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Abstract Evolutionary algorithms (EAs) have be-
come competitive solvers of a wide variety of
water-resources optimization problems. Genetic pro-
gramming (GP) has become a leading EA since its
inception in 1985. This paper reviews the state-of-
the-art of GP and its applications in water-resources
systems analysis. A comprehensive knowledge about
GP’s theory and modeling approach is essential for
its successful application in water-resources systems
analysis. This review presents variants of GP that
have been proven useful in various applications to
water resources problems. Several examples of appli-
cations of GP in water-resources systems analysis are
herein presented. This review reveals GP’s capability
and superiority compared to other conventional
methods, which makes it suitable for solving a wide
variety of water-related problems including rainfall-
runoff modeling, streamflow sediment prediction,
flood prediction and routing, evaporation and evapo-
transpiration forecasting, reservoir operation,
groundwater modeling, water quality modeling, wa-
ter demand forecasting, and water distribution
systems.

Keywords Evolutionary programming . Gene-
expression programming . Fixed-length gene genetic
programming . Linear genetic programming

Introduction

The advent of evolutionary computation (EC) methods
has revolutionized the field of water resources systems
analysis and optimization. EC methods can tackle com-
plex single-objective and multi-objective water re-
sources systems problems that were previously intracta-
ble, as they may feature non-linear, discontinuous and
non-differentiable, mixed-integer, and real variables of
very large dimensionality (Koza 1994; Sreekanth and
Datta 2010, 2011).

EC methods refer to a class of computational
methods inspired by natural processes of evolution.
EC is applied in the form of evolutionary algorithms
(EAs) such as the genetic algorithm (GA), genetic pro-
gramming (GP), evolutionary programming (EP), evo-
lution strategy, and differential evolution (ESDE)
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(Babovic and Keijzer 2002). GP is a member of the EAs
of relatively recent emergence. GP is applicable to a
wide range of water-resources problems including
rainfall-runoff prediction, evaporation and evapotrans-
piration modeling, streamflow and sediment modeling,
water quality modeling, groundwater modeling, reser-
voir operation, flood routing, and water demand fore-
casting (Khu et al. 2001; Whigham and Crapper 2001;
Liong et al. 2002; Rabunal et al. 2007; Aytek and Kisi
2008; Sivapragasam et al. 2008; Izadifar and
Elshorbagy 2010; Kisi and Guven 2010; Arunkumar
and Jothiprakash 2013; Danandeh Mehr et al. 2013;
Lerma et al. 2013; Traore and Guven 2012; Orouji
et al. 2014; Prakash and Datta 2014; Akbari-Alashti
et al. 2015; Kasiviswanathan et al. 2016; Mirzaei-
Nodoushan et al. 2016; Bozorg-Haddad et al. 2017),
which feature unique conditions such that (1) the rela-
tions between system variables are poorly defined; (2)
there are complex mathematics that defy classic treat-
ment; (3) there is a wide range of data involved that
require testing, compiling, and ranking; and (4) the
problems’ solutions are approximated and characterized
by the average estimate and the standard deviation about
a global optimal solution (Koza 1994; Babovic and
Keijzer 2002; Orouji et al. 2013).

This paper’s main goal is to present a review of GP
applications in water-resources systems analysis. The
characteristics of GP and its variants are discussed and
evaluated to highlight its capabilities for solving com-
plex water resources problems. The first section presents
the theory of GP and its computational steps aided by an
example. Next, different GP variants that have found
application in water resources systems analysis are
reviewed. Application areas include rainfall-runoff,
evaporation and evapotranspiration, streamflow and
sediment transport, floods, water supply, reservoir oper-
ation, water demand analysis, and groundwater manage-
ment. A few applications include climate change, envi-
ronmental sustainability, and greenhouse gas emissions
to underline the breadth of range of GP. A conclusions
section closes this work.

Materials and methods

The basis of GP is the Darwinian concept of survival of
the fittest. According to this principle, those species that
evolve and adapt in response to the conditions of their
environments are the ones most likely to survive in the

long term (Koza 1992). GP was introduced by Cramer
(1985) and Koza (1992, 1994) developed GP into a
practical tool.

GP applies a tree structure in its search for optimal
solutions of a problem. The solution’s tree structure
features variables, operators, and functions. GP finds
an appropriate tree of variables, operators, and functions
for solving an optimization problem and for searching
the best GP algorithmic parameters. Five steps are exe-
cuted by GP in solving optimization problems:

1. Determination of terminal sets which include coef-
ficients, the independent variables, and the state
variables of an optimization problem. In other
words, all the variables and constants of a problem
are terminal sets.

2. Determination of the functional sets which contains
arithmetic operations, logical and Boolean opera-
tors, or conditional statements organized in a tree
structure to solve an optimization problem.

3. Determination of the fitness value of the trees of
variables, operators, and functions applied to solve
an optimization problem.

4. Determination of the GP parameters that control the
solution runs, including the population size, the
crossover rate, and the mutation rate.

5. Iterative improvement of the solution trees until
satisfying a termination criterion that may be a
predetermined number of generations of prospec-
tive solution trees, or a measure of the variation of
solutions in consecutive generations, or a measure
of the change of the fitness values of solution trees
in consecutive iterations (Wang et al. 2009; Nasseri
et al. 2011; Sarzaeim et al. 2017).

GP searches for optimal solutions by generating sets
of trees randomly. There are several methods to generate
the initial population of trees in the search space includ-
ing the full method, the grow method, and the ramped
half-and-half method. The full method generates full
trees with all the leaves; it generates the tree nodes with
the functional set, and only the tree terminals are opti-
mized. The grow method allows the modeler to create
trees of variable sizes and shapes. The ramped half-and-
half method is a combination of the full method and the
grow method (Koza 1992). The fitness function of each
tree (individual solution) is calculated after generating
the initial population. The fitness function (objective
function) is the value of each tree, which is commonly
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made equal to a norm of the differences between the
predicted (GP’s output) and observed values (target
output). A suitable tree is one that has a negligible
difference between the GP’s output and the target out-
put. The value of each tree can be calculated using
several other methods.

GP is based on the principle that better individuals
(solution trees) generate better children (improved solu-
tion tress). GP applies a selection process that concen-
trates the search for solutions in regions of the search
space containing the superior solutions, which are the
ones employed to generate the new, improved genera-
tion of solutions. Selection applies various operators for
solution selection based on the trees’ fitness. Better
fitness improves the chance of current solutions to trans-
fer its superior qualities to the next generation of solu-
tions akin to the evolution and adaptation of successful
species in nature (Koza 1992, 1994).

Methods for selecting the current superior solutions
include the roulette wheel, tournament, and ranking
methods. The next generation of solutions is produced
by the crossover and mutation operators (Fallah-
Mehdipour et al. b, c, 2016). Crossover selects two
parents or solution trees and their sub-trees are crossed
over randomly at cross points (these points are the nodes
in the solutions organized as trees in GP). Two children
(new solutions) are generated and replace the parent sub-
trees. The mutation operators are applied at mutation
points or nodes. Each node is chosen probabilistically
and is replaced by an independent variable. The generated
solution trees of mathematical operations are the inputs to
the next generation of trees. This process is continued
until reaching a termination criterion. The flowchart of
the calculation steps of GP is shown in Fig. 1.

An example of GP computations follows to illustrate
its basic algorithmic nature. Consider five points (X, Y)
as follows: (0.1, 1.11), (0.13, 1.15), (0.16, 1.18), (0.18,
1.21), (0.2, 1.24). There are mathematical functions that
could be identified representing a relation between X
and Y. GP can be applied to search for the best relation
between X and Y that minimizes the error between
observed and predicted values as quantified by the root
mean square error (RMSE) and correlation coefficient
(R2). Several relations are graphed in Fig. 2. It is evident
in Fig. 2 that the quadric equation achieves the best
relation between the points based on the RMSE and
the R2. GP generates set of functions and operators in
a complex search process that best relate the input and
outputs of a system.

Consider the same (X, Y) points introduced above,
and suppose we seek the best relation between them
using GP. To solve this problem, notice that (i) the
population size equals four, (ii) we assume that the
functions and terminals are (+, *) and (0, 1, 2), respec-
tively, (iii) an individual’s (solution tree’s) fitness less
than 0.01 represents the termination criterion. Consider-
ing (i) through (iii) above GP creates randomly initial
solution trees of arithmetic operators, mathematical
functions, and variables, and proceeds to determine the
optimal mathematical expressions. The four initial pop-
ulations generated with the grow method are shown in
Fig. 3.

The value of each individual (solution tree) is calcu-
lated in the next step. The RMSE is considered in this
example as the fitness function. The RMSE values for
the four individuals (solution trees) shown in Fig. 3 are
calculated based on their equations (a x + 1, b x2 + 1, c
2x + 1, and d x2 + x). The calculated RMSE for the five
points [(0.1, 1.11), (0.13, 1.15), (0.16, 1.18), (0.18,
1.21), and (0.2, 1.24)] introduced above equal 0.03,
0.16, 0.13, and 1 corresponding to individuals a, b, c,
and d, respectively. The first individual is the fittest one
(with RMSE = 0.03); therefore, it is advanced to the
next generation without any alteration.

Two individuals are selected as parents to create off-
spring solutions (children). The fitter individuals have a
better chance of being selected as parents. Next, cross-
over is performed to generate individuals for the next
generation. The first crossover considers the right side x
of the second individual (Fig. 3b) and the + function of
the first individual (Fig. 3a). The children produced by
this crossover are illustrated in Fig. 4a. It is shown in
Fig. 4a that generated children of this crossover are x and
x2 + x + 1. The second crossover operation selects the
function + of the first individual and the right side x of
the fourth individual (Fig. 3d), to produce the children x
andx2 + x + 1. This process is shown in Fig. 4b.

One mutation is performed on the third individual
(Fig. 3c), which changes its fitness value from 0.13 to
0.1. This mutation is illustrated in Fig. 5. The next
generation includes four individuals, which are the two
children resulting from parental crossover, one child
from mutation, and the fittest individual (the first one
or that shown in Fig. 3a) that is copied to next generation
without alteration (Fig. 6). Among these individuals,
there is an equation (x2 + x + 1) which satisfies the ter-
mination criterion of the fitness lower than 0.01. This
equation is the solution of this example problem.
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Several variants and new developments of GP have
emerged recently that attempt to overcome the limita-
tions of traditional, tree-based, GP. Linear genetic pro-
gramming (LGP), fixed-length gene genetic program-
ming (FLGGP), and gene expression programming

(GEP) are the leading three variants of GP applied in
water-resources-related problems. In fact, the mentioned
variants of GP can yield more accurate and efficient
structures and also mathematical relations compared to
traditional GP which is also simpler for interpretation.

No

Present results

Stop 

Yes

Has the termination criterion been 

satisfied?

Generate initial population of solutions randomly

Calculate and evaluate the fitness value for each 

individual solution

Start

Select individuals, perform crossover and mutation

Fig. 1 Flowchart of GP’s
calculation steps

Fig. 2 Several functions between
five points (X, Y)
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On the other hand, traditional GP can present only one
mathematical relation between input and output sets
while some of its variants are capable of deriving more
than one mathematical relation especially in water-
resources systems with more than one subset. These
variants are described in the following paragraphs.

The classical approach or tree-based GP (TGP) ap-
plies expressions bymeans of a functional programming
language. In contrast, LGP is a linear variant of GP that
substitutes expressions made by a functional program-
ming language with programs of an imperative lan-
guage. The main characteristic of LGP in comparison
to conventional GP is the graph-based data flow that
results from the multiple applications of indexed vari-
ables (Banzhaf et al. 1998).

LGP manipulates individuals with binary machine
codes that are executed without an interpreter during
the fitness calculation (Nordin 1997; Banzhaf et al.
1998). LGP is relatively simple, yet it can develop
complex functions whose evolution is carried out with
simple arithmetic functions. The functional set of this
method is composed of arithmetic operators, conditional
branches, and functional calls. Each element of a func-
tional set involves an assignment to a variable. This
facilitates the application of multiple program inputs in
LGP compared with conventional GP. Functions can
operate on two variables or one variable and one con-
stant. The terminal set of LGP is formed by variables
and constants. On the other hand, each function is
encoded in a four-dimensional vector. For each of two
parent segments, random position and random length

are selected. If one of the children exceeds the maximum
segment length, then crossover is restarted by exchang-
ing segments that have equal size. The crossover points
only take place between functions (Banzhaf et al. 1998).
The mutation operation randomly replaces the function
identifier inside functions, variables, or constants. The
best individual of LGP is converted into a functional
representation by successive replacements of its input
and output starting with the last effective function
(Brameier and Banzhaf 2001). The flowchart of compu-
tation steps of LGP is illustrated in Fig. 7.

FLGGP is one of GP’s variants that have been
employed in water-resources management studies.
FLGGP attempts to find multiple mathematical equa-
tions simultaneously with appropriate accuracy by com-
bining the genetic algorithm (GA) and GP’s character-
istics seeking to overcome the individual limitations of
GP and GA. In fact, as stated above, mathematical
expressions extracted by GP have a tree structure with
various functions, operators, and variables. More pre-
cise expressions are increasingly complex, which may
lead to very complex expressions not found in the real
world. FLGGP was developed as a variant of GP to
overcome the complexity of GP calculated expressions
and to calculate more than one mathematical expression
simultaneously (Fallah-Mehdipour et al. 2013b; Akbari-
Alashti et al. 2015).

FLGGP generates sets of individuals or solutions
with fixed length employing a uniform distribution as
the initial population of solutions. These individuals
include fixed numbers of genes, and these genes

a

+

+

1x

0

b

+

1 *

xx

c

+

*

x2

1

d

+

*

xx

x

Fig. 3 Initial populations a x + 1,
b x2 + 1, c 2x + 1, and d x2 + x in
the first generation
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represent mathematical expressions related to variables
present in the problem being tackled.

FLGGP generates a new population of solutions using
selection, crossover, and mutation operators similarly as
done by the GA. The generated individuals introduce
new relations in the next generation, and the search
proceeds until reaching a maximum predetermined

number of iterations (Fallah-Mehdipour et al. 2013b).
Several studies have been reported that have applied
FLGGP for solving water resources problems, some of
which are described in the following sections.

GEP was developed by Ferreira (2001). This method
generates populations of solutions and ranks them ac-
cording to their fitness, then implements genetic

+

+

1x

0

+

1 *

xx

Parent I Parent II

+

0x

+

1 *

x +

1x
Child I Child II

a

+

+

1x

0

+

*

xx

x

Parent III Parent IV

+

0x
+

1x

+

*

xx
Child III Child IV

b

Fig. 4 Crossover between a
individuals x + 1 and x2 + 1, b
individuals x + 1 and x2 + x
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variations using one or more genetic operators to ad-
vance to the next population of improved solutions. The
main difference between GA, GP, and GEP is related to
the nature of the solutions. The GA applies linear strings
of fixed length. GP relies on solutions that are non-linear
and of different types and sizes (parse trees). GEP uses
linear strings of fixed length (Ferreira 2001). The first
stage of GEP is generating the initial population of
solutions. This process starts randomly or using avail-
able information about the problem being solved. The
solutions are represented as tree structures that are eval-
uated with a fitness function. The fitness function is
usually made of specified objectives. The fittest solu-
tions of an algorithmic iteration have a higher chance for
generating new solutions. This process is repeated for
several iterations. The search process for an optimal
solution continues until reaching a termination criterion,
at which point the current solution is reported (Ferreira
2001). The flowchart of the computational steps of GEP
is illustrated in Fig. 8.

The cited variants and extensions of GP are the most
commonly applied in water-related problems. The sec-
tion describes several applications of GP to a variety of
water-resources problems.

Results and discussion

The applications of GP in water resources include esti-
mation, prediction, and simulation in hydrology and
hydraulics, evapotranspiration, water quality, ground-
water, risk assessment, sediment transport, water de-
mand prediction, and reservoir operation, among the
most common applications (Gandomi et al. 2015).

Rainfall-runoff models can be generically catego-
rized as black-box, conceptual, and physically based
distributed models. The application of these models
imposes limitations to process modeling and prediction.
These types of models require a wide range of data for
modeling purposes (parameters such as soil

a

+

*

x2

1

b

+

*

x0.5

1

Fig. 5 Tree structures, a before
and b after mutation
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Fig. 6 Population of the next
generation a x + 1, b x, c 0.5x + 1,
and d x2 + x + 1
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characteristics, basin characteristics, river networks, and
other inputs). Conceptual models have limited capacity
for handling non-linearity and non-stationary phenom-
ena (Savic et al. 1999; Khu et al. 2001; Whigham and
Crapper 2001).

The artificial neural network (ANN) is a type of
black-boxmodel that canmodel non-linear and complex
hydrologic processes. Yet, the number of inputs and
hidden neurons required by ANN must be obtained
through a time-consuming trial–error process (Savic
et al. 1999; Khu et al. 2001). The study of Savic et al.
(1999) is one of the first studies that applied GP to
rainfall-runoff modeling and prediction. The latter study
compared ANN and GP in estimating runoff in a Scot-
tish catchment. Its results indicated the superiority of GP
over ANN based on the R2.

Nourani et al. (2011) linked wavelet analysis to GP in
order to form a hybrid model for detection seasonality

patterns in rainfall-runoff process. The results were also
compared to ANN and GP based on RMSE and R2

which indicated the capability of hybrid model in mon-
itoring both short- and long-term patterns.

In other studies, Havlicek et al. (2013) and Adhikay
et al. (2015) investigated the applicability of combined
GP and basic hydrological models and GP-derived
variogram model within ordinary kriging, respectively.
In a former study, Havlicek et al. (2013) combined GP
and basic hydrological modeling concepts in order to
improve rainfall-runoff forecasts. The performance of
the proposed model was also compared to ANN and GP
model results which indicated the accuracy of combined
model in simulation based on maximum absolute error
(MAE), RMSE, and NSE. In the latter study, Adhikay
et al. (2015) applied GP to derive a variogram model.
They also investigated the applicability of GP-derived
variogram model within ordinary kriging for spatial

Select individuals

Generate initial population of solutions 

Calculate fitness value for each individual 

solution

Perform crossover and mutation

Substitute the old individuals with the new 

individuals 

Stop

Yes

No
Has the termination criterion been 

satisfied?

Start

Fig. 7 Flowchart of LGP’s
computational steps
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interpolation. The results indicated the superiority of
GP-based ordinary kriging over traditional ordinary
kriging and ANN-based ordinary kriging.

A rainfall-runoff study featuring a GP application was
reported by Danandeh Mehr and Nourani (2018). The
rainfall-runoff model was integrated with multigene-GP
to enhance timing accuracy of GP-based rainfall-runoff
models. They evaluated the timing and prediction accu-
racy of the proposed model based on RMSE and NSE
efficiency criteria. The results indicated the superiority of
multigene-GP compared to monolithic GP for identify-
ing the underlying structure of the rainfall-runoff process.

The cited applications and others are listed in Table 1
(Khu et al. 2001; Whigham and Crapper 2001; Liong
et al. 2002; Rabunal et al. 2007). All the aforementioned
studies stressed the capability and superiority of GP over

other methods that have been applied to rainfall-runoff
modeling and forecasting.

The accurate predictions of streamflow and sediment
transport are important in water-resources problems.
Streamflow prediction generally is made by two
methods. One is focused on the study of rainfall-runoff
processes to model underlying physical laws; the other
method is the pattern recognition method in which the
streamflow patterns are recognized based on antecedent
records. Both methods required a wide range of catch-
ment data and they require many simplifying assump-
tions (Danandeh Mehr et al. 2013).

Sediment transport estimation features two general
methods, which are physically based models or simpli-
fied partial differential equations and rating curves. Al-
though the cited methods are commonly employed in

No 

Selection 

Reproduction 

New chromosomes of next generation 

Iterate

Best of generation?
Yes

Create chromosomes of initial population

Express chromosomes

Execute each program

Evaluate fitness

Iterate or terminate? End
Terminate

Fig. 8 Flowchart of GEP’s
computational steps

Environ Monit Assess (2020) 192: 73 Page 9 of 17 73



sediment estimation studies, they have some limitations
which introduce estimation inaccuracies (Aytek and Kisi
2008). GP has emerged as a powerful tool that over-
comes the limitations of streamflow prediction and
sediment estimation methods. Makkeasorn et al.
(2008) and Guven (2009) pioneered the application of
GP to streamflow forecasting. Garg and Jothiprakash
(2009) employedGP to estimate the volume of sediment
production. Their results indicated GP captured the
trend and magnitude of sediment transport well. These
studies demonstrated GP can effectively capture the
non-linearity of streamflow and sediment production.
Other studies were those by Danandeh Mehr et al.
(2013). The latter authors applied LGP to forecast
monthly streamflow and compared the performance of
GP to wavelet-artificial neural network (WANN). The
results indicated a superior performance of LGP over
WANN based on the Nash–Sutcliffe efficiency and the
RMSE. A study by Danandeh Mehr (2018) applied the
genetic algorithm in combination with GEP as a hybrid
model for streamflow forecasting in intermittent
streams. The proposed hybrid model was compared to
GP, GEP. The results indicated the suitability of the
hybrid model in such studies. A summary of streamflow
and sediment prediction studies is listed in Table 2.

Two approaches are applied to hydrograph prediction
in river reaches, namely, the hydraulic and hydrologic
approaches. Hydraulic approaches’ calculations are time
consuming. For this reason, the hydrologic approach is
frequently used, although it relies on simplifying as-
sumptions between river-reach input, output, and stor-
age (Sivapragasam et al. 2008; Orouji et al. 2014). GP
has been applied to overcome the shortcomings of hy-
draulic and hydrologic approaches. Among those stud-
ies are those by Fallah-Mehdipour et al. (2013a, b, c, d)
and (Fallah-Mehdipour et al. 2016), Hakimzadeh et al.
(2014), Orouji et al. (2014), and Hu et al. (2016).

Fallah-Mehdipour et al. (2013b) estimated the stage
hydrograph of compound channels with GP. Their re-
sults indicated that GP reduced the computational bur-
den and had better accuracy of hydrograph estimation
than the coupled characteristic-dissipative-Galerkin pro-
cedure in one-dimension (CCDG-1D) hydraulic meth-
od. Fallah-Mehdipour et al. (2016) applied GP for flow
routing in simple and compound channels. Results
indicated that GP yields acceptable predicted
hydrographs and the computational burden was
decreased compared to the Muskingum model.
Hakimzadeh et al. (2014) applied GP to simulate out-
flow hydrographs. GP-obtained values for outflow were

Table 1 Summary of application of GP to rainfall-runoff modeling

Application Year Authors Comparison Description

Rainfall-runoff
modeling

2001 Khu et al. Autoregression and
Kalman filter

GP is a better updating tool for real-time flow forecasting

2001 Whigham and
Crapper

GP is a useful tool for developing hydrological models, especially
when surface water movement and water losses are poorly
understood

2002 Liong et al. Regression GP-induced rainfall runoff functions are a viable alternative to
traditional rainfall runoff models

2007 Rabunal et al. ANN GP predicts the flow rate resulting from rain

2011 Nourani et al. ANN and GP Wavelet analysis was linked to GP. The capability of hybrid model
was proved in the case of monitoring short- and long-term
rainfall-runoff patterns

2013 Havlicek et al. ANN and GP GP and basic hydrological modeling were combined to improve
rainfall-runoff process. The combined model increased the accu-
racy in simulation

2015 Adhikay et al. Ordinary kriging and
ANN-based ordinary
kriging

GP-derived variogram model within ordinary kriging is applicable
for spatial interpolation

2015 Sivapragasam
et al.

Linear, polynomial, and
logarithmic model

GP detects non-linearity in what is thought to be a linear process

2018 Danandeh
Mehr and
Nourani

Monolithic GP Multigene-GP was integrated with season algorithm to enhance
timing accuracy of GP-based rainfall-runoff models
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in good agreement with observed values, and were more
than results calculated with other empirical methods.

Orouji et al. (2014) applied an extended version of
the Muskingum hydrologic method and GP for flood
routing in branching rivers. The latter authors compared
the results of their study to those obtained with the
Saint–Venant hydraulic method. Results indicated the
objective function’s improvement with GP compared to
the extended Muskingum method for routing floods
with return periods ranging from 10 to 100 years. These
results established the effectiveness of GP for flood
routing in branching rivers. Hu (2016) reported an ap-
plication of GP to solve a symbolic regression problem
for flood risk assessment in Beijing. Results indicated
that GP could meet the requirements for risk assessment
in an artificially intelligent manner.

Evaporation and evapotranspiration are poorly un-
derstood components of the hydrologic cycle despite
their importance at all spatial and temporal scales
(Brutsaert 1982). There are inherent non-linearities and
complexities in these two processes (Soucha et al.
1996). Unlike precipitation and river flow, which can
be measured directly, evaporation and evapotranspira-
tion are estimated by pan-evaporimeter, lysimeter, mass
transfer, energy balance, combination (mass transfer and
energy balance), and water budget methods. Traditional
measurements of evaporation and evapotranspiration
are subject to several assumptions that may not be

appropriate for large-scale studies (Soucha et al. 1996;
Drexler et al. 2004). Micrometeorological methods such
as the energy-balance–Bowen-ratio (EBBR) and eddy-
covariance (EC) have found widespread applications for
estimating actual evaporation (Drexler et al. 2004).

Parasuraman et al. (2007) evaluated GP’s capacity to
model the evapotranspiration process. They compared
the performance of GP to ANN models and the
Penman–Monteith combination (mass transfer/energy
balance) method. Results indicated GP-evolved rela-
tions are understandable and well suited to modeling
the dynamics of evapotranspiration. Guven et al. (2008)
implemented GP to estimate the reference evapotrans-
piration. Their results indicated GP-evolved equations
provided satisfactory results and can be applied as an
alternative to conventional models including the Pen-
man–Monteith, Jensen–Haise, and Hargreaves–Samani
methods. Kisi and Guven (2010) applied LGP to daily
reference evapotranspiration modeling. The accuracy of
LGP was compared to support vector regression (SVR),
ANN, and empirical models for evapotranspiration
modeling. The efficiency criteria including RMSE,
mean-absolute errors, and R2 were applied to compare
the accuracy of the models’ predictions. The findings
indicated superiority of LGP compared to SVR and
ANN techniques. Applications of GP to evaporation
and evapotranspiration estimation are listed in Table 3,
and they are the works by Izadifar and Elshorbagy

Table 2 Summary of application of GP and its variants to streamflow and sediment prediction

Application Year Authors Comparison Description

Streamflow and
sediment
prediction

2008 Aytek and
Kisi

Rating curves and
multi-linear regression
techniques

GP formulation performs quite well in comparison to sediment rating
curves and multi-linear regression models. GP is practical for use

2008 Makkeason
et al.

Neural network (NN) The superiority of GP in streamflow forecasting was proven in
comparison to NN

2009 Guven NN Performance of LGP is better than NN. LGP is a powerful tool in
predicting river flow data

2011 Azamathulla
et al.

Stage rating curve (SRC)
and regression tech-
niques

GEP was applied to model the stage–discharge relationship. The
performance of the GEP model was substantially superior to both
GP and conventional models

2012 Kisi et al. ANFIS, ANN, SVM GP is superior to the ANFIS, ANN, and SVMmodels for estimating
daily suspended sediment load

2013 Maheswaran
and Khosa

Multi-resolution GP (MRGP)was applied to resolve non-stationeries
with a hybrid of wavelets-based multi-resolution decomposition
and GP. MRGP is a promising approach for flow forecasting

2018 Danandeh
Mehr

Multi-linear regression,
GP and GEP-linear re-
gression

Genetic algorithm applied in combination with GEP is a hybrid
model for streamflow forecasting in intermittent streams. The
proposed hybrid model was compared to GP, GEP and results
indicated the suitability of model in such studies
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(2010), Guven and Kisi (2011), Arunkumar and
Jothiprakash (2013), and Traore and Guven (2012).

Water quality modeling is an important water-related
problem. There are many studies involving applications
of genetic algorithms in water quality modeling (Osman
and Badr 2010), and there are applications of PIKAIA to
the calibration of water quality parameters (Pelletier
et al. 2006; Lerma et al. 2013). Yet, applications of GP
to water quality studies are scarce. Chen (2003) applied
GP to reservoir water quality monitoring. The results
indicated the better performance of GP compared to
traditional regression methods. Orouji et al. (2013) sim-
ulated water quality parameters (sodium, potassium,
magnesium, sulfates, chloride, pH, electrical conductiv-
ity, and total dissolved solids) at the Astane station in the
Sefidrood river in Iran with GP and with the adaptive
network-based fuzzy inference system (ANFIS). Their
results indicated GP is an effective tool for quality
parameter determination in the training (calibration)
and testing steps compared with ANFIS.

Mirzaei-Nodoushan et al. (2016) applied GP to long-
term prediction of streamflow and riverine total dis-
solved solids (TDS) in the Karoon River, Iran. They
compared the results with observed and short-term pre-
dicted values. Results confirmed the applicability and
suitability of GP for predicting Karoon river’s
streamflow and TDS.

Large-scale numerical simulation models and com-
plex decision-making models have been applied to
groundwater management. Such applications require a
wide range of data and rigorous model calibration. The
measurement of model parameters such as the hydraulic
conductivity, storage coefficient, and porosity is

elaborate and expensive. Moreover, there are consider-
able uncertainties related to these parameter estimates
(Shiri and Kisi 2011; Fallah-Mehdipour et al. 2014).

GP has been proposed as a suitable tool for ground-
water characterization relying on available data. GP
provides a non-physical analysis for natural phenomena
that can be effective in groundwater resources manage-
ment. Sreekanth and Datta (2010, 2011) applied GP to
saltwater intrusion management in coastal aquifers. The
latter authors compared GP with a modular neural net-
work (MNN). Their results indicated the less uncertainty
of estimates by GP compared to the MNN model due to
fewer parameters used in GP. The GP-based models
were better suited for groundwater optimization.
Fallah-Mehdipour et al. (2014) applied GP and ANFIS
to extract governing groundwater flow equations. Their
results showed the flexibility of GP over ANFIS in time-
series modeling of groundwater variables. Recent appli-
cations of GP to groundwater modeling are those by
Prakash and Datta (2014) and Kasiviswanathan et al.
(2016). Several GP applications in groundwater model-
ing have been reported in Table 4.

Common tasks in reservoir operation are inflow pre-
diction and the extraction of rule curves for reservoir
releases (Fallah-Mehdipour et al. 2013a; Ashofteh et al.
2014). Ashofteh et al. (2015) implemented multi-
objective GP to extract operation rule curves. Results
indicated the capability of GP in extraction operation
rules in a system with one, two, or more objectives.
Recent applications of GP to reservoir operation were
reported by Akbari-Alashti et al. (2015), Ashofteh et al.
(2017), and Bozorg-Haddad et al. (2017). In the former
study, GP and FLGGP were compared to extract static

Table 3 Summary of application of GP and its variants to evaporation and evapotranspiration forecasting

Application Year Authors Comparison Description

Evaporation and
evapotranspira-
tion forecasting

2010 Izadifar and
Elshorba-
gy

ANN, multi-regression GP-derived results had less error compared to
ANN and multi-regression

2011 Guven and
Kisi

GEP, multilayer perceptrons (MLP), radial
basis neural networks (RBNN), generalized
regression neural networks (GRNN)

LGP was employed successfully in modeling
evaporation

2012 Traore and
Guven

– GEP is applied to evapotranspiration modeling.
Statistically, GEP is an effective modeling
tool for computing evapotranspiration
successfully

2013 Arunkumar
and
Jothipra-
kash

ANN and mode tree (MT) GP predicts the reservoir evaporation better than
ANN and MT models
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and dynamic operation rules. Their results indicated that
FLGGP is a powerful tool without the limitation of the
classic GP. The comparison also demonstrated the su-
periority of dynamic operation rules over static opera-
tion rules.

Ashofteh et al. (2017) applied logical GP to derive
optimal hedging rules of reservoir under baseline and
climate change conditions. Their findings indicate the
improvement of the objective function in logical GP
compared to traditional GP under baseline and climate
change conditions. Furthermore, calculated results with
LGP approach and standard operation policy (SOP)
were compared, and the results indicated the better
performance of logical GP compared to traditional GP
based on higher R2 values.

Bozorg-Haddad et al. (2017) applied GP to calculate
optimal monthly water allocation downstream of the
Zarrineh-Roud Dam, Iran. Results indicated that GP ob-
tained rule curves and water allocations that are very
close to the optimal allocations obtained by constrained
non-linear programming. A recent GP application was
reported by Ashofteh et al. (2017). The latter authors
introduced logical GP by adding logical functions and
operators to traditional GP to calculate reservoir operation
hedging rules for agricultural water supply. Results dem-
onstrated the superiority of logical GP compared to tra-
ditional GP under baseline and climate change condition.
Studies reporting applications of GP are listed in Table 5.

Water demand forecasting has been approached with
various times series models and multivariate regres-
sions. Methods for studying the performance of pipeline
networks are physically based and computationally bur-
densome (Wu and Yan 2010; Xu et al. 2011). GP is a
powerful tool for water demand forecasting and for the
analysis of water distribution networks.

Nasseri et al. (2011) applied GP forecast water
demand with an explicit optimal formula. Their

results obtained with GP and hybrid models of the
extended Kalman filter GP (EKFGP) demonstrated
the effect of observational accuracy on water demand
prediction and online water demand forecasting. Wu
and Yan (2010) applied TGP and GEP to construct
demand forecasting models for water systems. Their
results indicated TGP and GEP are effective for
demand forecasting. Xu et al. (2011) applied three
methods to model the failure of pipeline networks
relying on statistical models coupled with GP. GP
was shown to accurately predict the performance of
water distribution networks.

Shabani et al. (2018) reported an application of GP
to water demand forecasting. They proposed an ap-
proach based on GEP coupled with unsupervised
learning for short-term water demand forecasting.
Results indicated that coupling GEP with the unsu-
pervised learning is a promising emerging non-linear
modeling technique.

Other studies dealingwithGP applications towater-
related problems, climate, climate change, and CO2

emiss ion are those by Azamathul la (2012) ,
Azamathulla and Ahmad (2012), Baareh (2018),
Puente et al. (2019), and Liu and Shi (2019) which are
discussed next.

Azamathulla (2012) applied GEP for scour predic-
tion obtaining satisfactory results compared to ANN in
predicting scour depth at an abutment. Azamathulla and
Ahmad (2012) proposed GP to predict critical submer-
gence which produced satisfactory results compared to
existing predictors.

Baareh (2018) applied GP for carbon gas emission
estimation. The results indicated the effectiveness and
robustness of GP in solving and dealing with climate
pollution problems. In one of the recent studies of GP
application, Puente et al. (2019) applied GP to calculate
new Vegetation Indices (VIs). Results indicated that the

Table 4 Summary of application of GP and its variants to groundwater modeling

Application Year Authors Comparison Description

Groundwater
modeling

2011 Shiri and Kisi ANFIS GP is superior to ANFIS in giving explicit expressions for water table
depth prediction

2013b Fallah-Mehdipour
et al

ANFIS GP is an effective tool for determining groundwater levels

2014 Prakash and Datta The capability of GP was proven in groundwater pollution sources
identification

2016 Kasiviswanathan GP is a useful tool for effective planning and management of groundwater
resources
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synthetic indices calculated by GP produce better ap-
proximation to the soil cover factor in comparison to
state-of-the-art indices like NDVI and EVI. In another
study, Liu and Shi (2019) developed a recursive ap-
proach to long-term prediction of monthly precipitation
using GP. The results indicated that GP can improve the
more accurate predictions of monthly precipitation com-
pared to statistical models.

It is evident that GP and its variants are applicable to
a wide range of water, climate, and environmental-
related problems. Based on our survey of published
studies, the superiority of GP and its variants has been
proven over some other common physical and statistical
methods and has been applied to various types of water-
resources-related problems.

The main advantage of GP is its ability to simulate
complex processes efficiently. Another advantage over
other methods is its clear and structured representation
of a system being modeled without the need for system
identification. The number of GP algorithmic parame-
ters is small in comparison with those extant in other
models. On the other hand, one criticism of GP is that it
generates equations for the management or prediction of
complex systems that are difficult to interpret. Another
challenge in the application of GP is selecting appropri-
ate parameters that control algorithmic execution. These
parameters control the convergence of the GP algorithm
to global optima.

Conclusions

This study reviewed GP applications to solve water-
resources problems. A review of published studies

indicates that the scope of GP and its variant appli-
cations is predominant on rainfall-runoff prediction,
evaporation modeling, and flood routing. On the
other hand, the applications of GP have proven its
efficiency as a computational algorithm. GP is also a
suitable tool for simulation of complex phenomena in
water-resources problems given its dynamic and evo-
lutionary behavior. Furthermore, GP has been shown
to outperform a wide range of data-driven models
applied in water-resources systems including rating
curve estimation, unit hydrograph method, linear re-
gression, autoregressive moving average, and
autoregressive integrated moving average, ANN,
and SVR. It overcomes the limitations of other com-
peting models. The latter models are black-box
models whereby input and outputs are known with-
out understanding the processes which transforms
inputs into outputs. In contrast, GP plays a key role
in finding appropriate relations for the quantitative
description of physical phenomenon. GP can over-
come the limitations of other models by evolving its
model structure. GP functional form does not assume
prior solutions, which constitutes GP’s key advantage
over competing models. GP can find suitable mathe-
matical relations between independent and dependent
variables in a water-resources system.

Many variants of traditional GP have emerged and
have been applied successfully to solve water-
resources systems problems. The wide range of
water-related problems and their complexity has
called for the application of other variants of GP by
hybridizing GP with other evolutionary algorithms.
The hybrid variants have proven effective and more
efficient than traditional GP.

Table 5 Summary of application of GP and its variants to reservoir operation

Application Year Authors Comparison Description

Reservoir
opera-
tion

2012 Fallah-Mehdipour
et al.

Obtained rule by GP based on deterministic variables is effective in determining
optimal rule curves for reservoir and inflow prediction

2013b Fallah-Mehdipour
et al

GA A fixed-length gene genetic programming (FLGGP) rule was developed and
calculated based on GP. FLGGP is flexible and effective for determining
optimal rule curves

2015 Akbari-Alashti
et al.

GP FLGGP compared to GP to extract statistic and dynamic operation rules

2017 Ashofteh et al. GP Logical GP compared to traditional GP in order to derive operation hedging rules
for agricultural water supply

2017 Bozorg-Haddad
et al.

Non-linear
program-
ming

GP applied to derive optimal monthly water allocation. GP-obtained rule curves
were very close to constrained non-linear programming
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