
methods are developed based on intelligent algorithms,
researchers are able to model more complicated phe-
nomena. For example, artificial neural networks, as an
optimization algorithm, are able to recognize nonlinear
patterns in a complex landscape and quantify the com-
plicated relationships between different land cover types
(Kazemzadeh-Zow et al. 2017; Zhai et al. 2020).

In the third group of approaches, the modeling out-
comes of multiple methods from other methodologies are
integrated (Bununu 2017; Dou et al. 2019), and these
have been suggested by multiple studies in order to
improve modeling efficiency (Liu et al. 2007; Yang and
Li 2007; Qiu and Chen 2008; Wu et al. 2019). Each
modeling approach has its own capabilities. When it is
integrated for a given case study, it can complement the
other approach and reduce the overall limitations of such
modeling methodologies. For example, the Markov chain
can predict the extent at which land-use changes have
occurred. However, it cannot simulate spatial variations
within a given area (Yang et al. 2012). Cellular automata
is the most widely used model that can be applied inde-
pendently or in combination with other modeling
methods, including Markov chains, logistic regression,
and neural network to simulate and predict land use/cover
change in the landscape (Kazemzadeh-Zow et al. 2017,
Hyandye and Martz 2017; Du et al. 2018; Zhai et al.
2020). The cellular automata, modeling technique has the
ability to simulate spatiotemporal properties of complex
ecosystems (Li and Yeh 2002; Clancy et al. 2010). Arti-
ficial neural network is also used for modeling land-use
change due to its ability to model nonlinear relationships
between variables in different studies either individually
or in combination with other modeling methods (Yang
et al. 2008; Pijanowski et al. 2014).
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There are many studies that have used a separate
method or a combination of two or three of the afore-
mentioned methods to model land cover changes within
the landscape. For example, Mitsova et al. (2011) used
cellular automata in order to simulate urban growth over
open lands in the USA. In another study, ANN multi-
layer perceptron was used to model changes which
occurred in urban and agricultural lands in the northern
part of India (Mozumder and Tripathi 2014). Since
different factors can contribute to land cover change,
determining those variables responsible for the overall
change and modeling them has always been problematic
for researchers. Therefore, hybrid models which allow
using a combination of methodologies can help simplify
the LULCC modeling process. Basse et al. (2014) com-
bined cellular automata and ANN to simulate land cover
changes in a European cross-border region (an area
between Belgium, Germany, France, and Luxembourg),
because of their particular potentials at modeling chang-
es in complex ecosystems. In another study, three
methods including: CA, Markov chains and ant colony
optimization (ACO) were integrated in order to simulate
land cover changes in Beijing, China (Yang et al. 2012).
Then, the results were compared with the outputs
resulting from the use of each two methods including,
CA-Markov and ACO-CA. The key finding of this
study indicates that the output resulting from a combi-
nation of three models (CA-Markov-ACO) was more
accurate than the output generated using each pair of
methods. Moreover, the combination of logistic regres-
sion, CA, and Markov chains presented a reliable output
when used to simulate urban expansion in Tehran, Iran
(Jokar etal. 2013). Du et al. (2018) integrated tree-based
methods and cellular automata to simulate multiple ur-
ban land-use changes in Tokyo, Japan. They found that
tree-based methods can effectively generate complicat-
ed transition rules to predict more accurate results in
combination with cellular automata, compared with
usual models. In another study, Feng et al. (2018)
modeled coastal changes by incorporating spatial auto-
correlation into cellular automata to optimize transition
rules and increase the modeling accuracy, and their
results showed 3.6% increase in overall accuracy. The
combination of Markov chain and cellular automata is a
widely used method, applied by Hyandye and Martz
(2017) to simulate changes in agricultural areas in
Usangu catchment, Tanzania. Using this approach they
revealed the changes in land cover classes, particularly
from grassland and agricultural lands to urban areas.

Generally, review of different studies shows hybrid
models are able to achieve more accurate results in the
term of land change simulation.

The objectives of the present study were (1) to detect
changes occurred in land cover in the Qeshm Island,
Iran, in particular, vegetation cover and mangrove for-
ests between 1996 and 2016, and (2) to predict land
cover changes in this region by 2025. At the first
Landsat satellite, images were classified using the max-
imum likelihood algorithm, and different land cover
classes were identified in order to achieve these objec-
tives. Second, the amount of change in each class was
determined during the defined time period and was
determined by comparing the resulting outputs. In the
next step, a hybrid model was developed by combining
the three cellular automata (CA), Markov chain (MC),
and artificial neural networks (ANN) models in order to
simulate the status of land cover in 2016 based on 1996
and 2006 data. In order to assess simulation accuracy,
the modeling output was compared with the actual land
cover map of 2016. Finally, land cover changes were
projected for 2025 using the proposed hybrid model in
this study based on the CA, MC, and ANN methods.

Methodology
Data types and sources

To be able to examine different satellite images for
different time periods, it is better to prepare images
taken on the same day in different years. However, due
to some technical issues such as unavailability of image,
satellite transmissions from the region, and cloud cover
issue, it is unlikely to provide images taken on the same
day in a given time period. In these cases, data from
different sensors are preferable (Lu et al. 2004; Lu et al.
2014; Jensen 2015). In this study, the Landsat 5, 7, and 8
satellite images were used to investigate land cover
changes in the Qeshm Island, located in the south of
Iran. Each Landsat satellite image covers an area of
185 x 185 km® on the ground. The number of multi-
spectral bands in the visible and near infrared spectrum
for TM, ETM+, and OLI sensors are 6, 6, and 7 bands,
respectively. The multispectral bands of these sensors
were used to classify different land-use types. The ra-
diometric resolution of images provided by TM and
ETM-+ is 8 bits, while this resolution for OLI images is
16 bits. However, the spatial resolution of all three
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sensor data is 30 x 30 m, which indicate each pixel
covers 900 square meters area on the ground (Table 1).

Study area

Qeshm is the biggest Island located in the Persian
Gulf in the south area of Iran from 55 15°38”E to 56
16°52”E and from 26 32°20”N to 27 00°00”N. The
average altitude is about 10 m above sea level and
has an area of approximately 1628 km?. Because of
steamy climate and limy lands, this area has a poor
vegetation coverage, and hence, the substantial ex-
tent of the Island has been covered by barren lands
or sparse vegetation. Another characteristic of
Qeshm natural ecosystem is the presence of man-
grove forests which are distributed through the
shoreline from the Hormuz Isthmus to the Indian
Ocean. Human population residing in the Island
are reported to be about 148,000 based on the cen-
sus information in 2016 (Iranian Statistical Center,
2016). Qeshm has experienced many economic
changes as a free commercial zone from 1990, so
that this Island has been known to be a major in-
dustrial zone for international trade in the south of
Iran. On the other hand, extracting petroleum and
importing manufacturing products, the traditional
economy of this area has changed from agriculture
and fishery to a modern industrial economy. More-
over, due to the presence of unique natural land-
scape and cultural characteristics of Qeshm Island,
this region has been a well-known tourism destina-
tion for tourism and recreational activities; all of
which have resulted in various land cover changes
in this area in recent decades (Fig. 1).

Pre-processing of satellite images

Remote sensing images should be preprocessed to elim-
inate errors and problems before being used in the pro-
cessing stage (Dalmiya et al. 2019; Shimizu et al. 2018;
Yan et al. 2019). One of the related issues is cloud cover
that makes examination of land use difficult. In these
cases, it is required that images without cloud cover
problem are selected, or cloudy parts are removed
(Sano et al. 2007; Tolnai et al. 2016). Since the images
used in this study were without any cloud cover, there
was no need to do further preparation for the images used
in this study. Radiometric errors are the other problems
that should be corrected in the image preprocessing step
(Li et al. 2016b; Paolini et al. 2006). Landsat 7 ETM+
images are usually impacted by failure of the scan line
corrector and contain strips as a result of scan-line errors
(Ali and Mohammed 2013; Hossain et al. 2015).

In order to fix the strip error, new values were re-
placed with the values of erroneous pixels based on the
interpolation method performed using the Landsat-gap
fill tool in the ENVI software (Yin et al. 2017). Geo-
metric correction and atmospheric correction are other
pre-processing steps that should be conducted before
using a satellite imagery (Li et al. 2015; Rumora et al.
2019). Landsat satellite images are usually geometrical-
ly corrected before being provided to users. The steps
taken for atmospheric corrections can be different based
on the types of processing analysis expected to be
performed on the image. Since image classification
was conducted based on the maximum likelihood algo-
rithm and the training classes are individually sampled,
there is no need for atmospheric corrections (Jensen
2015). However, the dark object algorithm was used in
this study to correct the atmospheric images to eliminate

Table 1 Specifications of satellite images used in this study (Source: USGS)

Images Date Path/ Number of Radiometric Spatial resolution of
row multispectral bands resolution multispectral bands
Landsat 5/TM 17 June 1996 160/41 6 8 bit 30x30m
and
160/42
Landsat 7/ETM+ 21 June 2006 160/41 6 8 bit 30 x 30 m
and
160/42
Landsat 8 / OLI 24 June 2016 160/41 7 16 bit 30 x 30 m
and
160/42
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Fig. 1 Location of the study area, Qeshm Island, Iran

the effects of light diffusion from the image in order to
correct the effects of the atmospheric dispersion.

Factor maps and variables preparation

The objectives of this study are detection of land cover
changes between 1996 and 2016 and prediction of fu-
ture land cover changes that will occur by 2025 in the
Qeshm Island, Iran. To achieve these objectives, we first
extracted land cover maps from the Landsat satellite
images, and compared them to be able to detect changes
that have occurred. In this study, the CA_Markov, ANN
hybrid model was used to simulate land cover changes
of the study area. The outputs of Markov chain and
artificial neural network were used as inputs to the
model in order to detect land cover change using the
cellular automata method. The initial data required for
modeling land changes were the land cover maps and
the variables incorporating land changes. For this

purpose, land cover maps related to 1996, 2006, and
2016 extracted from satellite images were used. We also
prepared the variables affecting land changes such as
altitude, distance from industrial areas, distance from
ports, distance from protected areas, distance from
roads, distance from built-up, distance from the beach,
distance from mangrove forests, distance from rural
areas, slope, geology, soil type, vegetation, and distance
from rocky lands. To model land cover variations related
to two different years, two types of data were generated
from the initial data: (1) measuring the quantity of
occurred changes and (2) generating maps for potential
changes or fit maps. Markov chains were used to gen-
erate change values or classes. Possible land-use change
in the period from 2006 to 2016 were estimated based
on the land-use changes that took place between 1996
and 2006 using Markov chains. To generate potential
change maps, the multi-layer perceptron neural network
(MLP) algorithm was used. After executing the model,
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the output was evaluated by comparing it with actual
2016 land cover. Finally, using the process described,
land use/cover changes were projected for the year
2025. Figure 2 shows the overall process of predicting
land use/land cover changes.

Image classification

In this study, the maximum likelihood algorithm was
used to classify images. This classification is performed
based on maximum probability of assigning a pixel to a
class in which it is likely to be classified based on
information available from the training data. In this
method, the probability of each pixel belonging to each
pre-defined class is calculated at first and then the class

Fig. 2 Steps taken for simulation
and prediction of land use/land
cover changes

LC2016
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that has the highest probability is the intended pixel. The
assumption of maximum likelihood is that the educa-
tional data statistics for each class and in each band are
normally distributed. The first step in this classification
is to calculate the probability p (x|w;) which is the
probability of assigning a class to a particular pixel.
The class is assigned to the desired pixel which has the
most likely pixel membership to that class.

2
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In this formula, x is the vector of spectral values, w; is
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in a particular class. To assign a given pixel to a class,
the probability of the pixel to be placed in each class is
calculated and then the class that has the most probabil-
ity is assigned to the given pixel (Jensen 2015).

Change detection

A comparison algorithm was used to identify the chang-
es that have occurred in land use after performing image
classification for satellite images used in this study. This
is a quantitative method that requires geometric correc-
tion of images (geometric matching of images) and their
classification outputs. In the next step, two outputs
resulting from image classification are compared pixel
by pixel, using a matrix identifying changes. Each error
in the classified map is also transmitted to the final
identification map of changes. Therefore, it is essential
that the classified maps used in this method are as
accurate as possible. The accuracy in the output map
of change identification depends on the accuracy of the
classified maps (Jensen 2015).

Cellular automata

The cellular automata model is built based on the inter-
action of several elements: (1) a lattice space that is a
two- or multi-dimensional space; (2) a cell or automa-
tion, a discrete variable that represents the network’s
structural units; (3) situation or cell state that describes
the characteristics of the cell that can change according
to certain conversion rules; (4) conversion rules, which
are mathematical functions that control the change in the
status of each cell. The rules of transfer are of two types.
For example, there are local and global conversion rules
as two types of transfer rules. Local rules show
the status of each cell and its neighbors and global
rules indicate the general status of a particular
land-use in a given time period; and (5) the time,
as the cell status changes over time.

The general approach applied in this method is that a
cell is a point on a given network space that can occupy
a limited number of different situations determined ac-
cording to a particular transmission law, which can be
the result of its interaction with its immediate neighbors
in the network (Mitsova et al. 2011). The CA model has
useful features which are beneficial for modeling geo-
graphic phenomena. The CA modeling output has a
spatial characteristic and is generated based on geo-
graphic and remote sensing information.

Markov chains

Markov chains are used to derive general conversion
rule which specifies the overall rate of change associated
with a particular land use compared with other land uses
over a given period of time (Mitsova et al. 2011). In this
method, the categorized data are compared pixel by
pixel for two different times, and accordingly the con-
version probability matrix and transformation matrix are
extracted. The conversion probability matrix determines
the probability of changing each land-use class com-
pared with other classes. The transformation matrix
specifies the number of pixels that are expected to be
converted to a different class within a given time period
from one class to another (Jokar et al. 2013). These rules
enable researchers to simulate land-use changes that
have occurred in a given area.

Multi-layer perceptron of artificial neural network

The potential change map shows the probability of
changing the class of each pixel to another land-use
class. In order to generate potential change maps,
ANN (multi-layer perceptron function) was used. The
neural network calculates the potential change that may
occur for each class by connecting modified pixels for a
period of time, for example, 1996 to 2006, with vari-
ables driving land-use changes.

Results

Generation of historical land cover maps and change
detection

Land cover maps extracted from satellite images for
1996, 2006, and 2016 in Qeshm Island are shown in
Fig. 3. In these maps, six land-use classes, built-up
areas, agricultural landscapes, and vegetation, mangrove
forests, water bodies, indigenous lands, and rocky lands
were identified and separated. The general changes that
occurred in land use/land cover of Qeshm Island in
between 1996 and 2006 and 2006-2016 are shown in
Fig. 4. The results indicate that the area of mangrove
forests has been increasing during the second part of the
defined period. The extent of these forests slightly in-
creased about 20 ha from 1996 to 2006 and then in-
creased more significantly between 2006 and 2016
(about 630 ha). Another land use that had an incremental
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Fig. 3 Land use/cover maps of a 1996, b 2006, and ¢ 2016

trend was the built-up class. Of the examined six classes,
vegetation always experienced a declining trend regard-
ing its total extent in the study area, reaching to its
minimum area from 5200 ha in 1996 to 2100 ha in
2016. The area of water surface decreased about
4000 ha from 1996 to 2016. Finally, the rocky and
mountainous terrain classes remained unchanged during
the time period of this study, with occupying almost
3700 ha of the study area.

Quantifying probability of changes by Markov chains
The probability transformation matrix for 20062016 is
presented in Table 2, as the result of applying the Mar-
kov chains method. The numbers in this Table represent
the percentage of possible changes from each class to
another class in the period from 2006 to 2016.

Generation of transition potential maps

A multi-layer perceptron, as a type of artificial neural
network (MLP-ANN) was used to generate transition

@ Springer

potential maps for the study area. In other words, a
transition potential map was generated for each land
cover class and also for deriving variables which af-
fected land cover change over the specified time peri-
od (from 1996 to 2006) using the ANN algorithm. The
variables used in this study include sea level altitude,
distance from fault, distance from industrial areas,
distance from ports, distance from protected areas,
distance from roads, distance from built-up, distance
from beach, the distance from mangrove forests, dis-
tance from rural areas, slope, geology, soil type, veg-
etation, and distance from rocky lands. Distance-
based variables were generated using the distance
function, based on the spatial layers generated by
relevant organizations using satellite imagery, in the
IDRISI software environment. The slope and eleva-
tion variables were obtained using a digital elevation
model (DEM) generated from ASTER satellite images
with resolution of 15 m. For soil and geological var-
iables, associated layers produced by the Geological
Organization of Iran were used. Figure 5 shows the
potential change map, derived from application of the
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Fig. 4 General changes in land use/cover in 1996 to 2016

neural network algorithm on the above data, for built-
in areas, mangrove forests, vegetation, dry lands, and
water surface. Since rocky lands had no positive
changes, the probability of changing all the pixels in
the scope of the study is equal to zero. These potential
change maps for different land cover classes were
used to simulate overall land-use change from 2006
to 2016. The value score of these maps ranges between
0 and 1 indicating the more each pixel’s value is closer
to 1, the more likely it is that it has changed to the
desired land cover class.

Vegetation

Built up Bare land  Rocky land

Simulation of 2016 land use/cover classes

Figure 6 illustrates the simulated map of land cover
change from 2006 to 2016. The land cover simulation
was conducted based on information obtained from the
calibration time period (1996 to 2006). This map was
generated based on a combination of the outputs of three
modeling approaches used in this study, the Markov
chains, the MLP-ANN, and the cellular automata ap-
proach. This simulation step was performed to calibrate
the combined model and evaluate its accuracy, which

Table 2 The extent of occurred changes for different measured classes using Markov chains for 2016

Land cover type

Water Mangrove Vegetation Built up Bare land Rocky land
Water 0.9569 0.0001 0.0006 0.0001 0.0422 0
Mangrove 0.0136 0.9369 0.0008 0 0.0487 0
Vegetation 0.0006 0.0031 0.3 0.0042 0.6922 0
Built up 0.0013 0 0 0.9987 0 0
Bare land 0.0187 0.0023 0.0072 0.0037 0.9681 0
Rocky land 0 0 0.0052 0 0 0.9948
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was then used to predict land cover change for the future
(2025 in this study).

Validation of the model

In order to evaluate the validity of the model, the sim-
ulated map was compared with the actual 2016 land-
cover map obtained from the Landsat 8 satellite imag-
ery. The Kappa coefficient, which is an indicator used to
evaluate the validity of modeling results, was 0.80 for
the simulation output. The values of this coefficient for
all land-cover classes are shown in Table 3. Examining
the extent at which the simulated model correctly pre-
dicts the changes for different classes indicates that over
all 1602 ha of the changes were correctly simulat-
ed. The largest area of change simulated correctly
was related to dry lands, 1183 ha, and rocky lands
belong to the class for which the smallest area of
change was correctly simulated.

@ Springer

Prediction of 2025 land use/cover classes

In this step, based on the experiences and considerations
from the simulation stage, we predicted land-use chang-
es for 2025 (Fig. 7). This map indicates the potential
changes which may occur for six land-use classes, built-
up areas, agricultural landscapes and vegetation, man-
grove forests, water surface, dry lands, and rocky lands
in 2025.

Quantification of 2025 land use/cover changes

According to the projection results, the built-up area in
2025 will increase about 1100 ha (Table 4). Built-up
areas will mainly be expanded to the dry lands (about
1076 ha). The area of mangrove forests will increase by
2025 which also occurs on the dry lands. Considering
the expansion of built-up areas and mangroves in bare
lands, the extent of this land-cover class will decrease
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Fig. 6 Simulated land use/cover of 2016

about 2000 ha in 2025. On the other hand, the area of
vegetation, non-forest areas, will be reduced due to
converting to bare lands. Rocky lands will experience
no changes in their extent in 2025 compared with their
current area. It is necessary to note that these changes are
predicted based on the assumption that current pattern of
land-use changes and human activities/development
will continue to occur in Qeshm Island.

Table 3 Kappa Index of Agreement indicates the validity of
simulated map of land-cover change for 2016

Category Kappa Index Correct simulated
of Agreement changes (ha)
Water 0.93 62.28
Mangrove 0.73 133.65
Vegetation 0.19 100.26
Built up 0.68 117.99
Bare land 0.76 1183.68
Rocky land 0.99 5.01
Overall Kappa 0.80 1602.86

Discussion

Multiple drivers including socio-economic and biophys-
ical factors have been increasing LULC change
(Lambin et al. 2001). This in turn has resulted in many
changes in ecosystem processes and functions, and bio-
diversity across different parts of the world, threatening
the pivotal components of natural capital such as vege-
tation (Behera et al. 2012). In this situation, land use/
land cover change modeling is considered to be an
inevitable process in order to better comprehend land
dynamics (Hyandye and Martz 2017) and predict the
future state and spatial distribution of LULC (D. Behera
et al. 2012). Among a wide range of methods proposed
for predicting land-cover changes (Katana et al. 2013),
use of the combined modeling method for simulating
land cover changes has always had more substantial
outcomes than using any of these methods separately
(Bununu 2017; Dou et al. 2019). In this study, the
benefits of each of the three CA, ANN, and MC applied
methods through using a hybrid model enabled us to
model and predict the complex behavior of spatiotem-
poral phenomena such as land cover changes. Based on

@ Springer



303 Page 12 0f 17

Environ Monit Assess (2020) 192: 303

Land changes prediction 2025

Il water Mangrove [l Vegetation [ Built up [ Bare land [l Rocky land

Fig. 7 Predicted land use/cover of 2025

what can be inferred from the results of this study,
human population increase and economic development
on one hand and climate changes on the other hand are
the main factors driving the process of land cover
change in the Qeshm Island. As the region’s population
grows, the development of ports, commercial markets,

and industrial areas increase in the region.
As argued by previous studies, land change modeling

does not only have the capability for analyzing and
predicting spatial and temporal changes occurring

within the landscape but it can also be used as a decision
support tool for enabling planners and policy-makers to
make more efficient and sustainable decisions (Flores-
Casas and Ortega-Huerta 2019; Paegelow et al. 2013).
The findings of land change modeling in this study
indicate that the extent of built-up areas has expanded
significantly in the last two decades. According to
Fig. 4, the extent of the built-up areas has approximately
doubled from 1996 to 2016, with an increase of about
1700 ha during these years. Further exploration of land

Table 4 Quantification of potential land cover changes in Qeshm Island from 2016 to 2025

Category Water Mangrove Vegetation Built up Bare land Rocky land Total 2025
Water 30,043 3 0 546 0 30,599
Mangrove 273 7052 1 0 1202 0 8529
Vegetation 0 0 983 65 815 0 1865
Built up 23 0 54 3604 1076 0 4818
Bare land 507 38 1017 0 144,771 0 146,334
Rocky land 0 0 0 0 0 3754 3754
Total 2016 30,847 7093 2071 3735 148,412 3754 544,961
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cover maps extracted from the Landsat images re-
veals a significant increase in development of ports
and residential patches in the coastal areas of the
region, indicating a high growth rate in urbanization
and development of economic infrastructure in this
area in the future. Our prediction results for the year
2025 also manifest that urban areas and ports will
continue to expand, as the region will experience
larger built-up patches in 2025.

Global climate change occurring in recent decades has
affected land cover in the Qeshm Island similar to other
parts of the world (Jagarnath et al. 2019). Based on the
results of this study, vegetation cover, agricultural lands,
gardens, and pastures have decreased dramatically in the
last two decades (1996-2016). Examining the land cov-
er maps reveals that the extent of vegetation areas re-
duced around 3000 ha during these years, most of which
has been converted to barren lands. Moreover, other
factors including development of industrial and com-
mercial activities, coupled with climate change and
water shortages, have led local people to leave their
agricultural lands and join industrial, commercial, and
service-based activities. Water shortages and decrease in
land quality caused by climate variability through the
change in rainfall pattern and distribution affect pastoral
and agricultural production levels (Nkya et al. 2017). As
a result, the land abandonment phenomenon may occur
due to several of these natural and social factors includ-
ing human migration (Flores-Casas and Ortega-Huerta
2019). The combination of all of these factors has
played an important role in decreasing the extent of
vegetation cover and agricultural areas, and their con-
version to barren lands in the study area. As the model-
ing output generated in this study predicted, vegetation
and agriculture areas will continue to decrease in 2025.
This finding can help inform land use planners to effec-
tively allocate the land to associated industrial activities
in the region in such a way as to protect the remaining
vegetation areas. As recommended by previous studies,
urban development should be pursued in line with gov-
emmental conservation policies and urban planning at
the regional level (Zhai et al. 2020).

It has been recognized that tidal forests including man-
groves are highly productive ecosystems providing a
wide range of ecosystem services and carbon sequestra-
tion (Costanza et al. 2014). However, there is a growing
evidence revealing that mangrove forests are being con-
verted and diminished across the world (Richards and
Friess 2015). Mangrove forests on the shores of Qeshm

Island have also been influenced by climate change and
human activities in some parts of the Island. These
forests did not experience any sensible change from
1996 to 2006. However, their extent increased notice-
ably from 2006 to 2016. One reason for this increase
could be the implication of environmental protection
policies in the Qeshm Island during this time period,
which has enabled conservation authorities to safeguard
these forests from the impacts of ongoing infrastructure
development. According to the prediction model pro-
posed here, it is expected that the mangroves experience
further growth in 2025. However, the demand for agri-
cultural expansion and urban coastal development may
make mangrove protection challenging in the region
(Hauser et al. 2017; Richards and Friess 2015). Al-
though policies and regulations have resulted in stabili-
zation of mangrove forest cover in previous decades,
concerns for decreasing the extent of these forests and
fragmentation exists due to a growing rate of human
disturbance and sea level rise caused by climate change
(Nguyen et al. 2013). As stated by previous studies,
urban expansion along with associated commercial
and industrial developments are complicated phenome-
na and can be impacted by numerous factors with dif-
ferent levels of uncertainties (Ye et al. 2015). Therefore,
the influence of factors such as policies and regulations
on the protection of mangrove forests needs to be un-
derstood under multiple future scenarios (Hauser et al.
2017).

This study used the capability of these three methods
for simulating multiple land covers in a complex system
(Memarian et al. 2012; Hyandye and Martz 2017).
Examining different studies shows that hybrid models,
with the combination of at least two modeling methods,
have been widely used when modeling land use/land
cover change in recent decades (Bununu 2017; Wu et al.
2019). This is because, these methods have various
capabilities and can complement their beneficial aspects
when combined together, which can eventually lead to a
more efficient simulation of land cover changes for a
given region (Du et al. 2018; Zhai et al. 2020). The
limitation of using a single modeling approach in the
studies conducted in the last two decades has hindered
achievement of appropriate results with acceptable ac-
curacy (Mitsova et al. 2011; Kazemzadeh-Zow et al.
2017). By developing various software environments
in the recent decade, many studies have attempted to
combine different modeling approaches when simulat-
ing land cover changes (Yang et al. 2008, 2012;
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Mozumder and Tripathi 2014). Among the various
methods, the CA modeling method has mostly been
used in combination with other methods due to its
capability to model the variation of spatiotemporal phe-
nomena, particularly land cover changes (Basse et al.
2014; Ke et al. 2017; Feng and Tong 2018; Feng et al.
2018; Wu et al. 2019). Other methods which have
usually been combined with CA include Markov chains,
logistic regression, ant colony optimization, agent-based
modeling, artificial neural networks, and multi-criteria
decision-making (Jokar et al. 2013; Yang et al. 2012; Li
et al. 2016a; Zhai et al. 2020). In this study, the combi-
nation of CA, ANN, and MC methods did not only
facilitate the overall modeling process by separating
different parts of simulation but it also allowed us to
present more appropriate outputs with a higher level of
accuracy (with a Kappa coefficient of 0.8).

Although the proposed model has achieved appropri-
ate simulation performance, the use of satellite images
and predictive models, despite their substantial benefits,
have some limitations as well. One of the issues that
studies with the prediction approach are always faced
with is the acceptable level of accuracy (Wu et al. 2019).
Particularity, with regard to the prediction of land use
and land cover change, the degree of accuracy can vary
according to the type of land cover classes
(Kazemzadeh-Zow et al. 2017). For example, consider
the extent at which the model can correctly predict the
change occurred in built-up areas are much higher than
other land cover types such as vegetation. In addition, in
coastal areas due to tidal variations, maps drawn from
medium-resolution satellite images are associated with
uncertainty, and hence, the accuracy of the output gen-
erated through the image classification of these areas is
less than that of non-coastal areas. Moreover, this study
did not include urban planning and conservation poli-
cies into the modeling process of land-use change sim-
ulation, which can be conducted as a future research
study (Zhai et al. 2020).

Conclusion

Following the necessity of improved understanding
through modeling and predicting land dynamics at the
different spatial scales (Geoghegan et al. 2001; Hyandye
and Martz 2017), this study attempted to address land-
use change phenomenon to better understand the asso-
ciated causes and consequences, and examine land-use

@ Springer

changes in the future. This study proposed a new frame-
work that integrated three modeling approaches of cel-
lular automata, Markov chains, and artificial neural
networks, to simulate land-use changes in Qeshm Island
under developing natural and human processes.

The findings of this study can be used to better
understand past trends and project scenarios in
LULC of the study region (Paegelow et al. 2013).
Identifying and predicting land cover change can be
used to improve land-use planning and land man-
agement of the region by enhancing planners’ un-
derstanding of the complex pattern of land change in
the landscape. In the next step, land-use planning
can help with climate change mitigation and adap-
tation policies in order to achieve more resilient
spatial planning (Jagarnath et al. 2019).

The findings of this study reveal how land use/land
cover in Qeshm Island will be arranged in 2025 based
on the past and present LULC change. Similar to previ-
ous studies (e.g., Canute and Lawrence 2017; Hyandye
and Martz 2017), historical land-use changes were used
as a basis for exploring driving factors contributing to
LULC changes and for simulating future LULC chang-
es. Examining the changes which have occurred in the
study area from 1996 to 2016, as well as the projected
changes for 2025 in particular, highlight the significant
increase in the built-up areas and the dramatic decrease
in vegetation cover. Urban expansion in the Qeshm
Island is caused by population growth on one hand
and economic development on the other hand during
recent decades. Therefore, built-up areas are expected to
increase in the future as predicted by the model. Unlike
the built-up, vegetation cover has experienced a dramat-
ic decrease from 1996 to 2016 (a total area of 3000 ha).
Although it has mainly been caused by climate change,
droughts and water shortages, the role of changing the
local economy from agricultural-based activities to
commercial developments cannot be ignored. Man-
grove forests, located along the coast of the Island, are
threatened by both climate change and human activities,
which need particular attention of planners and policy-
makers regarding the effective protection of these
unique habitats at local scales. Overall, the simulated
2025 LULC data presented here can be used as critical
input for the development of management plans for
various uses such as agriculture and potential food pro-
duction, water balance analysis, urban planning, and
conservation planning of protected lands (Hyandye
and Martz 2017).
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