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Abstract Hydrodynamic modelling is a powerful tool
to gain understanding of river conditions. However, as
widely known, models vary in terms of how they re-
spond to changes and uncertainty in their input param-
eters. A hydrodynamic river model (MIKE HYDRO
River) was developed and calibrated for a flood-prone
tidal river located in South East Queensland, Australia.
The model was calibrated using Manning’s roughness
coefficient for the normal dry and flood periods. The
model performance was assessed by comparing ob-
served and simulated water level, and estimating perfor-
mance indices. Results indicated a satisfactory agree-
ment between the observed and simulated results. The
hydrodynamic modelling results revealed that the cali-
brated Manning’s roughness coefficient ranged between
0.011 and 0.013. The impacts of tidal variation at the
river mouth and the river discharge from upstream are
the major driving force for the hydrodynamic process.
To investigate the impacts of the boundary conditions, a
new sensitivity analysis approach, based on adding sto-
chastic terms (random noise) to the time series of bound-
ary conditions, was conducted. The main purpose of
such new sensitivity analysis was to impose changes in
magnitude and time of boundary conditions randomly,

which is more similar to the real and natural water level
variations compared to impose constant changes of wa-
ter level. In this new approach, the possible number of
variations in simulated results was separately evaluated
for both downstream and upstream boundaries under
5%, 10%, and 15% perturbation. The sensitivity analy-
sis results revealed that in the river under study, the
middle parts of the river were shown to be more sensi-
tive to downstream boundary condition as maximum
water level variations can reach 8%, 12%, and 15%
under 5%, 10%, and 15% changes in the downstream
boundary, respectively. The outcomes of the present
paper will benefit future modelling efforts through pro-
vision of a robust tool to enable prediction of water
levels at ungauged points of the river under various
scenarios of flooding and climate change for the purpose
of city planning and decision-making.

Keywords River model . MIKEHYDRO .Manning’s
roughness coefficient . Randomnoise . Boundary
condition

Introduction

Floods are one of the most frequent natural hazards and
have led to human losses, large economic losses, the
destruction of fertile land, and damages to properties
and infrastructure (Douben 2006; Mahmood et al.
2019). Among all natural disasters occurring in Austra-
lia, flooding causes the most damage. The coastal re-
gions of south eastern Queensland and northern New
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SouthWales (where important urban centres, such as the
Gold Coast and Brisbane, are located) are the most
flood-prone areas, yet are also the regions with the
highest population growth in the country (Abbs et al.
2007; Brunton et al. 2018). During the last 120 years,
more than 40 cyclones have hit the Gold Coast City
(Mirfenderesk 2009), bringing high intensity rainfall,
causing floods, damage, and destruction. The Nerang
River is a tidal river encountering many flooding events,
storm surges, and flood inundations GCCC (Gold Coast
City Council), 2006. In order to minimize the losses of
flooding events and to plan flood control operations,
river hydrodynamic modelling is essential. The accurate
simulation of river flow is an important task in river
modelling since open channel flow is usually turbulent
(Wu et al. 2000; Vidal et al. 2005). Additionally, sea
level variations due to climate change impacts can poten-
tially affect the hydraulic conditions, storm surges, and
extreme flow events along the tidal limit of the rivers
(Islam et al. 2018). Therefore, in a tidal river, the devel-
opment of a hydrodynamic river model is significantly
helpful to address the probable damages of water level
variations and flooding events as a result of sea level rise/
variations under climate change (Islam et al. 2018).

Hydrodynamic models are mathematical models that
provide a physical basis for simulating a wide range of
flow situations and sediment transport. These models
simulate water movement by solving governing equa-
tions, which are formulated based on the laws of physics
(Teng et al. 2017). St.Venant equations are applied to
calculate the space-time variation of water level and flow
in rivers (Strelkoff 1970; Tayfur et al. 1993; Wang et al.
2000; Kim et al. 2019). Channel roughness is a signifi-
cant parameter for calibrating and validating hydrody-
namic models, which plays a crucial role in the modelling
of natural rivers (Ardıçlıoğlu & Kuriqi 2019). Channel
roughness represents the amount of frictional resistance
water experiences when passing over channel features,
which can be accounted by the Manning’s roughness
coefficient. This coefficient is a highly variable parame-
ter, and its magnitude depends on particle size, vegetation
cover, channel alignment, channel irregularities,
meandering, and other river characteristics (Vijay et al.
2007; Parhi et al. 2012). Accurate estimation of the
channel roughness coefficient is vital to minimize model-
ling and simulation errors. As a very sensitive parameter,
it is common to calibrate hydrodynamic models for this
coefficient (Boulomytis et al. 2017), which is mostly
calibrated using observed water levels (Pappenberger

et al. 2005;Wang et al. 2010). Considering the significant
sensitivity of this parameter, it has been widely selected
as a calibration parameter, and manually calibrated in
hydrodynamic modelling approaches (Panda et al.
2010; Islam et al. 2018; Kumar 2018). Over the manual
calibration, the simulation and observed data are com-
pared for different values of channel roughness until the
satisfactory match between model response and historical
data is obtained (Panda et al. 2010). Besides the manual
calibration, automatic calibration is another technique,
which is defined as parameter adjustment based on a
specified search scheme optimizing numerical measures
of goodness of fit of the model results to the data (Dung
et al. 2011). Automatic calibration procedures are mainly
based on optimization tools, such as evolutionary algo-
rithms (e.g., genetic algorithm, differential evolution, and
Shuffled complex evolution (Jahandideh-Tehrani et al.
2019)) and the classical gradient-based approaches (e.g.
the Gauss-Levenberg-Marquardt method) (Fabio et al.
2010). Despite the extensive applications of automatic
calibration in hydrological models, these techniques have
been limitedly employed in hydrodynamic models due to
lack of required data (e.g. discharge data over flooding
events) and high computational demand (Fabio et al.
2010). Therefore, manual calibration is normally men-
tioned as the standard for hydrodynamic modellings
(Dung et al. 2011).

In addition to the channel roughness, the boundary
conditions have significant impacts on the simulation
results. Basically, model inputs (e.g. boundary condi-
tions and initial conditions) are considered as the main
sources of uncertainty, which leads to differences of a
model outcome with reality (Warmink et al. 2011). In
order to quantify and address the uncertainty of a model,
a sensitivity analysis should be implemented to identify
the sensitivity of different river locations to model input
uncertainties. In order to address the uncertainty, the
response of a model performance to a range of variations
in model inputs should be investigated. Therefore,
boundary conditions should be studied for the sake of
evaluating the sensitivity of the model. To bemore exact,
a sensitivity analysis is essential in order to explore and
quantify the influence of possible changes in boundary
conditions on model output and system performance
indices (Hall et al. 2009; Wang & Solomatine 2019). As
a result, analysts gain a better idea of the sensitivity of the
model to input parameters, and thus can find out how the
outputs depend on the certain inputs (Whitehead &
Young 1979; Tsai et al. 2017; Xu et al. 2019).
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Many studies have performed sensitivity analysis
using regular perturbations of input parameters, and by
making changes in input data by a given percentage
(Norton & Bradford 2009; Sun et al. 2012; De Paiva
et al. 2013; Sarvia et al. 2017; Bruce et al. 2018; Islam
et al. 2018). In this way, a constant perturbation is
imposed on input data; however, constant perturbation
of input parameters is not the indication of the real
variability of input parameters in the real environment.
In order to do a quantitative measurement which indi-
cates the real variability of a hydrological times series,
several approaches have been developed, including the
‘partial derivatives’ method (Dimopoulos et al. 1999),
the ‘weights’ method (Garson 1991), the ‘perturbation’
method (Scardi & Harding 1999), and the ‘profile’
method (Lek et al. 1996). The perturbation method,
which is one of the most widely used, is based on
perturbation of inputs and reporting the corresponding
changes in the model outputs. This perturbation is im-
posed by adding random noise to specific input data of a
model (Bai et al. 2011). This random noise is called the
stochastic terms, which consists of random variables.
Bai et al. (2011) applied this sensitivity analysis ap-
proach to transform the deterministic model variable
into stochastic variables and to evaluate the parameter
uncertainties of a water quality model. They concluded
that model input shows more sensitivity than model
parameters.

Among the literature review in the realm of water
resources, sensitivity analysis based on using stochastic
terms for representing the sensitivity of input boundary
conditions is less common (Moradkhani et al. 2005;
Herrnegger et al. 2015). Additionally, no studies have
applied this sensitivity analysis method to any hydrody-
namic river model. This sensitivity analysis approach is
applied in our hydrodynamic model by combining sto-
chastic terms with input boundary conditions. The ran-
domness of changes in magnitude and time is the main
feature of this method (Radwan et al. 2004), and what
makes this approach distinct. The main advantage of
this approach lies in its ability to create a real condition
in a river model as variability of boundary conditions is
random in a real river rather than being constant.

Given the numerous occurrences of flooding events
in the Nerang River catchment, hydrodynamic model-
ling of this river flow is necessary, so discharges are
better predicted at ungauged points of the river, and
flooding hazards can be minimized, under flooding
conditions. The current paper presents the 1D

hydrodynamic modelling setup of the Nerang River
along its tidal limit using MIKE HYDRO River soft-
ware. Themodelling setup consisted of three main steps:
(1) model calibration; (2) model validation; and (3)
sensitivity analysis of boundary conditions. During the
first step, input data, initial conditions, boundary condi-
tions, adjusted cross sections, and time steps were de-
fined for the model. The model was calibrated using
hourly water level data over the year 2012. The param-
eter Manning’s roughness coefficient was chosen for
calibration. In order to evaluate model performance,
three performance indices were used to compare ob-
served and simulated results. In order to investigate the
impacts of variations of boundary conditions, a new
application of sensitivity analysis was carried out by
adding stochastic terms (random noise) to water level
time series of each boundary condition separately. The
aim of adding random values to water level time series
was to impose random changes in terms of time and
magnitude. While many studies conducted sensitivity
analysis based on imposing constant and specific per-
centage of changes to data time series of hydrodynamic
models, the current research focused on applying the
new sensitivity analysis approach to the boundary con-
ditions of hydrodynamic river models as this new ap-
proach can potentially generate more real and natural
probable variations in water level. Six scenarios were
defined for sensitivity analysis by adding stochastic
terms to the water level time series of each boundary
condition. The six assumed scenarios were defined ac-
cording to the changes in the downstream boundary of
(1) 5%, (2) 10%, and (3) 15%; and the upstream bound-
ary of (4) 5%, (5) 10%, and (6) 15%. The amounts of
possible variations were evaluated by comparing the
water level conditions before and after imposing the
random noise changes. This comparison was made in
two steps. First, the sensitivity analysis performance
indices were assessed by comparing the simulated re-
sults of six scenarios with the observed water level data
at a gauged point of the river. The second step was to
compare the distributions of water level changes under
the six scenarios, and at three distinct locations along the
Nerang River.

Study domain

TheNerangRiver catchment is the largest catchment in the
Gold Coast region, Queensland, Australia. It lies between
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latitude 28°14ˈS to 27°58ˈS and longitude 153°15ˈE to
153°25ˈE. The Nerang River, located in the centre of the
Gold Coast region, is approximately 62 km long and flows
from the McPherson Range and Springbrook Plateau and
reaches its mouth in the Gold Coast Broadwater at South-
port. The Nerang River catchment covers an area of
493.3 km2 (Fig. 1). This river also consists of several
waterways, and the total length of the waterways network
is 928 km where the Nerang River is the main waterway
GCCC (Gold Coast City Council), 2011. The topography
of the catchment changes from steep hills andmountainous
terrain in the upper catchment to wide, flat floodplains at
the river mouth and canal areas. Catchment elevations
vary from 1150m in McPherson Ranges to less than 2m
in lower reaches of the river GCCC (Gold Coast City
Council), 2015. The average mean monthly flow of the
river at Glenhurst gauging site (Fig. 1) is 0.01 m3 per
month GCCC (Gold Coast City Council), 2007. Two
dams are situated along the Nerang River – the Hinze
Dam and the Little NerangDam –which supply drinking
water to the Gold Coast dwellers. The Nerang River
catchment can be divided into three sub-catchments:
the upper, middle, and lower reaches [38]. These three
areas are distinguished by specific topography and land
use. The lower Nerang River catchment is characterized
by increasing urban development. This lower reach is
surrounded by many residential buildings, and industrial
and tourist centres. This populated area has been always
in danger of probable flooding events. For instance, a
peak flood of almost 1899 m3/s was recorded in 1974
over the observation period 1968–2018. The highest
recorded water level corresponding to this event was
10.22 m BOM (Bureau of Meteorology), 2017.

The present paper focuses on the lower Nerang River
catchment, which is also the tidal limit of this river, and
the most susceptible region to flooding. To define the
upstream and downstream river conditions, two monitor-
ing sites were selected, the Glenhurst site (22.7 km away
from the river mouth) and the Gold Coast Seaway (at the
river mouth) as marked in Fig. 1. The average monthly
discharge andwater level at the Glenhurst site over 1968–
2018 is indicated in Fig. 2. As can be seen, the Nerang
River has high discharge and water level from January to
June (wet season), while low rate of discharge and water
level is observed from July to December (dry season).
Additionally, the highest average discharge (almost 6m3/
s) and water level (almost 0.7 m) occurred in February,
whereas September recorded the lowest rate of both
discharge (0.3 m3/s) and water level (0.4 m).

In the present paper, the lower Nerang River, domi-
nated by tide motion from the tidal limit to the river
mouth, has been selected for study. Hourly water level
data at the Glenhurst monitoring site (22.7 km away
from the river mouth) and hourly tide data at the Gold
Coast Seaway for the year 2012 were collected from
The Queensland Government Water Monitoring Infor-
mation Portal (WMIP) and the Bureau of Meteorology
(BOM) and were used as the upstream and downstream
boundary conditions, respectively, in the hydrodynamic
model (Fig. 1).

In order to calibrate and validate the model, unregu-
lated water level records of the Carrara Alert Station
(14.7 km away from mouth river, Fig. 1) and hourly
water level records of the Evandale Alert station (3.8 km
away from mouth river, Fig. 1) have been obtained,
respectively, from the Department of Environment and
Resources Management (DERM) and the Bureau of
Meteorology (BOM) of the Australian Government for
Queensland (Fig. 1). The Evandale Alert station has
limited data (only a five-day period) in the year 2012,
and the Carrara Alert Station has data recorded over the
entire year 2012. Hydrodynamic river models need river
cross section data, in which the topographic elevations
were obtained from DEM data. For Australian rivers,
the Australian Government Geoscience Australia pro-
vides this data. The DEM of the study domain with a
grid size of 5 m was utilized to depict the topography
level along the Nerang River.

Hydrodynamic river modelling using MIKE
HYDRO

Hydrodynamic models can potentially perform river
flow simulation at one dimensional (1D) or two/three
dimensional (2D/3D) levels (Teng et al. 2017). Each of
the statedmodels is associated with both advantages and
disadvantages as shown in Table 1. The decision on
selecting the applied dimension in hydrodynamic model
depends on the case study, the scale, spatial resolution,
required output, and available field data (model input
data) (Leandro et al. 2009). Despite the development of
2D/3D models, 1D hydrodynamic models are still sig-
nificantly useful due to their accuracy in describing the
hydraulic behaviour of natural streams and rivers as well
as requirement of low computation time and relatively
scare field data (Chen & Liu, 2017). However, as can be
seen in Table 1, 2D/3D models are more capable of
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representing detailed river bathymetry and topography
and simulating the hydrodynamic conditions in complex
river systems (Chen & Liu, 2017). On the other hand,
Bates (2004) confirmed that if high-resolution topo-
graphic data is used, 1D models are able to simulate
river flow and flood propagation accurately in larger
stream domains and over long periods of time.
Merwade et al. (2008) discussed that 2D/3D hydrody-
namic modelling approaches are efficient for flood in-
undation mapping. Regarding that the purpose of the
current research is to calibrate and validate a river hy-
drodynamic model for evaluating the water level at
ungauged points of the river rather than flood inundation
analysis, the 1D modelling approach has been selected.
Additionally, concerning the low computation time,
limited available input data, and non-complex river
system, the 1D approach has been a preferred tool.

The hydrodynamic model chosen for the current study
was the 1D MIKE HYDRO model (a new proposed

version of MIKE 11), which is able to simulate unsteady
flow in rivers and floodplains in shallow water types
(DHI 2016). MIKE HYDRO River contains different
modules, including HD (hydrodynamic), which is used
for computing unsteady flow, discharge, and water level
in rivers and floodplains in shallow water types DHI
(Danish Hydraulic Institute), 2016. Rahman et al.
(2011) demonstrated that MIKE HD model requires
smaller run times, and the stability of this model is less
sensitive to specified initial conditions compared to other
hydraulic models (e.g. HEC-RAS). Therefore, regarding
the satisfactory performance in hydrodynamic modelling
approach and capability to simulate the hydrodynamic
conditions of a tidal river with low data requirement,
more model stability, and low computation time, MIKE
HD has been selected for the current research.

The HD module of the MIKE HYDRO model calcu-
lates flow based on the following assumptions (DHI
2016):

Fig. 1 The Nerang River, its location in Australia and Queensland, and water level monitoring sites used in this study

Fig. 2 The average monthly discharge and water level at the Glenhurst site over 1968–2018
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& The flow is one dimension, which means that veloc-
ity and depth only change in the longitudinal direc-
tion of the channel.

& Water is homogenous; the water density variation is
negligible.

& The bottom slope of the channel is small
& The wavelengths are large in comparison with the

water depth; thus, the flow have a direction parallel
to the bottom.

TheMIKEHYDROmodel is a fully dynamic model,
which solves the St. Venant governing equation using a
one-dimensional, implicit, finite difference scheme, as
follows:

∂Q
∂x

þ ∂A
∂t

¼ q ð1Þ

∂Q
∂t

þ ∂
∂x

α
Q2

A

� �
þ gA

∂h
∂x

þ n2g Qj j
AR

4=3
¼ 0 ð2Þ

where Q = discharge (m3/s); A = cross section flow area
(m2); q = lateral inflow (m2/s); h =water level above a
reference datum (m); x = downstream direction (m); t =
time (s); n =Manning resistance coefficient (s/m1/3);
R = hydraulic or resistance radius (m); g = gravity accel-
eration (m2/s); and α =momentum distribution coeffi-
cient (DHI 2016).

Sensitivity analysis of boundary conditions

Sensitivity analysis is of great importance to evaluate and
quantify the uncertainties of river models, including
boundary conditions uncertainties. The response of the
model performance to a range of variations in boundary

conditions and sensitivity of different locations (along the
river) to these changes should be analysed to address the
uncertainties. In the present study, the key input variables
are the boundary conditions at the Glenhurst site (up-
stream boundary) and the Gold Coast Seaway (down-
stream boundary) (Fig. 1). Considering the highly sea-
sonal variations, and nonlinear and noise features of the
hydrological time series, the sensitivity analysis was in-
vestigated based on adding random noise to input bound-
ary conditions of the hydrodynamic model. This additive
stochastic term was defined by randomness changes in
the time and magnitude of the water level time series for
both downstream and upstream boundaries separately:

X tð Þ ¼ x tð Þ þ ε tð Þ ð3Þ

where X(t) = changed water level data of each boundary
condition at the t th time step (m); x(t) = observed water
level data of each boundary condition at the t th time step
(m); and ε(t) = generated random numbers at the t th time
step (m). Matlab software has been used for generating
random numbers which are defined as normalized values
(between 0 and 1) that are drawn from a uniform distri-
bution. To generate the random numbers within a speci-
fied range, it was essential to define the lower and upper
limits. These limits have been defined according to the
three different percentages of changes, which has applied
for each boundary condition, 5%, 10%, and 15%. There-
fore, six scenarios of input data perturbation could be
obtained by imposing the three percentages of changes to
both the upstream and downstream conditions, as can be
seen in Table 2. For scenarios 1–3, the downstream
boundary was perturbed under 5%, 10%, and 15%, re-
spectively; scenarios 4–6 indicate the perturbation of the
upstream boundary under 5%, 10%, and 15%,
respectively.

Table 1 Comparison of 1D, 2D, and 3D modelling approach

Modelling approach Advantages Disadvantages

One dimensional (1D) - Low computation time
- Low data requirement
- Low cost
- Accurate in modelling the large and non-complex

natural streams and rivers

- Poor efficiency in complex river system and
topography

- Poor efficiency in complex artificial channels
- Failure for provision of detailed information

Two/three dimensional
(2D)/(3D)

- Accurate bathymetric representation
- Accurate flood inundation mapping
- More efficiency in artificial channel modelling
- Provision of outputs with higher temporal and spatial

resolution

- High computation time
- High data requirement
- Time-consuming setup
- High cost
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Downstream perturbation

In order to perform the perturbation of the downstream
boundary conditions, the maximum tide range for each
month (in the year 2012) was obtained from the ob-
served tide data (Fig. 3).

Next, the maximum tide range of each month was
perturbed by the relevant percentage (5%, 10%, and
15%) in order to define a limit for generating random
numbers. The lower and upper limit for the generation
of random numbers under 5%, 10%, and 15% changes
in the downstream boundary are defined below, respec-
tively (i = 0.05, 0.10, 0.15; j = 1, 2, …, 12):

εi; j
�� ��≤Ai:ηmax jð Þ ð4Þ

in which Ai = percentage of perturbation; εi,j = generated
random value for Ai perturbation over the j th month
(m); and ηmax (j) =maximum tide range for j th month
(m). The random numbers were generated in the defined
range (upper and lower limits) using Matlab, and then
added to the observed water level data to produce the
new downstream boundary conditions for the sensitivity
analysis, the hydrodynamic.

Upstream perturbation

In terms of perturbation of the upstream boundary con-
dition, the two peak floods of the year 2012 were select-
ed to generate random numbers and impose changes in
the upstream boundary conditions (Fig. 4). Flood Event
1 (24/1/2012 3:00 AM – 26/1/2012 22:00 PM) has the
maximum water level of 3.623 m; and Flood Event 2
(17/1/2012 1:00 AM – 19/1/2012 12:00 AM) has the
maximum water level of 1.183 m.

The lower and upper limits for generating random
numbers inMatlab under 5%, 10%, and 15% changes in
the upstream boundary are defined as below, respective-
ly (k = 1, 2):

εi;k
�� ��≤Ai:ηPF kð Þ ð5Þ

where εi,k = generated random values for the Ai pertur-
bation over the k th flood event (m); and ηPF (k) = peak
value of the k th flood event (m). The random numbers
were producedwithin the defined range inMatlab. Next,
these stochastic numbers were added to the observed
water level over the flood event period to provide the
new upstream boundary conditions for the sensitivity
analysis.

River model results

MIKE HYDRO River model setup

Regarding model setup, the river network had to be
initially digitized using a topographic base map and
DEM data. For modelling process, the flow direction
is defined positive, and river type is taken regular. Next,
the cross sections data were extracted along the river in
order to analyse the results at different points of the river
network. The cross sections are generated manually,
thus, the distance between two successive cross sections
is irregular. The minimum defined distance between two
successive cross sections is 47 m and the maximum
distance is 1000 m. During the next stage, the initial
conditions of the river had to be set up by defining the
simulation period (from 1/1/2012 14:00 to 31/12/2012
0:00), time steps (1 min), and initial water level at the
beginning of the simulation period (Carrara water lev-
el = 0.53 m). The most important step of 1D HD model
setup is the definition of accurate boundary conditions,
including both upstream and downstream conditions. In
the present case study, hourly water level records of the
Glenhurst monitoring site in 2012 (Fig. 5) were used as
the time varying upstream open boundary condition,
while hourly observed Gold Coast Seaway tides over
the same year were defined as the time varying down-
stream open boundary condition. The observed tide
values ranged from − 0.933 m to 1.32 m over the year
2012, and the mean water level was 0.116 m during the
same period.

Table 2 The sensitivity analysis scenarios for changing input of
perturbed each boundary condition

Scenario
number

Changes in the downstream
boundary conditions

Changes in the
upstream boundary
conditions

1 5%

2 10%

3 15%

4 5%

5 10%

6 15%
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Fig. 3 Maximum tide range of each month in the year 2012

Fig. 4 Hourly water level of the upstream boundary (Glenhurst station) over (a) Flood Event 1 and (b) Flood Event 2
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After setting up the mode, the next step was model
calibration which is a process of varying the friction
coefficient values to obtain the optimum levels of agree-
ment between observations and model predictions. In
the present paper, the model was calibrated using the
hourly observed water levels from Carrara Alert site
(1/1/2012–8/4/2012) (Fig. 6). Moreover, Manning’s co-
efficient friction and the hourly observed water level
records of the Evandale Alert station (over five days)
(Fig. 7) were applied to validate the model. The avail-
able data for model calibration and validation are the
water level time series of two gauging sites, as stated
earlier.

MIKE HYDRO River model calibration

The hydrodynamic model can be calibrated using Man-
ning’s roughness. The Nerang River catchment is
formed by the erosion of creek beds and subsequent
depositing of sediment over heavy rainfall (GCCC
2011). The Nerang estuary has poor geomorphic value,
and substantial area has been reclaimed. The lower
reaches of the Nerang River have ocean origin sediment,
and the riverbed is generally formed by non-cohesive
sand material, with the mean particle size 0.29 mm.
Given that Nerang River estuary is a wave-dominated
delta, this river has low sediment trapping efficiency

Fig. 5 Hourly water level at the Glenhurst Station in 2012 over 1/1/2012 14:00–31/12/2012 14:00

Fig. 6 Hourly water level at Carrara Alert station over 1/1/2012–8/4/2012
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(Adair & Rahman 2003). Initially, the model was sim-
ulated using the default value of Manning’s roughness
coefficient (n = 0.033) in MIKE HYDRO River. During
the calibration process,Manning’s roughness coefficient
was calibrated to a uniform value to derive the best
agreement between the observed and simulated water
levels at the Carrara Alert site (chainage 7.52 × 103 m).
The calibrated Manning’s n values for different cross
sections are presented in Table 3.

The simulated water levels at the Carrara Alert site
were compared to observed records (Fig. 8) for three
periods: (a) 2/1/2012–6/1/2012, (b) 23/1/2012–27/1/
2012, and (c) 24/2/2012–28/2/2012. As can be seen,
the Carrara Alert site appeared to be highly dominated
by tidal influence, and the defined downstream bound-
ary condition has a significant impact on the computed
water levels of the Carrara Alert site. According to Fig.
8, the simulated water levels are higher than those
observed in most periods. This is due to the existence
of canals and small branches reaching the Nerang River
at different locations; these branches and canals have not
been considered in the present research. Currently, lim-
ited available data at reaching points and canals have led

to the existence mangrove canals being eliminated from
the present study, which is the main reason for water
level overestimations. As can be seen in fig. 8(b), the
highest peak flowwas underestimated by approximately
0.3 m. It is worth noting that the number of data con-
taining high flows was significantly lower than medium
to low flow. Consequently, scarce peak water level data
was available model calibration, which led to less effi-
cient performance of the model over extreme events.
Additionally, the measurement sensors of gauging sta-
tions might not measure the water level accurately over
the flooding events. Therefore, such difference between
observed and simulated peak might be also the result of
poor and uncalibrated sensor measurements. However, a
clear overall agreement between observed and simulat-
ed water level can be seen during the low to medium
flow conditions.

In order to analyse and test the model performance,
indices needed to be defined. The performance indices
used in this study are (1) correlation coefficient (R2); (2)
Root Mean Square Error (RMSE); and (3) Nash-
Sutcliffe efficiency coefficient (NSE) (Nash & Sutcliffe
1970).

R2 is defined as shown below:

R2 ¼ ∑n
i¼1 Si−μsð Þ Oi−μoð Þ

N−1ð Þσsσo
ð6Þ

where, N = total number of observations; μs and μo =
average of simulated and observed water level, respec-
tively; Oi = observed water level at the i th hour; and

Fig. 7 Hourly water level at Evandale Alert station over 31/5/2012 1:00–3/6/2012 6:00

Table 3 Manning’s roughness coefficient for the Nerang River
chainage

River chainage (m × 103) Manning’s roughness coefficient (n)

0–7.52 0.013

7.62–22.50 0.011
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Si = simulated water level at the i th hour; and σs and
σo = standard deviation of the simulated and observed
water levels, respectively.

RMSE is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
O ið Þ−S ið Þ
� �2s

ð7Þ

NSE is calculated as below:

NSE ¼ 1−
∑N

i¼1 O ið Þ−S ið Þ
� �2

∑N
i¼1 O ið Þ−μo

� �2 ð8Þ

Table 4 shows the estimated performance indices of
the simulated results at the Carrara site, which confirm
the reliability of the model. Pan et al. (2013) and Cho
et al., (2013) have defined performance ratings for NSE.
Based on their classification, 0.75 < NSE ≤ 1 is rated
very good, 0.65 <NSE ≤ 0.75 is rated good, 0.5 <NSE ≤
0.65 is rated satisfactory, and NSE ≤ 0.5 is rated unsat-
isfactory. According to Table 4, there is a good correla-
tion between simulated and observed water levels as,
typically, R2 values greater than 0.5 are considered
acceptable (Santhi et al. 2001; Van Liew et al. 2003).
NSE is rated as very good, good, and very good for
periods a, b, and c, respectively. Period b refers to a
flooding event, which is why it is classified in a good
range rather than being in a very good range. The perfect
fit for RMSE is zero, therefore, periods a and c with the
0.10 m for RMSE indicate very small disagreement
between the observed and simulated results. In general,
there is a close agreement between observed and simu-
lated water levels, while the mentioned errors are due to
eliminating canals and branches.

MIKE HYDRO River model validation

After the model calibration, the MIKE HYDRO River
model was validate using the hourly water level records
from the Evandale Alert site (chainage 18,552.3m) over
5 days (31/5/2012 1:00 AM-3/6/2012 6:00 AM). Fig-
ure 9 indicates the compared water level values of the
observation and simulation at Evandale Alert station
during the validation period. It is apparent that both
water level values fit very well.

The performance indices of the validation period are
presented in Table 5. Based on the stated performance
rating, R2, RMSE, and NSE are rated in the very good

range. This shows that the calibrated model also per-
forms well during the validation period.

Sensitivity analysis results

In order to have better understanding of the impacts of
the changed boundary conditions on the water level
changes along the river, three points have been selected
to show the sensitivity analysis results and to discuss the
trend of water level changes along the river (Fig. 10).
The distances between these points and upstream are
3.13 km, 14.78 km, and 20.21 km, respectively.

The histogram of water level variations in the three
mentioned points is shown in Figs. 11 and 12 for chang-
ing downstream and upstream boundaries, respectively.
Figure 11 indicates the absolute value of the changes in
water level relative to monthly maximum tide range
under the changes in the downstream boundary over
the year 2012. Figure 12 presents the absolute value of
the changes in water level relative to maximum flooding
event 1 (water level: 3.623 m) over the period of the
stated flood event (24/1/2012 3:00 AM–26/1/2012
22:00 PM).

Figures 11(a), 11(b), and 11(c) present the histogram
of frequency of water level changes for point 1, located
upstream. It can be seen that the percentage of water
level changes reaches 7% under 15% change (scenario
3) in the downstream boundary [Fig. 11(c)], while the
maximum distribution of water level under 5% change
(scenario 1) is 3% [Fig. 11(a)]. This means that the
higher changes in the downstream boundary conditions
affect more water level time series in point 1. Addition-
ally, if imposed downstream water level variations are
5% (scenario 1), 10% (scenario 2), and 15% (scenario
3), [Fig. 11(j), 11(k), and 11(l)], the corresponding water
level variations in point 1 will reach maximum water
level variations of 3%, 5%, and 7%, respectively
[Fig. 11(a), 11(b), and 11(c)].

Similar to point 1, the histogram of point 2 has the
greatest spread under 15% change in the downstream
boundary (scenario 3) [Fig. 11(l)] as the water level
variations reach 15% [Fig. 11(f)], while the 5% changes
in downstream [Fig. 11(j)] lead to maximum variations
of 8% for point 2 [Fig. 12(d)]. At point 2, the water level
varies by 8%, 12%, and 15% [Fig. 11(d), 11(e), and
11(f)] when the downstream boundary is changed by
5%, 10%, and 15%, respectively. According to
Figs. 11(g), 11(h), and 11(i), the same trend can also
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be seen for point 3, as the maximum water level varia-
tion can potentially reach 11%, 14%, and 17% under 5%
[Fig. 11(j)], 10% [Fig. 11(k)], and 15% [Fig. 11(l)]

changes in the downstream boundary, respectively. This
indicates that under the condition of changing tide
levels, point 3 shows much greater water level

Fig. 8 Comparison of observed and simulated hourly water levels at Carrara Alert site over period (a), (b), and (c)
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variations, which is the result of narrow river width at
this point.

Comparing the water level variations of the three
points [Fig. 11(a), 11(d), and 11(g)] with the 5% change
in the downstream boundary (scenario 1) [Fig. 11(j)],
the higher percentages of data (approximately 80%)
showwater level variations between 0% and 1% in point
1 [Fig. 11(a)], while almost 30% of data in point 2
[Fig. 11(d)] and 20% of data in point 3 [Fig. 11(g)] have
water level variations between 0% and 1%. It can be
concluded that variations in the downstream boundary
have minimal impact on upstream and stronger impact
on neighbouring locations.

Figures 12(a), 12(b), and 12(c) indicate the changes
of water level in the upstream boundary conditions
(input data) under 5% (scenario 4), 10% (scenario 5),
and 15% (scenario 6) change over 24/1/2012 3:00 AM–
26/1/2012 22:00 PM period, respectively. Given that
random numbers were applied to generate stochastic
changes in the boundary, one of the bars has zero value
[Fig. 12(c)], which means no data is changing in this
specific range (8%–9%). This occurs due to the small

number of changes over the limited period of the flood
event (68 h). Figures 12(d), 12(e), and 12(f) show the
frequency of changes at point 1 under 5%, 10%, and
15% change, respectively. It can be seen that the max-
imum percentages of water level variations are 3%
[Fig. 12(d)], 7% [Fig. 12(e)], and 10% [Fig. 12(f)] under
5%, 10%, and 15% change of the upstream boundary,
respectively. Similar trends can be identified for points 2
and 3 as well. Therefore, based on the histogram of each
point, it is concluded that there is greater distribution of
the water level variations with the increased changes in
the upstream boundary.

By comparing Figs. 12 (d), 12(g), and 12(j), it
can be understood that at point 1, almost 65% of
data shows water level variation of more than 1%
[Fig. 12(d)] because this point is located near the
changed boundary. In contrast, almost 80% of the
data at points 2 and 3 [Fig. 12(g) and 12(j)] has a
water level variation range of 0%–1% since these
points are located further away from the changed
boundary, and the impact of the boundary becomes
weaker at points 2 and 3. Similar trends can be

Table 4 Performance indices for Carrara Alert site during cali-
bration for the year 2012

Performance indices Period a Period b Period c

R2 (%) 93.17 88.30 97.08

RMSE (m) 0.10 0.27 0.10

NSE 0.87 0.73 0.92

Fig. 9 Comparison of hourly observed and simulated water levels at Evandale Alert site over 31/5/2012 1:00 AM-3/6/2012 6:00 AM

Table 5 Performance indices for Evandale Alert site during cal-
ibration for the year 2012

Performance indices Estimated values

R2 (%) 97.79

RMSE (m) 0.12

NSE 0.90
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seen by comparing Figs. 12(e), 12(h), and 12(k) as
well.

In general, comparing the same changed condi-
tions in both downstream and upstream boundaries
(Figs. 11 and 12), it can be seen that point 1 is more
sensitive to imposed changes in the upstream bound-
ary condition since 10% change of downstream and
upstream boundaries leads to maximum 5%
[Fig. 11(b)] and 7% [Fig. 12(e)] water level varia-
tions, respectively. In contrast, point 2 indicates more
sensitivity to the changes in the downstream bound-
ary, as 10% changes of the both downstream and

upstream boundary conditions create maximum wa-
ter level variations of 12% [Fig. 11(e)] and 3%
[Fig. 12(h)], respectively. Finally, point 3 is more
dominated by changes in tidal conditions (the down-
stream boundary) since maximum water level varia-
tions of 14% [Fig. 11(h)] and 8% [Fig. 12(k)] can be
seen under 10% change in downstream and upstream
boundaries, respectively. Therefore, the middle part
of the river is very sensitive to tidal conditions, and
the variation of tidal level can potentially lead to even
higher water level variations in the middle of the
river.

Fig. 10 Three selected points for spatial the sensitivity analysis

Fig. 11 The frequency of water level variations (%) relative to
monthly maximum tide range under changes in downstream
boundary condition for (a) point 1 under scenario 1, (b) point 1
under scenario 2, (c) point 1 under scenario 3, (d) point 2 under
scenario 1, (e) point 2 under scenario 2, (f) point 2 under scenario

3, (g) point 3 under scenario 1, (h) point 3 under scenario 2, and (i)
point 3 under scenario 3; similar frequencies for changes in the
downstream boundary condition under (j) scenario (k) scenario 2,
and (l) scenario 3
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As stated before, many literatures conduced com-
mon sensitivity analysis of boundary conditions in
1D hydrodynamic models through imposing a con-
stant percentage of changes to the values of boundary
conditions, while such constant variabilities are not
likely in the natural river condition as changes of sea
level and river flow are not following a specific
constant trend (Norton & Bradford 2009; Sun et al.
2012; De Paiva et al. 2013; Sarvia et al. 2017; Bruce
et al. 2018; Islam et al. 2018). Therefore, the current
study proposed a new sensitivity analysis approach,
which provided in depth understanding of changes in
the river hydrodynamic conditions when random wa-
ter level changes occur in sea level (downstream
boundary) and river flow (upstream boundary condi-
tion). The methodology applied in this study and also
results might help policy makers and hydraulic
modellers to set up and calibrate a hydrodynamic
model for water level prediction at ungauged points
of the river as well as quantifying and analysing the
sensitivity of different points of the river to boundary
conditions. Though we acknowledge that the results
are variable at different regions, the introduced meth-
odology to reach that results is general and applicable
worldwide. It is worth remarking that the methodol-
ogy and results of the current study may serve as a

practical reference for hydrodynamic modelling of a
tidal river and efficient sensitivity analysis.

Conclusions

This study addresses calibration, validation, and sensi-
tivity analysis of a 1D model called MIKE HYDRO
River. This model is able to simulate complex and
unsteady river flows. Considering the high records of
flooding events, storm surges, and flood inundations in
South East Queensland, particularly the Gold Coast
City, determination of the hydraulic behaviour of the
lower Nerang River was essential. Additionally, proba-
ble sea level rise/variations can potentially affect the
river flow conditions and flooding events in the studied
tidal river. Thus, identification of such hydraulic behav-
iours at different points of the selected tidal river, par-
ticularly ungauged locations, benefits modellers with an
efficient tool to predict the water level and to address the
potential damages of flood events and storm surges.
Regarding the fact that the lower Nerang River is locat-
ed in an urban estuary, determination of the hydraulic
condition, particularly water level changes, at ungauged
points of this river is crucial to address human losses
over different river conditions. In this study, the

Fig. 12 The frequency of water level variations (%) relative to
Flood Event 1 under changes in the upstream boundary condition
under (a) scenario 4, (b) scenario 5, and (c) scenario 6; similar
frequencies for (c) point 1 under scenario 4, (e) point 1 under

scenario 5, (f) point 1 under scenario 6, (g) point 2 under scenario
4, (h) point 2 under scenario 5, (i) point 2 under scenario 6, (j)
point 3 under scenario 4, (k) point 3 under scenario 5, and (k) point
3 under scenario 6
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hydrodynamic model was evaluated for the lower
Nerang River, Australia, for the purpose of presenting
a practical reference for hydrodynamic modelling and
food prediction as well as water level estimation at
ungauged and sensitive points of the river.

The first purpose of this study was to calibrate and
validate the hydrodynamic river model in order to pre-
dict water levels at ungauged points of the river. Once
calibrated and validated, the model can be used for the
purpose of minimizing the probable damages of floods.
Three performance indices (R2, RMSE, and NSE) were
calculated to assess the model efficiency at Carrara Alert
site and Evandale Alert site for calibration and valida-
tion periods, respectively. Results performance indices
calculations indicated close agreement between the ob-
served and simulated water levels over both calibration
and validation periods.

The second purpose of this study was to evaluate the
sensitivity of the model to the key input boundary
conditions, both downstream and upstreamwater levels.
Regarding the highly seasonal variations of river flow,
and nonlinear and noise features of the hydrological
time series, the sensitivity analysis was investigated
based on adding stochastic terms (random noise) to the
time series of boundary conditions. The sensitivity anal-
ysis was performed by comparing the frequency distri-
bution of the water level variations with the frequency
distribution initial condition of the tidal Nerang River.
Six scenarios were defined based on 5%, 10%, and 15%
changes of water level in both downstream and up-
stream boundary conditions. The results indicated that
the model is more sensitive to the river downstream
boundary conditions, which confirmed that the studied
flows domain of the river are determined by down-
stream tides. In order to have better understanding of
the impacts of the changed boundary conditions, three
points were selected along the river to investigate the
model sensitivity: point 1, 2, and 3 with 3.13 km,
14.78 km, and 20.21 km away from the upstream bound-
ary, respectively. Considering the three points under the
same percentage of change in the downstream bound-
ary, it is concluded that with increasing distance from
the downstream boundary, less impact was observed on
upstream water levels. Moreover, the middle part of the
river was more sensitive to changes in the downstream
boundary conditions than to changes in the upstream
boundary conditions. The percentage of tidal level
changes in downstream led to higher percentages of
water level variations in the middle parts of the river

(point 2) as 5%, 10%, and 15% changes in the down-
stream boundary led to maximum water level variations
of 8%, 12%, and 15%, respectively. Moreover, maxi-
mum water level variations at point 3 (lower part) can
potentially reach 11%, 14%, and 17% due to 5%, 10%,
and 15% downstream boundary changes, respectively.
This confirms that the rate of water level changes in
downstream boundary condition was seen to be in-
creased (even doubled) in the lower part of the river.

The results of the current study demonstrated that the
calibrated model is an efficient and easy- to-apply tool
for flow predictions of tidal rivers. Additionally, the
random noise sensitivity analysis can equip modellers
with a robust tool to assess the sensitivity of a model to
input parameters, when parameters change randomly.
By doing so, the importance of introducing accurate
observed data into models can be assessed. In general,
the outcomes of the present study will benefit future
modelling efforts through provision of a useful model-
ling tool, which enables prediction of water level at
ungauged points of the river under different flooding
and climate change scenarios for the purpose of city
planning and decision-making. Concerning the future
work and recommendations, it would be interesting to:

& Investigate the climate change impacts on sea level
variations, and consequently water level variations
over the tidal limit of a river

& Examine the results of the current study to consider
different flood events

& Couple the current 1D model with a 2D model to
determine the most efficient modelling approach

& Consider the impacts of wind intensity and direction
on water level
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