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Abstract Spatial interpolationmethods are widely used
to estimate some ecological and environmental param-
eters that are difficult to measure. One of these param-
eters is forest site index, which is a demonstration of
forest productivity. The aim of this study was to estimate
forest site index in a beech forest ecosystem in Turkey.
In this context, soil characteristics, stand parameters,
and topographic features were measured in 70 tempo-
rary sample plots of beech forest stands. Forest site
index of beech forest stands was predicted using differ-
ent modeling techniques such as multiple regression
analysis (MLR), multilayer perceptron (MLP), radial
basis function (RBF), multiple regression kriging
(MLRK), multilayer perceptron kriging (MLPK), and
radial basis function kriging (RBFK). The results
showed that the RBFK (R2 = 0.98) and MLRK (R2 =
0.96) outperformed the others to predict forest site index
in the study area. The greatest improvement occurred
when krigged residual used with MLR, which increase
from 0.23 to 0.96. Thus, MLRK method significantly
improved the prediction accuracy for site index. The
models combined with krigged residuals were more
successful than those used without krigged residuals.
The results of this study suggest that the combined
methods may help obtaining improved site index maps
for forest management.
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Introduction

Dominant height, which is one of the important forest
stand parameters, is widely used in forest management.
Site index maps for the period of 1963–1972, prepared
by dominant height data obtained from groundmeasure-
ments, are mainly used in forest management planning
and the other forestry activities such as silvicultural
treatments, soil, and water management in Turkey.
However, boundaries of the forest stands have been
changing continuously as site index boundaries are al-
tered by silvicultural activities and by climate- and
vegetation-related disturbances. Thus, after the several
plan periods, the site index map of the related forest area
shows inconsistency at certain rates according to the
first map (Gunlu 2009).

Forest management decisions including silvicultural
prescriptions and afforestation activities mainly depend
on ground information to formulate appropriate man-
agement of forest ecosystems (Altun et al. 2008).
Predicting forest productivity is important for forest
management decisions (Carmean 1975). The inadequate
productivity assessment is one of the major problems of
Turkey’s forestry. Two different methods are used to
determine the productivity of forest sites in Turkey.
These methods are direct and indirect methods. The
direct method is based on ground observations of soil
properties, topographic factors (slope, altitude, and
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landform), and climate; and the indirect method depends
on the age and dominant height relations. In Turkey, the
indirect method is mainly used in determining of the
productivity of forest sites, which is one of the key
parameters used in the preparation of forest manage-
ment plans. This method is generally used to determine
forest site productivity in the even-aged forests for prac-
tical applications (Altun et al. 2008; Diéguez-Aranda
et al. 2006). However, this method is improper to deter-
mine the forest productivity in the degraded and untreat-
ed forest areas, which cover almost half of forest areas in
Turkey. As the target trees (co-dominant and dominant)
in degraded forest areas have been cut down either with
forest management plan or irregular disturbances, it is
difficult to find appropriate trees to determine forest site
productivity with indirect method (Altun et al. 2008). It
is necessary to use the direct methods in determining the
productivity of forests correctly in Turkey’s forests,
particularly in degraded and open areas (treeless land).
However, use of these methods in large scales is tedious,
time consuming, and expensive. Therefore, there are
limited number of studies on this subject in Turkey
(Altun et al. 2008; Günlü et al. 2009).

Statistical modeling and spatial interpolation
methods are widely used in studies carried out to predict
data on forest productivity (Palmer et al. 2009;
Nothdurft et al. 2012; Mohamed et al. 2014;
Raimundo et al. 2017; Parresol et al. 2017; Socha
et al. 2017; Scolforo et al. 2017; Vieira et al. 2018).
Spatial surface data play an important role in environ-
mental management. Planners or researchers often need
these data. Spatial interpolation methods are effective
for estimating spatially continuous data and can be used
for predicting environmental variables in unsampled
locations (Li and Heap 2008; Bostan 2017). The spatial
interpolation methods can be classified in different
groups comprising non-geostatistical methods such as
inverse distance squared (Xia et al. 2017; Loghmari
et al. 2018); geostatistical methods such as ordinary
kriging and co-kriging (Li and Heap 2008; Li et al.
2011; Meng et al. 2013; Bostan 2017; Göl et al. 2017);
statistical methods such as multiple regression analysis
(MLR) and gene r a l i z ed r eg r e s s i on mode l
(Thistlethwaite et al. 2017; Zhang et al. 2018; Bergier
et al. 2018); machine learning methods such as regres-
sion tree, random forest, and support vector machines
(Li and Heap 2008; Li et al. 2011); and combined
methods such as multiple regression kriging (MLRK),
multilayer perceptron kriging (MLPK), and radial basis

function kriging (RBFK) (Cellura et al. 2008; Dai et al.
2014; Barni et al. 2016; Scolforo et al. 2016;
Emamgholizadeh et al. 2017).

The aims of this study were to (1) compare the
performance of different predicting techniques to inter-
polate site index of the beech forests and (2) create a site
index map, which is inevitable for sustainable forest
management and planning, using the best performing
model.

Materials and methods

Study area

Study area (600 ha) is located on a steep terrain in the
north of middle black sea region of Turkey (647,000–
650,000 E. 4,629,000–4,632,000 N, UTMED 50 datum
Zone 36) (Fig. 1). Elevations ranges from 500 to 970 m
above sea level and slope ranges from 10 to 60%. The
inter-annual maximum mean temperature (27.6 °C) oc-
curs in summer and minimum (13.8 °C) in winter. The
inter-annual mean precipitation is 677.3 mm. The study
area is coverd by unmanaged even-aged pure Oriental
beech (Fagus orientalis Lipsky.) stands.

Field data

Seventy sample plots during August of 2005with 300 ×
300 m interval were established in the study area. The
coordinates of each sample plot were measured by a
hand GPS. The necessary ground measurements such as
age and diameter at breast height and dominant height
were made in each sample plot. A soil profile was open
to the bedrock or to a minimum depth of 1 m at each
sampling plot. All soil profiles were identified and clas-
sified. Approximately, 1 kg of rock free soil was taken
from each horizon in each soil profile.

The soil samples were taken to a nearby laboratory,
air dried, sieved through a 2 mm-mesh-sized screen,
and stored in vaporproof plastic bags until their anal-
ysis. Soil texture was determined by mechanical anal-
ysis (Arp 1999). Thickness of the horizons, physio-
logical soil depth, and stone content were recorded
during the field survey. Stand age and height were
measured on free-growing dominant and co-
dominant trees (100 dominant and codominant
highest trees per hectare, for example, 6 highest trees
in a 0.06 ha plot) at each sample plot.
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Site index values at the reference age of 100 years
for Oriental beech stands were predicted by using site
index curves developed by Carus (1998) (Table 1).
The slope, aspect, and elevation of each sample area
were determined using digital elevation model (DEM)
created by using the contour line map with 10-m
intervals digitized from digital topographic maps with
3D modeling in Geographic Information Systems
(GIS). The aspect and slope maps were generated
using the contour lines, and elevation, aspect, and
slope values for each sample area were obtained by
3D modeling in GIS (Günlü et al. 2008).

Multiple linear regression analysis

Multiple linear regression models, developed using
MLR, were used to identify significant parameters to
model the dominant height. The stand variables of
crown closure; age; soil variables of sand, dust, and
clay; plant available water content; pH; organic matter
content; and topographic variables of slope, aspect, and
altitude were tested. The relationship between depen-
dent (Y) and independent variables inMLR technique is
given by (Eq. 1):

Y ¼ β0 þ β1:X 1 þ β2:X 2 þ…þ βn:X n þ ε ð1Þ
where, βi are the model coefficients, Xi is the indepen-
dent variables and ε is the additive error term. MLR
method was performed in SPSS 20.0.

Regression kriging

MLRK is a combination of MLR and ordinary kriging
(OK) (Hengl et al. 2007). MLR generates the relation-
ships between primary and secondary variables. It is
used for optimizing explanatory variation. In OK, the
weights are produced depending on the minimum error
variance and the spatial autocorrelation structure. There-
fore, it is used to minimize the variance of residuals. The
MLRK is a robust spatial interpolation technique, and it
is commonly used for interpolating environmental var-
iables (Hengl et al. 2007; Meng et al. 2013; Barni et al.
2016; Scolforo et al. 2016; Bostan 2017).

MLRK application was performed in three stages: (i)
modeling the relationship between dependent and inde-
pendent variables with MLR and obtaining the resid-
uals; (ii) producing residual surface map (raster data) for
the study area by using OK; and (iii) spatial overlay of
residuals from OK interpolation and MLR predictions.
Geostatistical analyses, mapping, and spatial overlaying
were performed with ArcGIS 10.3.1 software (Hengl
et al. 2007; Barni et al. 2016; Scolforo et al. 2016).

Multilayer perceptron and radial basis function methods

Besides the methods of MLR and MLRK, the artificial
neural network models were trained to predict the dom-
inant height. Then, the residual values obtained from
MLP and RBFmethods were used to run theMLPK and
RBFK. Training, verification, and testing process were

Fig. 1 Location of the study area
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included into neural network model building 75, 15, and
10% of all data, respectively. The target variable was the
dominant height, and the input variables were the sig-
nificant independent variables of stand age, aspect, and
sand, which were selected by the stepwise variable
selection technique in MLR analysis. These MLP and
RBF models were trained by STATISTICA® software
(Statsoft 2007).

Multilayer perceptron kriging and radial basis function
kriging methods

MLPK and RBFK are hybrid methods (Cellura et al.
2008; Emamgholizadeh et al. 2017). These methods
have been implemented by integrating the OK to the
MLP and RBF (Demyanov et al. 1998; Demyanov et al.
2001; Cellura et al . 2008; Dai et al . 2014;
Emamgholizadeh et al. 2017). MLPK and RBFK appli-
cations were conducted in three stages: (i) applying
MLP and RBF methods by using target and input var-
iables obtained from MLR; (ii) interpolating residuals
from MLP and RBF by OK; and (iii) building maps of
MLPK and RBFK interpolated values of dominant
height (Cellura et al. 2008; Emamgholizadeh et al.
2017). ArcGIS 10.3.1 software was used to map the
interpolation results. The flowchart for modeling and
mapping of the dominant height is given in Fig. 2.

Semivariogram analysis

Modeling the semivariogram (or simply variogram) is
one of the fundamentals of geostatistical analysis. The
most suitable model, which is the lowest residual sum of
squares and the greatest coefficient of determination,
was selected. Semivariogram models can be described
by its parameters such as sill, range, and nugget. Sill is a
semivariance value at range, and range is the lag dis-
tance, which the semivaogram reaches its maximum.
Autocorrelation is most probably zero beyond this dis-
tance. Nugget is the semivariance value at which
semivariogram intersects y-axis. The nugget value in
theory should be zero, while it is generally different

from zero, in practice, due to several reasons such as
errors arising in measurements of the target variable, the
short-range variation that may not be accounted by the
minimum between-samples distance applied in current
sampling scheme, and allowable errors in GPS accuracy
(Isaaks and Srivastava 2001; Bohling 2005; Kristensen
et al. 2015).

Nugget effect, which represents variance in small
distances and variance of measurement error, is an im-
portant indicator for strength of spatial dependency.
According to Cambardella et al. (1994), the spatial
dependency strength is determined with spatial correla-
tion index (SCI), and it is calculated by the ratio of
nugget to sill (Eq. 2). If the SCI is < 25%, the target
variable is deemed strongly spatially dependent, be-
tween 25 and 75% moderately spatially dependent and
> 75% weakly spatially dependent. If this value is be-
tween 25 and 75%, the varibles is deemed moderately
spatial varible and (Cambardella et al. 1994).

SCI ¼ Nugget

Sill
Þ � 100

�
ð2Þ

Wemodel the spatial structure of dominant height by
semvariograms and used the resultant semivariogram
parametes of sill, nugget, and range in OK interpolations
of dominant height. We calculated SCI to identify spa-
tial dependency strength of the dominant height. All
calculations were performed in ArcGIS 10.3.1 software.

Evaluation criteria

The performance of models were evaluated by Root
Mean Squared Error (RMSE, smaller is better), Akaike
Information Criterion (AIC, smaller is better), and coef-
ficient of determination (R2, higher is better), which
were calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

j¼1 zo−zp
� �2r

ð3Þ

Table 1 Site index classes of Carus (1998) for oriental beech forest tree species used in the study

Site index degree 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Site index 18.72 19.96 21.20 22.44 23.68 24.92 26.16 27.40 28.64 29.88 31.13

Site index classes V IV III II I
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AIC ¼ n:ln
∑n

j¼1 Zo−Zpð Þ2
n

 !
þ 2k ð4Þ

R2 ¼ ∑n
j¼1 Zo−Zpð Þ2

∑n
j¼1 Zo−Zmð Þ2 ð5Þ

where Zo is the observed value, Zp is the predicted value,
Zm is the mean of observed values, n is the number of
observations, and k is the number of regression
coefficients.

Results

Descriptive statistics of data sets were given in Table 2.
The dominant heights varied between 13.25 and 35.50 m,
and mean dominant height of the stands was 25.90 m. The
ages of the sampling stands ranged from 32 to 169 and
mean age was 96, which was consisted with overmature
pure beech stands. There were no young stands in the 0–20
age group in study area. The aspect had the highest coef-
ficient of variation (Cv%= 75.80), and mean sand content

was 42.97%. Sand content, age, and aspect occurred as
significant predictors of dominant height. The results of
MLR analysis are given in Table 3, in which dominant
height is dependent variable and age, aspect, and sand are
independent variables.

The models and parameters of the best fitted
variograms are shown in Fig. 3 and Table 4, respec-
tively. Model with the lowest error was selected in
the variogram modeling. Exponential model was se-
lected for interpolating dominant height with MLRK

Fig. 2 Flowchart of combine methods of MLRK, MLPK, and RBFK

Table 2 Descriptive statistics

Dominant
height (m)

Age (year) Aspect (degree) Sand (%)

N 70 70 70 70

Min 13.25 32 0 19.75

Max 35.50 169 355 74.59

Mean 25.90 96.18 181.15 42.97

SD 5.35 23.92 137.31 9.35

Variance 28.11 562.61 18,543.77 86.01

Skewness 0.00 0.16 − 0.25 0.50

Kurtosis − 0.83 1.46 − 1.79 1.45

Cv% 20.64 24.87 75.80 21.76

Environ Monit Assess (2020) 192: 53 Page 5 of 11 53



method. The dominant height was moderately spa-
tially dependent (SCI = 55%) and had a geostatistical
range of 665.9 m. Spherical model was fitted for
MLP and RBF. The MLP was moderately spatially
and RBF was weakly spatially dependent (Table 4)
and geostatistical range for RBF was far greater than
that for MLP. The results showed that dominant
height was autocorrelated for these methods using
in the study. These methods indicated moderate and
weak spatial dependency, and range values were less
than the longest distance between two sample areas.

Evaluation criteria (AIC, RMSE, R2, and r) for the
modeling techniques are presented in Table 5. Combined
methods such as MLRK, MLPK, and RBFK
outperformed MLR, MLP, and RBF for predicting the
dominant height, and RBFK was the most successful
model (R2 = 0.98). Combining theMLRwith OK substan-
tially improved the modeling performance, as indicated by
R2 increased from 0.23 for MLR to 0.96 for MLRK.

MLR yielded poor predcitions (R2 = 0.23) as shown
by the relationship between predicted and observed
values highly scatters around the 1:1 line, while the

RBFK performed the best (R2 = 0.98) as also shown
by tidily coalescence of observed and RBFK predicted
data around the 1:1 line (Fig. 4). The distributions of
residuals versus the predicted dominant height showed
that there was no trend in a particular direction (Fig. 5).
MLR had a higher variance, which were resulted from
biased predictions when compared with the other
methods. The effect of residuals on the predictions has
been minimized, and unbiased estimates were obtained
by MLRK and RBFK.

MLPK- and RBFK-interpolated dominant height
values were similar in spatial pattern (Fig. 6). The bor-
ders of site index classes derived from MLRK resemble
more to natural borders compared with those derived
from the other methods.

Discussion

The main objective of this study was to develop a consis-
tent site index map by using statistical methods (MLR,
MLP, RBF, MLRK, MLPK, and RBFK) for planners and

Table 3 Regression model predicting dominant height from aspect, age, and sand content variables

Independent
variables

Coefficients of
independent variables

Std. error of
coefficients

Standardized
coefficients

t value P values

Constant 37.429 7.299 5.128 0.001

Aspect − 0.026 0.005 − 0.707 − 5.354 0.001

Age 0.144 0.041 0.471 3.499 0.008

Sand − 0.453 0.175 − 0.349 − 2.584 0.032
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Fig. 3 Experimental (circles) and theoretical (lines)
semivariograms for residuals (i) MLR, (ii) MLP, and (iii) RBF.
(i) MLR—γ(h): 17.207 × nugget + 31.384 × exponential (665.9);

(ii) MLP—γ(h): 2.068 × nugget + 6.924 × spherical (270.9); (iii)
RBF—γ(h): 6.352 × nugget + 7.980 × spherical (1506.6)
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researchers in the presence of limited data. Besides, it is
also to evaluate the performance of various modeling
techniques to predict the site index of Oriental beech,
which is an important tree species in Turkey.

In this study, we compared performance of the tech-
niques of MLR, MLP, MLPK, and RBFK to predict
dominant height for the purpose of developing site
index for beech tree species, which is an important
forest cover in Turkey. MLR performed the worst and
MLPK performed the best in predicting the dominant
height in the studied beech stands. There are many
studies, which have used the MLR method for
prediction of the site index. Palmer et al. (2012) devel-
oped a multiple regression model of Sequoia
sempervirens tree species site index using independent
variables. Their final model formulated using mean
annual daily temperature and mean summer vapor pres-
sure deficit accounted for 82% of the variance in site
index. These two variables were highly significant
(P < 0.01), with partial R2 values of 0.71 and 0.11,
respectively. Lumbres et al. (2018) used the MLR to
develop a height-age model for Acacia mangium and
Eucalyptus pellita tree species, and they found good
age–height relationship for both of the Acacia mangium
(R2 = 0.90) and Eucalyptus pellita (R2 = 0.80).

In addition to the MLRmethod, there are also studies
using the kriging method for estimating and mapping
the site index. Hock et al. (1993) used GIS and
geostatistics to estimate site index of Pinus radiate tree
species. The correlation between observed and
estimated values provided an r of 0.63. Raimundo
et al. (2017) developed a dominant height model for
Eucalyptus plantation forest with 5 years data using
kriging method. They observed low correlation values
for the dominant height in the ages of 2.1 years and good
correlation between 3.1 and 5.8 ages.

The MLRK outperformed MLR as evidenced by the
very high R2 of 0.96 for MLRK versus 0.23 for MLR.
The degree of spatial dependency of residuals is an
important factor affecting success in regression kriging.
In our study, even use of moderately spatially dependent
(SCI = 55%) MLR residuals in MLRK resulted in a
considerable improvement in the prediction quality for
site index. Similar results have been reported in many
studies. For example, Palmer et al. (2009, 2010) report-
ed R2 values of 0.59 and 0.70 for MLR and MLRK,
respectively, for site index of Pinus raditate in New
Zealand. Aertsen et al. (2012) found that RMSE values
of MLR and MLRK were 2.58 for Beech tree species
and 3.43 for Oak tree species in Belgium. Kimberley
et al. (2017) used MLR and MLRK to estimate the site
index, and they found R2 values of 0.63 and 0.82 MLR
and MLRK, respectively.

We compared MLR with RBF and MLP, sorts of
artificial neural networks, to predict site index of beech,
and we found that both of RBF and MLP outperformed
MLR (R2 = 0.72 for RBF, 0.69 for MLP, and 0.23 for
MLR). Similar results have been reported elsewhere, for
example, Vieira et al. (2018) found that the R2 values of
MLRmodels were between 0.48 and 0.89, while for ANN
and ANFIS were 0.96 and 0.95, respectively, in predicting
dominant height of eucalyptus plantation. Aertsen et al.
(2010) estimated the site index in Pinus brutia, Pinus
nigra, and Cedrus libani stands. Aertsen et al. (2011)
predicted the site index inQuercus robur, Pinus sylvestris,
and Fagus orientalis stands. MLR and ANN methods
were compared in both studies. They found that ANN
methods outperformed the MLR in all the cases. Wang
et al. (2005) used ANN for mapping site index of mature
stands of lodgepole pine in Alberta, Canada, and found
that ANN yielded the best result based on R2.

Table 4 Semivariogram parameters of dominant height obtained
from residuals of MLR, MLP, and RBF methods

Method Model Nugget Sill Range SCI%

MLR residual Exponential 17.207 31.384 665.9 55

MLP residual Spherical 2.068 6.924 270.9 30

RBF residual Spherical 6.352 7.980 1506.6 80

Table 5 Evaluation criteria of models

RMSE AIC r R2

MLR 6.679 215.518 0.48 0.23

MLRK 0.926 110.814 0.98 0.96

MLP 2.968 172.543 0.83 0.69

MLPK 2.326 156.627 0.90 0.81

RBF 2.816 169.753 0.85 0.72

RBFK 0.928 110.949 0.99 0.98
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In our study, MLPK and RBFK methods were
applied by making kriging combination to artificial
neural network methods such as MLP and RBF. The
R2 values of 0.69 and 0.72 obtained by MLP and
RBF were obtained as 0.81 and 0.98 with MLPK
and RBFK, respectively. Thus, an increase 0.12 and
0.26 in R2 values was obtained with the combined

methods. In general, the combined use of MLR and
ANN methods with the kriging method increased the
success. As a basis for this success, the kriging
method appeared to reduce the variance of errors.
Thus, the methods with a certain proportion of er-
rors had become more successful with the combina-
tion of the kriging method.
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Conclusions

In this study, the success of the MLR, MLP, RBF,
MLRK, MLPK, and RBFK techniques was compared
to predict the site index. The results of modeling indi-
cated that significant improvement has been accom-
plished through the MLR and OK combination. How-
ever, it was best predicted by RBFK model in the study.
The results obtained from this study imply that forest
managers could use combined methods for better esti-
mation of the site index. Therefore, in order to increase
the degree of success of this study, it should be applied
to local studies in different forest ecosystems using
combined techniques.
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References

Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., & Muys, B.
(2010). Comparison and ranking of different modelling tech-
niques for prediction of site index inMediterraneanmountain
forests. Ecological Modelling, 221, 1119–1130.

Aertsen, W., Kint, V., Van Orshoven, J., & Muys, B. (2011).
Evaluation of modelling techniques for forest site productiv-
ity prediction in contrasting ecoregions using stochastic

multicriteria acceptability analysis (SMAA). Environmental
Modelling & Software, 26, 929–937.

Aertsen, W., Kint, V., Von Wilpert, K., Zirlewagen, D., Muys, B.,
& Van Orshoven, J. (2012). Comparison of location-based,
attribute-based and hybrid regionalization techniques for
mapping forest site productivity. Forestry: An International
Journal of Forest Research, 85, 539–550.

Altun, L., Başkent, E. Z., Günlü, A., & Kadıoğulları, A. İ.
(2008). Classification and mapping forest sites using
geographic information system (GIS): A case study in
Artvin Province. Environment Monitoring and
Assessment, 137, 149–161.

Arp, P. A. (1999). Soils for plant growth field and laboratory
manuals Faculty of Forestry and Environmental
Management University of New Brunswick Canada.

Barni, P. E., Manzi, A. O., Condé, T. M., Barbosa, R. I., &
Fearnside, P. M. (2016). Spatial distribution of forest biomass
in Brazil’s state of Roraima, northern Amazonia. Forest
Ecology and Management, 377, 170–181.

Bergier, I., Assine, M. L., McGlue, M. M., Alho, C. J., Silva, A.,
Guerreiro, R. L., & Carvalho, J. C. (2018). Amazon
rainforest modulation of water security in the Pantanal wet-
land. Science of the Total Environment, 619, 1116–1125.

Bohling, G. (2005). Introduction to geostatistics and variogram
analysis. Kansas Geological Survey, 1–20.

Bostan, P. (2017). Basic kriging methods in geostatistics. Yuzuncu
Yil University Journal of Agricultural Sciences, 27, 10–20.

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B.,
Turco, R. F., & Konopka, A. E. (1994). Field scale variability
of soil properties in Central Iowa soils. Soil Science Society of
America Journal, 58, 1501–1511.

Carmean,W. H. (1975). Forest site quality evaluation in the United
States. In Advances in Agronomy, 27, 209–269.

Fig. 6 Site index maps obtained from MLRK, MLPK, and RBFK methods

Environ Monit Assess (2020) 192: 53 Page 9 of 11 53



Carus, S. (1998). Aynı yasli doğu kayini (Fagus orientalis Lipsky)
ormanlarında artim ve büyüme. PhD Graduate School of
Natural and Applied Sciences İstanbul University Turkey.

Cellura, M., Cirrincione, G., Marvuglia, A., & Miraoui, A. (2008).
Wind speed spatial estimation for energy planning in Sicily: A
neural kriging application.Renewable Energy, 33, 1251–1266.

Dai, F., Zhou, Q., Lv, Z., Wang, X., & Liu, G. (2014). Spatial
prediction of soil organic matter content integrating artificial
neural network and ordinary kriging in Tibetan plateau.
Ecological Indicators, 45, 184–194.

Demyanov, V., Kanevski, M., Chernov, S., Savelieva, E., &
Timonin, V. (1998). Neural network residual kriging appli-
cation for climatic data. Journal of Geographic Information
and Decision Analysis, 2, 215–232.

Demyanov, V., Soltani, S., Kanevski, M., Canu, S., Maignan, M.,
Savelieva, E., Timonin, V., & Pisarenko, V. (2001). Wavelet
analysis residual kriging vs. neural network residual kriging.
Stochastic Environmental Research and Risk Assessment, 15,
18–32.

Diéguez-Aranda, U., Burkhart, H. E., & Amateis, R. L. (2006).
Dynamic site model for loblolly pine (Pinus taeda L.) plan-
tations in the United States. Forest Science, 52, 262–272.

Emamgholizadeh, S., Shahsavani, S., & Eslami, M. A. (2017).
Comparison of artificial neural networks, geographically
weighted regression and cokriging methods for predicting
the spatial distribution of soil macronutrients (N, P, and K).
Chinese Geographical Science, 27, 747–759.

Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different
interpolation methods for spatial distribution of soil organic
carbon and some soil properties in the Black Sea backward
region of Turkey. Journal of AfricanEarth Sciences, 134, 85–91.

Gunlu, A. (2009) Forest site classification using direct, indirect
and remote sensing methods, PhD Thesis, p.175, Karadeniz
Technical University, Institute of Science.

Günlü, A., Baskent, E. Z., Kadiogullari, A. I., & Ercanli, I. (2008).
Classifying oriental beech (Fagus orientalis Lipsky.) forest
sites using direct, indirect and remote sensing methods: A
case study from Turkey. Sensors, 8, 2526–2540.

Günlü, A., Başkent, E. Z., Kadıoğulları, A. İ., & Altun, L. (2009).
Forest site classification using Landsat 7 ETM data: A case
study of Maçka-Ormanüstü forest, Turkey. Environment
Monitoring and Assessment, 151, 93–104.

Hengl, T., Heuvelink, G. B., & Rossiter, D. G. (2007). About
regression-kriging: From equations to case studies.
Computers & Geosciences, 33, 1301–1315.

Hock, B. K., Payn, T. W., & Shirley, J. W. (1993). Using a
geographic information system and geostatistics to estimate
site index of Pinus radiata for Kaingaroa Forest. New
Zealand Journal of Forestry Science, 23, 264–277.

Isaaks, E. H., & Srivastava, R. M. (2001). An introduction to
applied geostatistics. 1989. Oxford University press New
York USA Jones DR, a taxonomy of global optimization
methods based on response surfaces. Journal of Global
Optimization, 23, 345–383.

Kimberley, M. O., Watt, M. S., & Harrison, D. (2017).
Characterising prediction error as a function of scale in spatial
surfaces of tree productivity. New Zealand Journal of
Forestry Science, 47, 19.

Kristensen, T., Ohlson, M., Bolstad, P., & Nagy, Z. (2015). Spatial
variability of organic layer thickness and carbon stocks in
mature boreal forest stands-implications and suggestions for

sampling designs. Environmental Monitoring and
Assessment, 187, 1–19.

Li, J., Heap, A. (2008). A review of spatial interpolation methods
for environmental scientists.Geoscience Australia Canberra,
p 137.

Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application
of machine learning methods to spatial interpolation of envi-
ronmental variables. Environmental Modelling & Software,
26, 1647–1659.

Loghmari, I., Timoumi, Y., & Messadi, A. (2018). Performance
comparison of two global solar radiation models for spatial
interpolation purposes. Renewable and Sustainable Energy
Reviews, 82, 837–844.

Lumbres, R. I. C., Seo, Y. O., Son, Y. M., Doyog, N. D., & Lee, Y.
J. (2018). Height-age model and site index curves for Acacia
mangium and Eucalyptus pellita in Indonesia. Forest Science
and Technology, 14, 91–96.

Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of
regression kriging for spatial interpolation–comparisons of
seven GIS interpolation methods. Cartography and
Geographic Information Science, 40, 28–39.

Mohamed, A., Reich, R. M., Khosla, R., Aguirre-Bravo, C., &
Briseño, M. M. (2014). Influence of climatic conditions,
topography and soil attributes on the spatial distribution of
site productivity index of the species rich forests of Jalisco,
Mexico. Journal of Forestry Research, 25, 87–95.

Nothdurft, A., Wolf, T., Ringeler, A., Böhner, J., & Saborowski, J.
(2012). Spatio-temporal prediction of site index based on
forest inventories and climate change scenarios. Forest
Ecology and Management, 279, 97–111.

Palmer, D. J., Höck, B. K., Kimberley, M. O., Watt, M. S., Lowe,
D. J., & Payn, T. W. (2009). Comparison of spatial prediction
techniques for developing Pinus radiata productivity sur-
faces across New Zealand. Forest Ecology and
Management, 258, 2046–2055.

Palmer, J. G., Watt,M. S., Kimberley, M. O., Hock, B. K., Payn, T.
W., & Lowe, D. J. (2010). Mapping and explaining the
productivity of Pinus radiata in New Zealand. New Zealand
Journal of Forestry, 55, 15–21.

Palmer, D. J., Watt, M. S., Kimberle, Y. M. O., & Dungey, H. S.
(2012). Predicting the spatial distribution of Sequoia
sempervirens productivity in New Zealand. New Zealand
Journal of Forestry Science, 42, 81–89.

Parresol, B. R., Scott, D. A., Zarnoch, S. J., Edwards, L. A., &
Blake, J. I. (2017). Modeling forest site productivity using
mapped geospatial attributes within a South Carolina land-
scape, USA.Forest Ecology andManagement, 406, 196–207.

Raimundo, M. R., Scolforo, H. F., de Mello, J. M., Scolforo, J. R.
S., McTague, J. P., & dos Reis, A. A. (2017). Geostatistics
applied to growth estimates in continuous forest inventories.
Forest Science, 63, 29–38.

Scolforo, H. F., Scolforo, J. R. S., deMello, J. M., deMello, C. R.,
& Morais, V. A. (2016). Spatial interpolators for improving
the mapping of carbon stock of the arboreal vegetation in
Brazilian biomes of Atlantic forest and Savanna. Forest
Ecology and Management, 376, 24–35.

Scolforo, H. F., Scolforo, J. R. S., Stape, J. L., McTague, J. P.,
Burkhart, H., McCarter, J., de Castro Neto, F., Araújo Loos,
R., & Sartorio, R. C. (2017). Incorporating rainfall data to
better plan eucalyptus clones deployment in eastern Brazil.
Forest Ecology and Management, 391, 145–153.

Environ Monit Assess (2020) 192: 5353 Page 10 of 11



Socha, J., Pierzchalski, M., Bałazy, R., & Ciesielski, M. (2017).
Modelling top height growth and site index using repeated
laser scanning data. Forest Ecology and Management, 406,
307–317.

Statsoft, I. N. C. (2007). STATISTICA (data analysis software
system). Version, 7, 1984–2004.

Thistlethwaite, F. R., Ratcliffe, B., Klápště, J., Porth, I., Chen, C.,
Stoehr, M. U., & El-Kassaby, Y. A. (2017). Genomic predic-
tion accuracies in space and time for height and wood density
of Douglas-fir using exome capture as the genotyping plat-
form. BMC Genomics, 18, 930.

Vieira, G. C., deMendonça, A. R., da Silva, G. F., Zanetti, S. S., da
Silva, M. M., & dos Santos, A. R. (2018). Prognoses of
diameter and height of trees of eucalyptus using artificial
intelligence. Science of the Total Environment, 619, 1473–
1481.

Wang, Y., Raulier, F., & Ung, C. H. (2005). Evaluation of spatial
predictions of site index obtained by parametric and

nonparametric methods—A case study of lodgepole pine
productivity. Forest Ecology and Management, 214, 201–
211.

Xia, Q., Xiu, J., Yang, Z., & Liu, C. (2017). An interpolation
method of soil erosion based on flexible factor. In Chinese
intelligent systems conference (pp. 109-119), Singapore:
Springer.

Zhang, Y. F., Wang, X. P., Hu, R., & Pan, Y. X. (2018).
Meteorological influences on process-based spatial-temporal
pattern of throughfall of a xerophytic shrub in arid lands of
northern China. Science of the Total Environment, 619,
1003–1013.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

Environ Monit Assess (2020) 192: 53 Page 11 of 11 53


	Evaluating...
	Abstract
	Introduction
	Materials and methods
	Study area
	Field data
	Multiple linear regression analysis
	Regression kriging
	Multilayer perceptron and radial basis function methods
	Multilayer perceptron kriging and radial basis function kriging methods
	Semivariogram analysis
	Evaluation criteria

	Results
	Discussion
	Conclusions
	References




