
Forest structure parameter extraction using SPOT-7
satellite data by object- and pixel-based classification
methods

Naimeh Rahimizadeh & Sasan Babaie Kafaky &

Mahmod Reza Sahebi & Asadollah Mataji

Received: 4 August 2019 /Accepted: 3 December 2019
# Springer Nature Switzerland AG 2019

Abstract Using satellite data to extract forest structure
mapping parameters assists forest management. In this
research, structural parameters including species, densi-
ty, canopy, and gaps were extracted from SPOT-7 satel-
lite data over Hyrcanian forests (Iran). A detailed ground
inventory was initially conducted, over 12 × 1 ha
(100 m × 100 m) plots, in which tree coordinates were
plotted, using a differential global positioning system
(DGPS), along with data on tree species, diameter-at-
breast-height and height, as well as canopy dimensions,
and canopy gap shapes, sizes, and positions, for each
plot. Then, spectral transformations, vegetation indices,
and simple spectral ratios were extracted from SPOT-7
data, and a supervised, pixel-based classification meth-
od and a support-vector machine algorithm were used to
classify and determine tree species types. In addition,
canopy tree borders and gaps were classified, using an
object-based method, and tree densities per unit area
were determined, using the canopy gravity center. Fi-
nally, the original ground data was used to perform an
accuracy assessment on the extracted information, with
the results showing that forest type could be determined

with 95% accuracy and a Kappa coefficient of 0.8.
Canopy and gap coverage achieved an overall accuracy
of 91% (Kappa coefficient: 0.7), and tree densities per
hectare were determined, on average, to be 47 trees
fewer than reality. In conclusion, we have shown that
forest structural parameters could be extracted, with
good accuracy, using a combination of pixel- and
object-based methods applied to SPOT-7 imaging.

Keywords Fagus orientalis . Hyrcanian forest . Object-
based classification . SPOT-7 . Support-vector machine
algorithm

Introduction

Current forest conditions and future forestry operations
have been determined by identifying forest structure
(Koch et al. 2006). In fact, selecting suitable forestry
operations and mapping forest stand structures are im-
portant methods for preserving biological diversity and
the dynamics and sustainability of the forest (Awad
2018; Lu et al. 2017; Molinier et al. 2016; Pratihast
et al. 2014; Hudak et al. 2006; Soenen et al. 2009).
There are many forest structure mapping parameters,
including density, type of species, height, diameter-at-
breast-height (DBH), the spatial pattern of trees, cano-
pies, gaps, etc., and using traditional methods for their
accurate calculation is both costly and time-consuming
(Bayat et al. 2019; Piermattei et al. 2019). Measurement
has also been mainly limited to particular plots (sample
plots) and thus could not provide continuous spatial and
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temporal information about the forest structure at differ-
ent dimensions or scales (Vashum and Jayakumar 2012;
Fatehi et al. 2015).

Satellite data could potentially be an effective source
for collecting and providing broad coverage information
(Lu et al. 2004; Meng et al. 2016) and could provide the
processing ease and data supply timeliness required by
managers (Makela and Pekkarinen 2004). On the other
hand, with significant usage of this data, improvements
in the detail and accuracy of the measured specifications
have always been challenged (Couturier et al. 2009;
Moisen et al. 2006). For example, in a study by Wallner
et al. (2015), forest structural characteristics, including
the density of tree bases, were determined using Rapid
Eye images, which achieved acceptable results. In an-
other study on forest type (Wolter and Townsend 2011),
Landsat, Radar 1, Alos Palsar, and SPOT-5 data were
used, which resulted in a map of dominant forest species
with 78% accuracy. In another study (Schneider et al.
2013), canopy, gap dimensions, and single tree data
were extracted, using Rapid Eye and Terra-X Data
optical and radar data synchronization, while Wolter
et al. (2009) and Meng et al. (2016) used SPOT Satellite
data to determine structural characteristics.

Different methods of extracting satellite data have
been evaluated, and their accuracy and ease of process-
ing have been tested. For example, in a study byWallner
et al. (2015), the object-based method was used for
determining the structural characteristics of a forest. In
some cases, methods have been combined to determine
their capabilities in extracting information. In the re-
search of Salah (2014), the combination of pixel- and
object-based data from IKONOS was used for land
cover classification, and in the research of Wang et al.
(2004), object- and pixel-based methods, also using
IKONOS images, were applied to produce a mangrove
forest classification map, with 91% precision. In another
study, forest species were classified using World View 2
data interpreted using pixel- and object-based methods
(Immitzer et al. 2012). Although there are many studies
have been implemented in order to extract the forest
characteristic information. However, there are some re-
main problems such as lack of research to determination
of the ability of one specific data satellite for different
forest structure parameters in multi-storied and dense
forest; also to increase accuracy and synergies in
extracting forest structure mapping parameters from
satellite data, using different classification methods, this
study was carried out. In the other hand, forest in Iran is

different from other forests. There is no sufficient study
that has been implemented, and studies in forests of Iran
are still missing in order to test the suitable data satellite
and different methods to forest structure extraction;
therefore, we conduct this study. The parameters for this
research included species, density, size, and shape of
forest tree canopies and canopy gaps. For this purpose,
we needed high-resolution satellite data with the poten-
tial to show the tree canopy and multiple bands, and
after considering different satellite data characteristics,
SPOT-7 data, with four original bands (with 1.5 m pan-
chromatic and 6 m multispectral resolution), seemed to
be the most appropriate.

From the different classification methods available
for parameter extraction in forest, we used pixel-based
and object-based methods because these methods show
the potential application to extract forest information
using satellite image and training area (Rafieyan et al.
2011b). Therefore, in present study to extract parameters
of forest structure, an area located in Hyrcanian natural
mixed and dense forest of Iran was chosen to test the
suitability of SPOT-7 data with these two mentioned
methods.

Materials and methods

Study area

Hyrcanian natural forest is located south of the Caspian
Sea in Iran. Most of Hyrcania is in current Iran and
Turkmenistan. In Iran, it covers in the provinces of
Golestan, Mazandaran, and Gilan that included decidu-
ous, broadleaved, and uneven-aged forest, in a semi-
Mediterranean, temperate, and humid climate (Bourque
et al. 2019). The dense forests of the SANGDEH region
in Mazandaran Province (part of the Hyrcanian forests)
were selected as the study area (Fig. 1), for the identifi-
cation and extraction of forest structure mapping param-
eters, using satellite data and analysis. This study area is
ideally suited for this purpose because there is a typical
sample of the Hyrcanian forest that has various forest
stands structure; also we could find a suitable satellite
data for this research.

The area was divided to seven compartments in two
districts in one forestry plan and was located between
36° 03′ 22.89″ N, 53° 13′ 55.12 ″ E and 36° 01′ 33.90 ″
N, 53° 11′ 20.24 ″ E. The total study area was ~377 ha,
located at elevations between 1320 and 2000 m above
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sea level. The annual temperature in this forest varies
between 2.9 and 19.8 °C and has an annual rainfall
average of 692 mm. Ground inventories were compiled
for 12 × 1 ha (100 m × 100 m) sample plots, with each
one located in different ecological and structural
conditions.

Satellite data

SPOT-7 image sub-scenes with the panchromatic spatial
resolution of 1.5 m and multispectral resolution of 6 m
were used in this research. The multi-images were
cloud-free and contained four bands (red, green, blue,
and near infra-red (NIR), with 12-bit radiometric reso-
lution and 9.3° nadir angle, and the data characteristics
have been summarized in Table 1. The satellite data was
acquired at the same time as the ground inventory was
conducted (September 2016).

Methods

In the method flowchart (Fig. 2), two main phases can
be seen, with Phase 1 covering the ground data collec-
tion procedure and Phase 2 showing how information
was extracted from satellite data.

Ground data collection and analysis methods

The ground inventory was performed at the end of
summer and in autumn 2016 and stored for use as
ground-truth data. At the first stage, using preliminary
maps for the 377 ha study area, basic information,
such as 1: 25000 topographic maps, was secured.
After producing a digital elevation model (DEM),
ground layer maps (a digital terrain model with 10 m
contours), including slope, aspect, and hypsometry,
were produced, and then, by overlapping these layers,
physiographic land units were determined, in order to
reduce and remove any land shape variable effects.
Then, homogeneous environmental units were identi-
fied, using ARC GIS10 (Ghanbari Motlagh et al.
2018). In the next step, areas with slope > 35% were
eliminated, for error reduction of extracted information
from data satellite in the mountainous forest, and
finally, 29 homogeneous environmental land units
were identified, from which 12 land units with area >
1 ha were selected. From each 1 ha (100 m × 100 m)
sample plot taken selectively from homogeneous areas
(Fig. 3), parameters such as trees position, species,

DBH (> 7.5 cm), the largest and smallest canopy
diameter (Noorian et al. 2016), and the size, shape,
and position of forest gaps were measured, with 100%
coverage of each 1 ha sample plot. At the next stage, a
DGPS device (RTK model), with an RMSE accuracy
of ~ 1–5 cm, was used to digitize all sample plot
location data (Bettingera et al. 2019). The position of
each tree was determined by recording the coordinates
of the first tree in each plot and then measuring the
azimuth and distance between them. It should be noted
that measuring the position of all trees using DGPS
would have been excessively costly and time-consum-
ing, so we included some ground control points
(GCPs) in order to correct for measurement errors.

The shapes and sizes of all large canopy gaps (>
20 m2) were measured by taking the coordinates of the
gap center and then recording the azimuth and distances
to the corners of the gap, using the eight-directional
Brokaw method (Brokaw 1982) (Ferreira de Lima
2005)(Fig. 4).

After calculating the latitude and longitude of all
trees, using trigonometric methods, all information was
entered into the ARC GIS software. Statistical analyses
were also performed, to identify the stand structural
status for each sample plot, including the frequency of
species, stand tree types, tree densities, tree heights,
number distributions for each diameter class, and pa-
rameter values for tree canopies and gaps.

Satellite data analysis

Firstly, radiometric and atmospheric corrections were
performed on image bands (Richards 1995; Castillo-
Santiago et al. 2010; Meng et al. 2016); then, in order
to facilitate geometric correction and to increase multi-
spectral data resolution, panchromatic and multispectral
images were fused in PCI-Geomatics software, using
the algorithms of the Pansharp process (Geomatica
orthoEngine orthorectifying 2013; Zhang et al. 2012).
At the next stage, 1: 25000 topography maps (Hidayat
and Wiweka 2013) were used for ground control point
collection, and the images were corrected to
orthorectified level (Kalbi et al. 2014; Noorian et al.
2016; Ghanbari Motlagh et al. 2018). Finally, the
orthorectified images were controlled using actual tree
locations in each sample plot which showed that, in
some areas, there was evident inaccuracy in the
orthorectified image.
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In order to solve this problem and increase image
geometry accuracy, the DGPS tool was again used,
this time in late January when trees were leafless
and there was a less probability for GPS error, and
30 additional GCPs were logged. The geometric
correction was performed again in the PCI-
Geomatics software, after which the root mean

square error was equal to 0.7 pixels, and since each
pixel had a 1.5 m resolution, this meant that the
orthorectification accuracy was now ~ 1 m, which
was acceptable for this study. As in Rafieyan et al.
(2011b), the DGPS tool was used as a tool for the
secondary preprocessing of the image, to correct the
geometry, which improved the results.

Fig. 1 Study area, (a) Mazandaran Province of Iran, (b) study area border (SANGDEH forest) and sample plots locations (the study area has
12 plots; the area of each plot is equal to 1 ha (100 m × 100 m)) in SPOT-7 data
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Table 1 Satellite data characteristics

characteristics multispectral image pancormatic image

The name of sensor SEN_SPOT7_20160809_064857400_000

Catalog ID DS_SPOT7_201608090648516_FR1_FR1_SE1_SE1_E053N36_01871

Date and time of data acquisition 2016-08-09- 06:48:51.6

Spectral resolution (bands) 4 1

Spectral range (μm) Blue: 0.45-0.52 μm
Green: 0.53-060 μm
Red: 0.62-0.69 μm
NIR: 0.76-0.89 μm

0.45-0.75 μm

Spatial resolution (m) 6 1/5

Radiometric resolution (bit) 12 12

Fig. 2 Research flowchart
(ground data and satellite data
analysis)
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Image classification

For classification, different types of image transforma-
tion, plus common vegetation indices and simple spec-
tral ratios, were used, in addition to the original bands
resulting in there being the four original bands, plus 23
band ratios, indices, and image transformations, as listed
in Tables 2, 3, and 4.

The pixel-based method was used to classify forest
types, tree species, and other classes of the area, such as
non-forested areas and gaps. Training samples are made
up of the dominant tree species (based on ground stud-
ies) that affected area typology, non-forest areas (includ-
ing agricultural, residential, gardens, and roads), and
forest gaps or open space. Generally, two pixel-based
classification methods are available for this purpose.
Supervised classification is a method in which the ana-
lyst determines the classes to extract from the image; in
this way, the analyst determines the areas to be nomi-
nated as training areas and shows each class of informa-
tion, and then, after correcting class specifications, the

Fig. 3 The position of sample plots in the case study. The total study area was 377 ha, with 29 homogeneous environmental areas allowing
selection of 12 × 1 ha (100 m × 100 m) sample plots

Fig. 4 Gap measurement methods (Brokaw 1982)
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computer categorizes the images (Aronoff 2005;
Lillesand et al. 2004; Li et al. 2014). In contrast, unsu-
pervised classification is determined automatically,
based on statistical clustering of the value of image
pixels, regardless of training samples (Lillesand et al.
2004; Puletti et al. 2014; Li et al. 2014). Out of the
several different processes and algorithms applicable for
each of these two methods (Li et al. 2014), we selected
one of the most popular and accurate supervised classi-
fication algorithms the support vector machine (SVM)
algorithm (Thanh Noi and Kappas 2018; Tavangar et al.
2019) to determine the type of forest species (Gualtieri
and Cromp 1999; Huang et al. 2002; Pal and Mather
2005; Marconcini et al. 2009). The accuracy of the
classifications (total accuracy, Kappa coefficient) was
calculated using the previously prepared ground-truth
mapping.

Determining the crown canopy and forest canopy
gaps is the most important parameter for analyzing
ecosystem dynamics (Bagaram et al. 2018). Object-
based classification extracts phenomena from the image
instead of pixels (Petropoulos et al. 2011). So for in this
research, the object-based method was used to identify
the crown canopy of trees, forest gaps (Malahlelaa et al.
2014), and tree density (Fadaie et al. 2012). Currently,
there are several methods for performing object-based
classification methods, including region growing, the
Markovian method, the Watershed method, the Hierar-
chy algorithm, and multi-resolution segmentation (Li

et al. 2014); so in this research, we used multi-
resolution segmentation for extraction of the canopy
and gaps, to increase classification accuracy of informa-
tion. Object-based classification is often performed in
two stages: (1) image segmentation based on compact-
ness, shape, and scale and (2) classifying the segments
for phenomena extraction (Dwivedi et al. 2004; Hay
et al. 2005; Amini et al. 2018). Based on above-men-
tioned, at first, spectral value histograms were plotted,
using the training sample obtained from the forest can-
opy and gaps, in all 27 bands (produced as explained
before), and then the best bands were selected, to deter-
mine canopy and gap borders. The bands were weighted
according to the histogram results and by determining
compactness, scale, and shape (Sohlbach et al. 2004;
Frauman andWolff 2005; Hay and Castilla 2006; Amini
et al. 2018). The plots (segments) were classified by
multi-resolution segmentation, using trial and error, to
find the best separation of canopy and forest gaps, and
then the produced plots were classified by averaging the
values of the Red band (which gave the best gap and
canopy separation in histograms) across the best forest
and gap class in the image. Also, to determine the
density of trees in each sample plot, the geographic
coordinates of the center of canopies that extracted from
the images were used. Finally, the accuracy (overall
accuracy and Kappa coefficient) of the produced classes
was reviewed, using the ground-truth mapping
(Malahlelaa et al. 2014).

Table 2 Vegetation indices used in this research

vegitation Index Equation References

Normalized difference vegetation index (NDVI) (NIR – RED)/(NIR + RED) (Jenson. 2000)

Difference vegetation index (DVI) NIR – RED (Tucker. 1979)

Modified soil adjusted vegetation index (MSAVI) (1+L)*[(NIR-RED)/ (NIR+RED+L)] (Jenson. 2000)

Ratio Vegetation Index (RVI) NIR/(RED + GREEN) (Noorian et al. 2016)

Global Environment Monitoring Index (GEMI) eta*(1-0.25*eta)-(R-0.125)/(1-R) (Lu et al. 2004)

Soil Adjusted Vegetation Index (SAVI) [1.5 NIR− RED ]/[NIR + RED + 0.5] (Attarchi. and Gloaguen. 2014)

Table 3 Image transformations used in this research

image transformation Equation References

Principal Components Analysis (PCA) PCA1, PCA2, PCA3 (Lu et al. 2004)

Hues saturation value (HSV) HSV1, HSV2,HSV3
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Results and discussion

Sample plots analysis results

The ground inventory identified 11 species (Fagus
orientalis, Carpinus betulus, Acer velutinum, Alnus
subcordata, Acer cappadocicum, Prunus avium,
Ulmus glabra , Ulmus carpinifolia , Quercus
castaneifolia, Sorbus torminalis, and Tilia begonifolia)
in the sample plots. Fagus Orientalis was the most
frequent species, and then Carpinus betulus, Acer
velutinum, and Alnus subcordata species were the
most common species in the area. The results of
sample plots’ typology mainly showed pure Fagus
orientalis types, followed by Fagus orientalis-
Carpinus betulus, Fagus orientalis-Acer velutinum,
and Fagus orientalis-Alnus subcordata types in the
area as listed in Table 5.

All characteristics were measured for 3558 trees, and
the average number of trees in the stands was found to
be 296 trees per hectare. The minimum number of trees
(122) was in Plot 1, while the maximum (513) was in
Plot 12. The ground inventory results have been listed in
Tables 6 and 7. We were able to produce the gap layer
(see example in Fig. 5) and tree species layers, using
ArcGIS with shapefile format. The results showed that
the forest was uneven-edged forest. There were around
61 gaps with an average 81.90 (m2) area.

Multispectral image information extraction results

The results of pixel-based classification

The forest species mix is an important factor in describ-
ing forest ecosystems (Immitzer et al. 2012). The
orthorectified images, with area borders, were classified

Table 5 The typology of species in each sample plots using ground inventory

Plot no. Percentage of mixing species Typology of species

1 Fagus orientalis 86%- Acer velutinum 8.19%- Alnus subcordata 4.09%- others 1.6% Fagus orientalis-Acer velutinum

2 Fagus orientalis 98.8%- Carpinus betulus 1.3% Fagus orientalis

3 Fagus orientalis 96.7%- Alnus subcordata 2.6%- others 1.3% Fagus orientalis

4 Fagus orientalis 86.5%- Carpinus betulus 7.3%- Alnus subcordata 4.4%- others 1.6% Fagus orientalis-Carpinus betulus

5 Fagus orientalis 87%- Carpinus betulus 6%- Alnus subcordata 5.4%- others 1.2% Fagus orientalis-Carpinus betulus

6 Fagus orientalis 94% - Carpinus betulus 3.2%- others 2.1% Fagus orientalis

7 Fagus orientalis 94% - Carpinus betulus 5.5%- others 0.5% Fagus orientalis

8 Fagus orientalis 94.14% - Carpinus betulus 5.3%- others < 0.5% Fagus orientalis

9 Fagus orientalis 96.04% - Carpinus betulus 4.3%- others 1.5% Fagus orientalis

10 Fagus orientalis 93.44%- Carpinus betulus 6.1% Fagus orientalis

11 Fagus orientalis 75.98% - Carpinus betulus 17.2%- Sorbus torminalis 2.5%- others 4.5% Fagus orientalis-Carpinus betulus

12 Fagus orientalis 93.9%- Carpinus betulus 6% Fagus orientalis

Table 4 Simple spectral ratios applied in this research

Simple spectral Ratios Equation References

Ratios Ratio 1: blue-red, Ratio2 =green-red, Ratio 3 = green-blue, (Lu et al. 2004; Jiang. 2003; Tucker. 1979)
Ratio4=NIR-Blue, Ratio 5=NIR-Green, Ratio 6= Red/Blue,

Ratio 7= Red/Green,Ratio8= Red/NIR, Ratio 9 = Blue/Green,

Ratio 10=Blue/NIR, Ratio 11= Green/NIR
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into six categories, using the SVM algorithm, with
examples shown in Fig. 6 and Table 8.

Pixel-based classification for one sample area can be
seen in Fig. 7, which shows that the species types in this
particular sample plot were Fagus orientalis and

Carpinus betulus and comparison with ground-truth
data showed that this was correct and accurate. Canopy
gaps were also accurately recognized using this method,
as also seen in Fig. 7. It was noted though that the pixel-
based method could not recognize Alnus subcordata in
this sample plot, although the ground-truth data showed
that it was present, and it is thought that this was because
Alnus subcordatawas present as a middle story and was
therefore not so visible on satellite imagery.

In order to classify the obtained images accurately,
the spectral values of the training samples were com-
pared in the classes. The overall classification accuracy,
achieved using the pixel-basedmethod, was 95%,with a
Kappa coefficient of 0.8884 (Table 9).

Among other distant sensing classifiers, SVM clas-
sification has been successfully used in recent decades
(Camps-Valls and Bruzzone 2009; Izquierdo-Verdiguier
et al. 2013). In comparison with Wolter and Townsend
(2011), in a study on forest type using Landsat, Radar 1,
Palsar, and SPOT-5 imagery, the data achieved 78%
accuracy. In another study, on mangrove mapping in
the Artificial Mangrove Species Mapping Using Pleia-
des study (Wang et al. 2018), pixel-based classification
and SVM algorithm application recognized forest types
with 79.63% accuracy. Based on these method accuracy

Table 6 Ground inventory results

Plot no Dominate species Number of trees
per hectare

DBH (cm) Height (m) Diameter of
canopy (m)

Slope % Aspect Average of elevation
above sea level (m)

Mean STDV Mean STDV Mean STDV

1 Fagus orientalis 122 43.77 32.78 29.69 12.6 4.39 2.04 < 35 East 1400

2 Fagus orientalis 253 30.77 21.39 20.04 8.1 3.24 6.84 < 35 west 1400

3 Fagus orientalis 306 20.79 17.37 15.66 7.5 1.87 1.19 < 35 East 1400

4 Fagus orientalis 312 23.03 20.21 21.04 7.5 2.98 1.5 < 35 East 1600

5 Fagus orientalis 311 26.89 18.56 19.63 9.63 3.04 1.47 < 35 west 1600

6 Fagus orientalis 364 21.72 19.71 15.7 7.12 2.97 1.52 < 35 East 1800

7 Fagus orientalis 200 33.65 21.8 20.6 9.85 3.08 2.37 < 35 west 1800

8 Fagus orientalis 410 21.55 16.94 17.19 8.02 3.13 1.76 < 35 west 1800

9 Fagus orientalis 259 28.43 22.26 21.35 9.11 2.53 2.68 < 35 North 1400

10 Fagus orientalis 229 27.85 21.26 20.37 8.69 3.79 16.49 < 35 North 1600

11 Fagus orientalis 279 31.82 19.63 20.1 7.99 3.45 3.03 < 35 North 1800

12 Fagus orientalis 513 22.1 15.92 18.52 15 2.58 1.42 < 35 North 2000

Mean 296 27.69 19.99 3.08 1633

Total 3558

Table 7 The result of gap measurement in ground inventory

Plot no. Gap number Area (m2)

Mean STDV

1 2 65 14.14

2 5 112.4 46.36

3 3 62 55.97

4 7 134.85 45.43

5 6 60.16 16.47

6 3 64 55.98

7 5 84.6 72.6

8 6 98.73 40.6

9 4 66 57.87

10 5 63.16 15.47

11 6 85 47.75

12 9 87 81.5

Total 61 81.90 21.65

Environ Monit Assess (2020) 192: 43 Page 9 of 17 43



confirmations, the method was also supported by use of
the SVM algorithm on another forest classification
study (Lu et al. 2014) and again achieved good results.

Regarding the overall accuracy (95%) of SVM
method classifications, it is worth noting that the
first classification is performed solely using the
main bands (red, green, blue, and NIR), applying
only the algorithm that identifies three classes of
forest, non-forest, and gap which is not an accept-
able result for stand typology. After adding the
spectral indices, simple spectral ratios, and image
transformations and repeating the classification op-
erations, six classes (Fagus orientalis, Carpinus
betulus, Alnus subcordata, Acer velutinum, gaps,
and non-forest areas), with a total accuracy of
95% and Kappa coefficient of 0.8, were deter-
mined. These results showed that the multispectral
image main bands showed similar behavior towards
different study site species, in terms of their spec-
tral reflection, but the differences in the same bands
derived from simple spectral ratios (inter-band

differential and division) were tangible and that
their usage was very important in classification
operations.

The results here cause us to highly recommend using
simple inter-band ratios in forest typology studies. In
another study of Rafieyan et al. (2011b) Identification of
Tree Species in the Mixed Planted forest using Object-
Based Classification of UltraCamD Imagery, classifica-
tion accuracy was improved by using transformed im-
ages. The high overall accuracy of this classification
method may also have been because the study area
mainly consisted of pure Fagus orientalis stands, so
the lack of species diversity and training samples prob-
ably facilitated easy, accurate, and widespread identifi-
cation of F. orientalis and thus increased accuracy.

The results of object-based classification

According to the results from the inter-band spectral his-
tograms and from the main and produced bands (27
bands), 14 bands (red, green, blue, NIR, PCA1, GEMI ,

Fig. 5 Gap measurement in one of sample plot (Brokaw method)
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Savi1, HSV2, B1 / B2, B1 / B3, B1 / B4, B2 / B3, B3-B1,
and B3-B2) were distinguished for the separation of the
tree canopy and gaps. The object-based method was used
to weigh the bands in segmentation, and the results for
compactness, scale, and shape criteria were 0.5, 6, and 0.2,
respectively. The results of drawing spectral values histo-
grams were used to classify the created plots for canopies
and gap separation. Given that the best bands for canopy
and gap separation were red, blue, and green and that the
GEMI index determined that the most suitable bands were
red and green, the red band was used for this separation,
with the separation threshold for the red band taken as 150,
using the histogram results. Finally, classification was
performed using the object-based method. The segmenta-
tion results, and the canopy and gap classifications for the
area, took three output forms: (1) the vector polygon layer
of the canopy border for determining the border of the
canopy and gap, (2) the point layer of the canopy center of
gravity (as the tree bases), and (3) the raster layer of the
canopy and gap. The results from one of sample plots are
shown in Fig. 8 a) and b).

These results included gaps <20 m2, identified
through the object-based method, that we did not mea-
sure during the ground inventory (which was restricted
to gaps >20m2), and so the number of gaps identified for
each plot exceeded the ground inventory result. This
supports results from other research (Nyamgeroh et al.
2018), where detection of forest canopy gaps from very

Table 8 Image classification attribute table, achieved using the
pixel-based method

Class name Number of pixel Percent

1 Unclassified 0 0.00%

2 Alnus subcordata 2178 0.037%

3 Acer velutinum 71,027 1.222%

4 Carpinus betulus 963,673 16.581%

5 Fagus orientalis 3,546,211 61.017%

6 Gaps 929,624 15.995%

7 Non-forest 299,159 5.147%

Fig. 6 Classified image, using pixel-based method for forest type
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high-resolution aerial images using the object-based
method also resulted in gap overestimation. This result
showed the advantage of using this method for gap
measurement and indicated that the object-based meth-
od could separate canopy and gaps with 91% accuracy
and a Kappa coefficient of 0.7. The confusion matrix
accuracy has been documented in Table 10.

In another study (Malahlela et al. 2014) on gap and
canopy classification using Worldview 2 and object-
based methods, the highest accuracy (93%) was obtain-
ed when the modified plant senescence reflectance in-
dex involved the red-edge band. So, our results with
these available bands showed acceptable accuracy, and
we deduced that errors were mostly the result of

Table 9 The result of confusion matrix (forest type accuracy)

Class Producer accuracy User accuracy Producer accuracy User accuracy
(Percent) (Percent) (Pixels) (Pixels)

A-subcordata 0.00 0.00 0/52 0/0

A-velutinum 16.13 83.33 5/31 5/6

C-betulus 35.23 93.94 31/88 31/33

F-orientalis 96.10 67.58 296/308 296/438

Gap 98.40 97.87 368/374 368/376

Non-forest 99.73 99.73 2965/2973 2965/2973

Overall accuracy = (3665/3826) 95.7919%.

Kappa coefficient = 0.8884.

Fig. 7 Pixel-based classification: (a) orthorectified image of one sample area, (b) classified image, using the pixel-based method (species
type) in one sample area
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shadows (Zielewska-Büttner et al. 2016) and reduced
ability to separate gaps from shadows.

It was noted that the shapes of the gaps extracted
from satellite data looked different to those measured
using the Brokaw method during the ground inventory.
We concluded that this was because the satellite data
incidence angle gave a different perspective to each gaps
from that when observation was from directly below.

The density of trees in each sample plot that extracted
from the data satellite in comparison with the ground
inventory results is shown in Fig. 9.

Overall, in the tree density comparisons obtained
using the two methods, satellite image interpretations
resulted in underestimations of 47 trees per plot, on
average (SD = 84), due mainly to three-storied stands
and by having tree crowns covered by—or interlaced
with neighboring trees (Kansanen et al. 2019). The
largest error was in plot 12, which had many young,
thin, short trees in its lower story. In fact, existing
satellite image characteristics seem quite logical, as they
simply extracted information from the forest upper lay-
er, or from lower flat areas with a high density (such as

Table 10 Results for the confusion matrix (gap and canopy classification accuracy)

Class Producer accuracy User accuracy Producer accuracy User accuracy

(Percent) (Percent) (Pixels) (Pixels)

Gaps 62.30 99.74 380/610 380/381

Forest 99.96 90.68 2237/2238 2237/2467

Overall accuracy = (2617/2848) 91.8890%.

Kappa coefficient = 0.7209.

Fig. 8 Results of object-based classification
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in plot 12) and were not able to capture information
relating to lower stories (Parma and Shataee-Joybari Sh
2010). In another study, a relatively low tree density
determination ability was found, in comparison with this
study, when mapping Zagros forest canopies using
ETM+ images. Other work (Kahriman et al. 2014),
which resulted in a vegetation index being produced
from satellite TM data, an acceptable forest density
result was achieved.

Conclusion

In this study, we have shown that the species mix and
forest type could be accurately determined, with accept-
able error rates, using a combination of the main SPOT-
7 image bands, with produced indices, spectral transfor-
mations, and simple ratios, and using the pixel-based
method and the SVM algorithm.

Separation of canopy and gaps using the object-based
method and multi-resolution segmentation was also suc-
cessful. Gap shapes extracted from SPOT-7 data dif-
fered somewhat from those established using the
Brokaw method during the ground inventory, but gap

size and number estimates were considered to be
acceptable.

Tree numbers/ha (forest density) established with the
object-based method consistently resulted in underesti-
mates, but we considered this to be an understandable
and acceptable result for uneven-aged, three-storied
forests.

When determining exact tree locations, in either ter-
restrial or temporal situations, image segmentation and
establishing GCPs, through a DGPS tool, will help to
significantly increase the accuracy of the extracted
information.

We have concluded therefore that the multispec-
tral data used in this study, and the combination of
object- and pixel-based methods, were suitable for
determining forest structural components, such as
the predominant species, tree density, canopy ex-
tent, and forest gaps.
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