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Abstract Lake Cajititlán is a shallow body of water
located in an endorheic basin in westernMexico. This lake
receives excess fertilizer runoff from agriculture and ap-
proximately 2.3 Hm3 per year of poorly treated wastewater

from three municipal treatment plants. Thirteen water
quality parameters were monitored at five sampling points
within the lake over 9 years. The objective of this work
was to characterize the spatial and temporal variations of
the water quality and to identify the sources of data vari-
ability in order to assess the influence and the impact of
different natural and anthropogenic processes. One-way
ANOVA tests, principal component analysis (PCA), clus-
ter analysis (CA), and discriminant analysis (DA) were
implemented. The one-way ANOVA showed that bio-
chemical oxygen demand and pH present statistically sig-
nificant spatial variations and that alkalinity, total chloride,
conductivity, chemical oxygen demand, total hardness,
ammonia, pH, total dissolved solids, and temperature pres-
ent statistically significant temporal variations. PCA results
explained both natural and anthropogenic processes and
their relationship with water quality data. The CA results
suggested there is no significant spatial variation in the
water quality of the lake because of lake mixing caused by
wind. Themost significant parameters for spatial variations
were pH, NO3

−, and NO2
−, consistent with the configura-

tion of point and nonpoint sources that affect the lake’s
water quality. The temporal DA results suggested that
conductivity, hardness, NO2

−, pH, and temperature were
the most significant parameters to discriminate between
seasons. The temporal behavior of these parameters was
associated with the transport pathways of seasonal
contaminants.
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Introduction

Surface water pollution

Surface waters are vulnerable to pollution due to urban-
ization and modernization trends worldwide. Although
studies have shown that both natural and anthropogenic
processes determine the surface water quality in a given
area (Yang et al. 2010), agricultural, industrial, and
urban activities are considered to be significant sources
of aquatic ecosystem pollution (Ouyang et al. 2006).
Municipal and industrial wastewater discharge are con-
stant polluting sources for surface waters (Singh et al.
2004). Additionally, the extensive use of fertilizers and
agrochemicals affects water quality due to runoff of
these substances from soil to surface water. Nonpoint-
source loads from agriculture are the main drivers of
eutrophication in aquatic systems (Hampel et al. 2018).
As a consequence, water quality parameters observed in
surface water bodies, such as biological oxygen de-
mand, chemical oxygen demand, nutrients, and conduc-
tivity, may gradually increase, the dissolved oxygen
concentration may start to decrease, and nuisance algae
blooms may appear as the first signs of advanced con-
tamination. Low- or no-oxygen conditions in surface
waters may lead to the death of fish and other organisms
(Matson et al. 1997).

Multivariate techniques for water quality analysis

The regular monitoring of water conditions yields a
complex matrix of numerous physical, chemical, and
biological parameters. The patterns in these parameters
are often difficult to interpret or extract meaningful con-
clusions (Costa et al. 2006; Dillon and Rigler 1974;
Kittiwanich et al. 2007; Murphey 2006; Ryther and
Dunstan 1971). Statistical analysis of water quality is
used to understand the patterns in water quality measure-
ments. The application of different multivariate statistical
techniques allows the identification of possible sources of
pollution that affect water resources as well as possible
solutions to pollution problems (Vega et al. 1998).

Multivariate statistical analysis is used to extract the
most representative information from extensive water
quality datasets, and for proving special and temporal
variations caused by natural, anthropogenic, or seasonal
factors (Liebhold et al. 2004; Loftis et al. 1991; Potapova
and Charles 2007; Thornton et al. 1990). The multivari-
ate statistical techniques commonly used in water quality

datasets are principal component analysis (PCA), cluster
analysis (CA), and discriminant analysis (DA). The PCA
technique evaluates the correlations among the water
quality parameters. Different strategies are adopted to
apply PCA depending on the data subsets given by
spatial and temporal factors (Bengraïne and Marhaba
2003; Ouyang et al. 2006; Pejman et al. 2009; Shrestha
and Kazama 2007; Singh et al. 2004; Vega et al. 1998).
CA is customarily applied to water quality datasets to
group similar sampling sites, thus characterizing the spa-
tial variability (Pejman et al. 2009; Shrestha and Kazama
2007; Vega et al. 1998). The result of a CA is a dendro-
gram, frequently obtained by Ward’s method using
squared Euclidean distances as a measure of similarity.
In the studies performed by Singh et al. (2004) and
Shrestha and Kazama (2007), DA was used to find the
most significant parameters to classify the samples into
temporal groups (seasons) and spatial groups (sampling
sites). Next, an interpretation of the variability between
the groups was given for each parameter, to obtain better
information about the water quality, as well as to identify
pollution sources, and understand the temporal/spatial
variations in water quality for effective river water quality
management and monitoring.

The objective of this work was to characterize the
spatial and temporal variations of the water quality of
Lake Cajititlán and to identify the sources of data vari-
ability in order to assess the influence and the impact of
different natural and anthropogenic processes. As a
contribution to the literature on the multivariate statisti-
cal analysis of water quality, the graphical analysis of
PCAwas improved using biplots in this study, describ-
ing the importance and correlations of the parameters
with a higher influence on the two first principal com-
ponents. For the DA analysis, linear discriminant func-
tions were included, for which the coefficient of each
variable is related to the contribution importance to
classify an observation. Scatterplots were included to
visualize the temporal DA results and to identify the
classification patterns between temporal groups.

Material and methods

Study area and monitored parameters

Lake Cajititlán is a subtropical shallow body of water
located in an endorheic basin in western Mexico (Fig. 1)
at 1551 m above sea level. It has a surface area of

Environ Monit Assess (2020) 192: 55 Page 2 of 22



1744 ha, a maximum storage volume of 70.89 Hm3, and
a maximum depth of 5.4 m at maximum capacity. This
lake is found in a municipality with an elevated popu-
lation growth rate. As a consequence, it receives a
significant amount of discharge from wastewater treat-
ment plants located in the vicinity of the lake, in addition
to discharge of untreated wastewater from some small
towns located around the lake and the rainfall runoff
from large agriculture areas surrounding the lake. Dur-
ing the rainy season, excess fertilizer runoff to the lake
from low-basin agricultural lands (see Fig. 1) and sedi-
ment resuspension in shallow lake waters increase the
excess nutrients and organic matter in the water column
(de Anda et al. 2019a).

In general terms, the lake has alkaline waters, an
average diurnal dissolved oxygen concentration of
about 8.9 mg/L, a biological oxygen demand (BOD5)
mean concentration of 18.6 mg/L, a chemical oxygen
demand mean concentration of 185.9 mg/L, and total
dissolved solids reaching 575.1 mg/L. Nutrient concen-
trations are also relatively high, with total phosphorus

reaching about 1.0 mg/L and total nitrogen mean con-
centrations of 8.5 mg/L. As a result of a mean annual
temperature of 24 °C, low wind velocity, and an enrich-
ment of nutrients in surface waters and sediments, the
lake contains extremely high amounts of blue-green
algae and high concentrations of chlorophyll that main-
tain an intense green color in its waters throughout the
year. In previous works, this lake has been considered in
the eutrophic state (de Anda et al. 2019a).

During the last decade, there have been several epi-
sodes of massive fish mortality. These episodes have
occurred only during or immediately after the rainy
season (Gradilla-Hernández et al. 2018). Due to this
recurrent massive fish mortality, the State Water Com-
mission of Jalisco (CEA, in Spanish) started a monitor-
ing program, and water quality data involving multiple
parameters has been obtained from 5 monitoring sta-
tions (see Fig. 1) since September 2009. The measure-
ments have been made at a depth of 0.8 m for all five
sampling stations. The coordinates of the five sampling
points are shown in Table 1. Thirteen (13) water quality

Fig. 1 Geographical location of Lake Cajititlán and locations of the sampling points from the Water Commission of Jalisco (CEA)
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parameters were included in this study (Table 2). Tem-
perature, pH, dissolved oxygen, and conductivity were
measured on site by the State Water Commission. For
the determination of the remaining water quality param-
eters, the samples were preserved at 4 °C and
transported to the laboratory of the Water Commission
of the state of Jalisco. On-site measurements and the
analysis of the transported samples were both made by a
laboratory certified to analyze water quality in compli-
ance with Mexican regulations that are based on inter-
nationally approved protocols (CNA 2016; AWWA
2017) and imposed by the National Water Commission.

An additional monitoring campaign was conducted
during the month of July of 2018, with the objective of

measuring in situ the concentration of dissolved oxygen
at night.Measurements were made between 4 and 7 a.m.
at the 0.8-, 2.0-, and 3.0-m depths using the YSI 6600
V2 probe (YSI 2010).

Data processing and descriptive statistics

The raw data generated by CEA from September 2009
to April 2018 were obtained from the state water infor-
mation system of the State of Jalisco as a time series
(CEA 2018). In this way, a time-series vector was gen-
erated for each water quality parameter (P1 to P13) and
sampling point (see Fig. 1). In total, 64 vectors (each
with a size of 67 or 68) were generated (13 for each
sampling point except for sampling point 5, which in-
cluded only 12 vectors because dissolved oxygen values
were missing). A total of 4352 values were contained in
the data matrix.

A raw dataset may contain a percentage of data
objects (outliers), which are considerably dissimilar to
the rest of the data based on some measurement. Out-
liers may merely be noisy observations. Alternatively,
they may indicate abnormal behavior in the system. It is
important to detect the kind of identified outliers in the
dataset in order to make the decision to remove or
maintain these observations (Díaz Muñiz et al. 2012;
Robinson et al. 2005). Therefore, the first statistical
work for this data matrix was to identify the outliers in
the time-series vectors of each of the analyzed
parameters.

The boxplot is a common graphical tool to visualize
the distribution of continuous data. However, when the
data are skewed, usually many points exceed the
whiskers and are often erroneously declared as
outliers. Hubert and Vandervieren (2008) proposed an
adjustment of the boxplot including a robust measure-
ment of skewness in the determination of the whiskers.
In this study, an adjusted box and whisker diagram
method was used to detect outliers for asymmetric distri-
butions. This resulted in amore accurate representation of the
data and the determination of possible noisy observations,
instead of data indicating abnormal behavior in the system, as
proposed by Hubert and Vandervieren (2008).

After the detected outliers were removed from the
data set, a nonlinear curve for each parameter and each
sampling point was fit to the remaining data set. New
values were then created by interpolating over the curve
as proposed by Gnauck (2004), who suggested that
missing data in long-term water quality data time series

Table 1 Geographical coordinates and altitude of the sampling
points in Lake Cajititlán

Sampling point Geographical coordinates Altitude, m a.s.l
observed on
April 5, 2018

1 20° 25′ 25.2900″ N
103° 21′ 37.4400″ W

1548.1

2 20° 25′ 52.0100″ N
103° 18′ 59.0400″ W

1547.5

3 20° 25′ 8.20000″ N
103° 19′ 11.2000″ W

1546.4

4 20° 24′ 37.4283″ N
103° 20′ 8.2248″ W

1546.74

5 20° 24′ 31.2379″ N
103° 17′ 28.4126″ W

1547.2

Table 2 Water quality parameters, abbreviations, and units ob-
served for surface water in Lake Cajititlán

Parameters Abbreviations Units

Alkalinity ALK mg CaCO3/L

Total chloride CL mg/L

Conductivity CON μS/cm

Biochemical oxygen demand BOD mg/L

Chemical oxygen demand COD mg/L

Total hardness HAR mg CaCO2/L

Ammonia nitrogen NH3 mg/L

Nitrate nitrogen NO3
− mg/L

Nitrite nitrogen NO2
− mg/L

Dissolved oxygen DO mg/L

pH pH –

Total dissolved solids TDS mg/L

Temperature T °C
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have to be replaced by “artificial” data to obtain records;
this can be done by interpolation, approximation or
filtering of data sets.

After data processing was completed, the average,
range, and standard deviation for each time series during
the study period were calculated.

Principal component analysis

PCA is a statistical method used to reduce the dimen-
sions of a large group of data (Jolliffe 1986; Jolliffe et al.
2003; Mackey 2009). PCA is a good technique for
selecting the most significant variables and discarding
those that are redundant or highly correlated (Pinto da
Costa and Soares 2005). This method recognizes the
variance within a sum of correlated variables to create a
smaller group of uncorrelated variables called principal
components (PCs), which are weighted linear combina-
tions of the novel variables (Hotelling 1933; Pearson
1901). Principal components can be understood as an
interaction of different observed variables, which de-
scribe the behavior of a single process that causes the
link between these variables (Jolliffe 2002). To perform
PCA, a multivariate random vector x = (x1, x2,..., xp)
with mean μ and covariance Σ is considered (Jolliffe
et al. 2003; Mackey 2009). In this study, such a multi-
variate vector is given by the water quality parameters:
x ¼ ALK;CL;CON;BOD;COD;HAR;NH3;ð NO−

3 ;

NO−
2 ;OD; pH;TDS;TÞ Eq. 1.
Thus, 13 different linear combinations of x were

obtained as

yi ¼ w
0
ix ¼ wi1P1þ wi2P2þ wi3P3þ wi4P4

þ wi5P5þ wi6P6þ wi7P7þ wi8P8

þ wi9P9þ wi10P10þ wi11P11

þ wi12P12þ wi13 P13 ð1Þ

for suitable multipliers wij, resulting in 13 new random
variables (y1, y2, …, y13) called the principal compo-
nents of x. The weights wij are also called loadings
because they explain how much each of the original
observations xi contributes to each of the principal com-
ponents. The loadings wi are chosen so that the yi have
the largest possible variances, are mutually orthogonal,
and have a unit length so that w’iwi = 1 (Jolliffe et al.
2003; Mackey 2009).

Eigenvalues were calculated to measure the signifi-
cance of the components. The criteria used to determine
the number of components to retain was to consider a
sufficient number of components to explain between
70% and 90% of the total variation of the original
variables (Jolliffe 2002; Rencher 2002). In this study, 5
principal components were retained for each sampling
point, accounting for approximately 79% of the total
variance. (Zelterman 2015). A biplot was also used to
further interpret the first two principal components
(Jolliffe 2002). Each vector in the biplot represents a
parameter of the water quality data set, the length of the
vector from the origin to the coordinates reflects the
variance of that variable, and the correlation of two
variables is reflected by the angle between the two
corresponding vectors for the two variables: the smaller
the angle, the greater the correlation (Jolliffe 1986; Pinto
da Costa and Soares 2005).

Principal component analysis was performed using
the software RStudio 1.1.456 with the factoextra
package.

Spatial and temporal statistical analysis

The procedure to detect spatial variations of water qual-
ity parameters consisted, at first, of a univariate ANOVA
to determine if the differences in the mean of each
variable between sampling points were statistically sig-
nificant. Afterward, observations were grouped into 5
sampling points and a spatial discriminant analysis was
implemented in order to determine if the spatial varia-
tions could be classified as belonging to a specific
sampling point. Finally, cluster analysis was used to
group the observations based on their characteristics.
Observations within the same cluster exhibit high inter-
nal homogeneity, while observations from different
clusters show high external heterogeneity.

An analogous procedure was used to analyze tempo-
ral variations (except for cluster analysis, which was not
performed given that there were only three seasonal
groups). A One-way ANOVAwas carried out to deter-
mine if the difference in the mean of each variable
between seasons was statistically significant. Subse-
quently, a temporal discriminant analysis was used to
classify the observations in three different seasonal
groups and determine if temporal variations were sig-
nificant to classify the observations as belonging to a
specific season.
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Univariate statistical analysis

As a first approach, we tested for spatial and temporal
variations in water quality using univariate statistical
analysis. One-way ANOVA was performed for each
water quality parameter to determine if the difference
in the means between sampling points was significant
using a cutoff value of p < 0.05. Subsequently, Tukey’s
honest significance tests were performed by multiple
comparisons of variable means between any pair of
sampling points using a cutoff value of p < 0.05. Similar
analyses were carried out to compare the mean values of
the variables between temporal seasons.

Cluster analysis

Cluster analysis is a technique for recognizing similar
and near objects within a dataset, and groups these
objects into clusters based on their characteristics
(Andreopoulos 2017; Hennig et al. 2016; Murtagh
1983; Pollard 1981; Savaresi et al. 2002). Thus, objects
within the same cluster should exhibit high internal
homogeneity, while objects from different clusters
would show high external heterogeneity (Duda et al.
2001; Guénoche et al. 1991). The resulting clusters
indicate patterns useful for analyzing the similarity of
water quality tendencies between the sampling points.

Agglomerative hierarchical clustering techniques
were used to produce partitions by a series of successive
fusions of the 5 sampling points into groups. In this case,
the vector containing the mean values of the variables in
each sampling point was considered to compare the
distances and to merge those with a small degree of
dissimilarity as follows: The first step considered 5
clusters,C1,C2,C3,C4, and C5, each containing a single
sampling point, from SP1 to SP5, respectively. Then, the
nearest pair of distinct clusters, Ci and Cj, was found,
which were then merged and Cj was deleted, decreasing
the number of clusters by one. If the number of clusters
then was equal to one, the process was stopped; other-
wise, the previous step was repeated (Everitt and
Hothorn 2011). To calculate distances or similarities
between pairs of vectors of means, the squared Euclid-
ean distance was used, as shown in Eq. 2:

dij ¼ ∑p
k¼1 xik−xjk

� �2 ð2Þ
where p is the number of variables, and the mean values
for kth variables localized in vectors i and j are

represented by xi,k and xj,k, respectively. Ward’s method
was used to evaluate the distances between clusters to
attempt to minimize the sum of the squares (SS) of any
two hypothetical clusters that could be formed at each
step. Ward’s method is the most widely used clustering
algorithm; when used in combination with the hierar-
chical method, it can be a powerful technique to group
cases. The spatial variability of water quality between
the vector of means of the sampling points was deter-
mined from CA, using the linkage distance Dlink/
Dmax, which represents the quotient between the link-
age distances for a particular case divided by the max-
imal linkage distance. The quotient was multiplied by
100 to standardize the linkage distance represented on
the x-axis (Shrestha and Kazama 2007).

Cluster analysis was performed with the software
R-3.5.3 using the ggdendro package.

Discriminant analysis

Discriminant analysis is a method that classifies samples
into categorical dependent values using linear discrimi-
nation functions. A linear discrimination function is a
linear combination of the variables for each observation
in the data set. The maximum number of functions that
is estimated is either equal to the number of variables or
the number of groups minus one, whichever is smaller.
Each successive linear discriminant function contributes
less to the overall discriminatory power (Cacoullos
1973; Fisher 1936; Hotelling 1936).

This technique is used to obtain a statistical classifi-
cation of multiple samples when there is prior knowl-
edge of their belonging to a specific group (Campbell
1978; Huberty and Olejnik 2006). In this study, the
discrimination functions were used to analyze the spatial
and temporal water quality variations based on three
different processes. The first process used was the stan-
dard method that incorporates all parameters; the second
was the forward stepwise process, in which parameters
are added one by one, startingwith the mostmeaningful,
until no important variations are found. Finally, the
backward stepwise process was used, by which vari-
ables were extracted one after another; starting with the
least significant variable and continuing until no signif-
icant change appears.

There are two types of functions in discriminant
analysis: classification functions (Cfs) and linear dis-
criminant functions (LDfs). Classification functions
can be used to determine to which group each case most
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likely belongs. In the case of this study, there were 5
different groups for spatial analysis (one for each sam-
pling point). The season-correlated parameter was as-
sumed to represent the major source of temporal varia-
tions in water quality. Therefore, 3 seasonal groups were
used for temporal analysis as suggested by Ibarra-
Montoya et al. (2012, 2010) for another subtropical
Mexican lake (Aguamilpa): (i) The hot-dry season
(HDS) comprising February–May; The wet season
(WS) comprising June–September; and the cold-dry
season (CDS) comprising October–January.

Each function was used to compute classification
scores for each group, by applying Eq. 3:

C f i ¼ ci þ ∑m
j¼1wij x j ð3Þ

where i denotes the respective group,m is the number of
variables in the data set, ci is a constant value for the ith
group, wij is the weight of the jth variable when com-
puting the classification score for the ith group, xj is the
observed value for the respective case of the jth variable,
and Cfi is the resultant classification score. Once the
classification scores were computed, each case was
assigned to the group for which it had the highest
classification score. Wilk’s lambda statistic was used
to denote the statistical significance of the discriminato-
ry power of the models; its value ranges from 1 (no
discriminatory power) to 0 (perfect discriminatory
power).

Discriminant analysis, the respective canonical anal-
ysis, and scatterplots of scores were conducted and
generated using STATISTICA 9.

Spatial distribution models

Spatial distribution models for the water quality param-
eters that present the most spatial variation were gener-
ated. Unknown point values were estimated using a
mathematical function that minimizes the overall curva-
ture of the surface, resulting in a smooth surface that
passes exactly through the sample values in the sam-
pling points (Huang and Stone 2003; Stone et al. 1997).
The spline method was used to adjust the sample data to
a polynomial function (North and Livingstone 2013;
Parker et al. 2016). This method is preferred for gener-
ating slightly varying surfaces, such as pollution con-
centrations in water bodies (Kazemi et al. 2017).

Figures showing spatial distribution models for se-
lected water quality parameters were generated using

the Spatial Analyst option of the ArcToolbox of ArcGis.
The Spline Regularized Interpolation method was
chosen.

Results and discussion

Descriptive statistics

The overall behavior of 13 lake water quality parameters
from September 2009 to April 2018 is presented in
Table 3. The water of Lake Cajititlán was found to be
highly alkaline, with a mean pH in the range of 8.87 to
9.19 for all sampling points, likely due to the weathering
process of the rock and soil located in its own basin. The
predominant rock in the lake area is tuff (35.1%), igne-
ous rocks of explosive origin, formed by loose or con-
solidated volcanic material. The second most abundant
type of rock corresponds to basalt (28.60%). The pre-
dominant types of soil are vertisol (34.3%) and feozem
(33.0%), which have large structures and high clay
content. The soil color varies between black, dark gray,
and reddish brown (IIEG Jalisco 2018). Due to the
mineralization process of carbonaceous rocks and due
to the presence of soil material rich in calcium and
magnesium in the lake basin, the hardness of the lake
waters is relatively high. The presence of ions of calci-
um and magnesium also increases the conductivity of
the lake waters. In previous works, it was demonstrated
that heavy metals present in sediment and in the
sediment-water interface in Lake Cajititlán are mostly
the result of the local geology. Therefore, the character-
istics of the lake’s waters appear to be mostly influenced
by urban wastewater discharges and agricultural activi-
ties rather than by industrial pollution (de Anda et al.
2019b).

The lake waters also showed elevated total dissolved
solids with a mean value of 582 mg/L. There are several
potential sources of total dissolved solids into the lake,
such as rainfall-runoff, runoff from agricultural drains,
raw sewage discharges, and discharges from the waste-
water treatments. Additionally, the lake is located into a
deforested basin close to the urban area of Guadalajara
(de Anda et al. 2019a).

The content of different forms of nitrogen (ammonia,
nitrates and nitrites) in the lake waters were also very
high, suggesting the input of agricultural runoff from the
farming areas near the shoreline (Fig. 1), as well as an
ongoing process of nitrification (Guo et al. 2014). The
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high chemical oxygen demand concentration demon-
strates that the treatment plants are not performing sat-
isfactorily, as previously suggested by de Anda et al.

(2019a). The decomposition of organic matter accumu-
lated in the lake sediments and the oxidation of inorgan-
ic chemicals, such as ammonia and nitrite, also

Table 3 Mean, standard deviation, and range of the monitored water quality parameters in Lake Cajititlán in the period of September 2009
to April 2018

Parameter Sampling point 1 Sampling point 2 Sampling point 3 Sampling point 4 Sampling point 5

ALK (mg CaCO3/L) Range 249.85–448.03 258–474.98 258–432.28 263.16–418.48 258–441.31

Mean 352.60 358.10 358.03 358.30 362.51

S.D. 44.19 41.75 39.50 36.62 40.95

CL− (mg/L) Range 45.46–77.38 34.84–75.78 41.42–75.95 40.55–74.92 41.42–78.81

Mean 62.21 62.35 62.71 62.31 63.16

S.D. 7.05 8.26 7.35 7.27 8.00

CON (mS/cm) Range 674.43–1108 697.2–1198 1106–685.93 711.89–1113 676–1140

Mean 826.72 844.79 843.50 841.56 839.73

S.D. 91.84 90.59 83.06 80.79 89.32

DBO (mg/L) Range 9.72–39.24 6.42–27.36 11.28–36.6 8.49–35.34 8.85–33.84

Mean 19.65 16.74 19.74 17.88 17.46

S.D. 6.14 4.10 6.20 6.15 5.30

COD (mg/L) Range 130.18–336.07 62.05–329.12 92.88–322.74 66.24–305.07 68.14–288.55

Mean 198.68 186.89 56.72 181.22 177.60

S.D. 50.86 57.66 183.02 50.90 47.09

HAR (mg CaCO3/L) Range 115.64–213.44 111.9–208.64 107.51–208.82 101.94–221.51 99.65–210

Mean 152.41 152.01 151.86 151.78 153.51

S.D. 22.72 24.66 24.77 25.98 26.40

NH3 (mg/L) Range 0–5.57 0–3.65 0–4.7 0–5.82 0–6.91

Mean 0.96 0.75 0.84 0.89 0.86

S.D. 1.16 0.82 0.94 1.11 1.23

NO3
− (mg/L) Range 0–0.16 0–0.12 0–0.35 0–0.15 0–0.16

Mean 0.07 0.07 0.09 0.07 0.07

S.D. 0.05 0.05 0.08 0.05 0.05

NO2
− (mg/L) Range 0–0.02 0–0.02 0–0.02 0–0.02 0–0.02

Mean 0.01 0.01 0.01 0.01 0.01

S.D. 0.01 0.01 0.01 0.01 0.01

DO (mg/L) Range 1.52–16.78 0–19.54 1.7–18.16 1.26–15.47 –

Mean 8.06 8.02 9.94 8.09 –

S.D. 4.18 4.80 3.64 2.97 –

pH Range 7.40–9.27 8.27–9.58 8.22–9.45 8.05–9.46 8.29–9.53

Mean 8.87 9.14 9.14 9.09 9.19

S.D. 0.42 0.28 0.27 0.32 0.26

TDS (mg/L) Range 420–701 286–670 397–697 379–667 375–691

Mean 573.28 574.37 580.45 573.09 581.95

S.D. 72.96 76.03 67.92 63.13 67.23

T (°C) Range 16.80–28.47 15.06–27.50 17–28.56 15.3–26.44 17.5–28.54

Mean 22.67 23.26 23.66 22.76 23.14

S.D. 2.71 2.54 2.75 2.51 2.32
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contribute to the increase of chemical oxygen demand
values in a waterbody (Akan et al. 2012). The presence
of chlorine ions in the lake waters can be attributed to
the use of sodium hypochlorite (NaOCl) in the final
disinfection process of municipal wastewater treatment
plants that discharge their waters directly to the lake.

The mean dissolved oxygen concentrations mea-
sured by CEA (Table 3) were between the values of
8.02 and 9.94 mg/L. These are average values measured
at 80 cm of depth during the day. The values measured
in the nightly monitoring campaign were between 2.10
and 4.44 mg/L (Table 4). It can be noted that the dis-
solved oxygen values measured during the nightly mon-
itoring program are significantly lower than those re-
ported by CEA. This is a phenomenon that commonly
occurs in eutrophic lakes where the dissolved oxygen
concentrations are higher during the day due to high
radiation intensity that increases the photosynthetic ac-
tivity of a large amount of blue-green algae; the dis-
solved oxygen concentration then drops at night due to
consumption of a large amount of dissolved oxygen via
respiration by microorganisms and algae (Qin et al.
2013; Duc Viet et al. 2016; de Anda et al. 2019a).
Eutrophic bodies of water with the presence of a high
number of blue-green algae frequently show levels of
dissolved oxygen above local saturation values during
the day (Duc Viet et al. 2016). Fertilizer enrichment
increases algal biomass and increased algal metabolism
results in higher rates of DO consumption during the
night (Qin et al. 2013). The presence of fertilizers in

surface waters also intensifies the activity of nitrifying
bacteria that generate energy for growth and mainte-
nance using NH3 and NH4

+ while they contribute to
the oxygen depletion of their surroundings. In nitrifica-
tion, ammonia and the ammonium cation are oxidized to
nitrite, which is in turn oxidized to nitrate (Bollmann
and Laanbroek 2011).

Events of massive death of fish have occurred in
Lake Cajititlán mainly in the months of August and
September at the end of the wet season (Gradilla-
Hernández et al. 2018). When fertilizer transport by
superficial runoff is increased and algal biomass is aug-
mented, it can be expected that the lake water would
show the lowest dissolved oxygen concentrations dur-
ing the night, which would explain the death of fish by
anoxia (Qin et al. 2013). Additionally, higher tempera-
ture values (occurring during the wet season) yield
higher nitrification consumption rates and the higher
levels of nutrient uptake by primary producers. Besides
consuming the dissolved oxygen in the water column, a
diverse set of algal species may produce toxins that may
be harming the fish and other organisms (Smith and
Schindler 2009).

Although the concentrations of nitrifying bacteria
and blue-green algae were not included in the data
matrix of this study, previous work has reported that
Lake Cajititlán has high blue-green algae cells and chlo-
rophyll concentrations in the water surface all over the
lake extension, indicative of a high level of eutrophica-
tion (de Anda et al. 2019a).

Principal component analysis

Table 5 presents the results of the PCA analysis for each
of the sampling points. Five significant components,
making up more than 79% of the variance, were found
for each sampling point. The first principal component
(PC1) explained between 37.68 and 42.83% of the
variability at all sampling points and was correlated
with alkalinity, total chloride, conductivity, hardness,
nitrate, nitrite, and total dissolved solids. Vega et al.
(1998) and Bengraïne and Marhaba (2003) also found
the presence of some of these water quality parameters
in the first component of their PCA (with 27% and 37%
of the explained variance, respectively) and linked these
findings to the mineral and solute content of the water.
PCA performed for another Mexican lake (Coyuca
Lake) also found conductivity and total dissolved solids

Table 4 DO levels at night

Sampling point Sampling depth (m) DO (mg/L)

1 0.8 4.34

2 2.28

2 0.8 3.43

2 2.21

≥ 3 (3.0) 2.86

3 0.8 2.95

2 2.56

≥ 3 (4.6) 2.39

4 0.8 2.48

2 2.20

≥ 3 (3.7) 2.10

5 0.8 3.46

2 2.93

≥ 3 (4.2) 2.72
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as the main elements of the first component (Ávila Pérez
et al. 2015).

The second principal component (PC2) found in
this study explained approximately 14% of the
variance and was mainly composed of nitrate, ni-
trite, and chemical oxygen demand, except for
sampling point 3, for which PC2 correlated with
biochemical oxygen demand, dissolved oxygen,
and pH. Badillo-Camacho et al. (2015) conducted
a factor analysis of a tropical lake (Chapala), lo-
cated just 18 km south of Lake Cajititlán, and
found that nitrite and dissolved oxygen were relat-
ed in one of the components, associating them
with domestic wastewater and agricultural runoff.
A previous study in Lake Cajititlán found the
presence of direct discharges of raw wastewater
along the shore of the lake, as well as a lack of
measures to control the runoff from agricultural

areas (de Anda et al. 2019a). Several water quality
studies (Bengraïne and Marhaba 2003; Ouyang
et al. 2006; Vega et al. 1998; Pejman et al.
2009; Singh et al. 2004; Shrestha and Kazama
(2007)) used principal component analysis to es-
tablish combinations of variables capable of de-
scribing the variability observed in the data sets.
In this study, we improved the graphical analysis
of PCA by means of biplots; this plot is the
orthogonal projection of the data on the subspace
spanned by the two first principal components
(those with the most contribution to the total var-
iance), describing the importance and correlations
of the parameters with higher influence.

Together, the first two principal components ex-
plained approximately 54% of the data variability for
each of the sampling points. The biplots in Fig. 2 show
that the variables alkalinity, total chloride, conductivity,

Fig. 2 Biplots of PC1 and PC2;
each vector represents a variable,
and the correlation of two
variables is reflected by the angle
between the two corresponding
vectors. The color scale and the
length of each vector are related to
the contribution to the total
variance
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total hardness, and total dissolved solids are highly
correlated, as are nitrite and nitrate nitrogen; the two
subsets of these variables are inversely correlated. In
addition, the lengths of the vectors for dissolved oxygen,
pH, and temperature denote the low contribution of
these variables to the variance in the two first principal
components.

For the remaining components, there are dissimilar-
ities in the significant variables as it can be seen in
Table 5. Although not all loadings for PC3, PC4, and
PC5 are consistent for all five sampling points, these
components consistently have significant loadings for
pH as well as biochemical oxygen demand, chemical
oxygen demand, nitrate, nitrite, and ammonia. Further-
more, the pH has the opposite sign than the other pa-
rameters, which suggests a negative correlation. Bio-
chemical oxygen demand, chemical oxygen demand,
nitrate, and nitrite are water quality parameters of con-
cern related to municipal wastewater treatment systems
not performing satisfactorily and agricultural runoff.
Low pH values, on the other hand, are indicative of
anaerobic bacterial environments that develop in reac-
tors within treatment plants where wastes decompose
(Akpor and Muchie 2011). Therefore, these principal
components may also be associated with poorly treated
municipal wastewater treatment plant effluents as well
as agricultural runoff, which have been previously re-
ported for Lake Cajititlán (de Anda et al. 2019a).

These principal components (PC1, PC2, and PC3)
are related to both natural and anthropogenic processes.
PC2 and PC3 can help describe the causes of the mas-
sive death of endemic and commercial fish species in the
last years. The massive fish death events have occurred
mainly at the end of the wet season (Gradilla-Hernández
et al. 2018) when fertilizer transported by superficial
runoff is increased and algal biomass is augmented.
Furthermore, the elevated nutrient concentrations in
Lake Cajititlán are increased by the effluents of treat-
ment systems facilities which provide primary and sec-
ondary treatment but cannot remove nutrients form mu-
nicipal wastewater (de Anda et al. 2019a).

Spatial and temporal statistical analysis

The one-way ANOVA showed that the variables with
statistically significant mean variations between sam-
pling points were biochemical oxygen demand (p val-
ue = 0.00451) and pH (p value = 3.58 × 10−8). Tukey’s
honest significance test results indicate that pH varies

significantly between SP1 and the rest of the sampling
points (SP1 has the lower mean for pH). The variables
with statistically significant mean temporal variations
were alkalinity (p value = 0.000306), total chloride (p
value = 8.26 × 10−8), conductivity (p value = 2.81 ×
10−9), chemical oxygen demand (valor p = 3.92 ×
10−4), total hardness (p value = 7.66 × 10−9), ammonia
(p value = 0.0286), pH (p value = 7.63 × 10−6), total dis-
solved solids (p value = 3.16 × 10−9), and temperature (p
value < 2 × 10−16).

Spatial DAwas performed with the data set compris-
ing 12 parameters (since there was no available dis-
solved oxygen data for SP5 in the CEA dataset) after
grouping into 5 sampling points. Classification func-
tions (Cfs) and classification matrices (CMs) obtained
from the standard, forward stepwise, and backward
stepwise modes of DA are shown in Table 6 and Table 7,
respectively. The standard stepwise mode CFs using 12
discriminant variables yielded the corresponding CMs,
assigning 35.12% of the cases correctly (Table 6). The
forward stepwise DA mode included 7 discriminant
variables (alkalinity, biochemical oxygen demand,
chemical oxygen demand, total hardness, nitrate, nitrite,
and pH) in the classification function, with 31.66%
cases assigned correctly. Backward stepwise mode DA
gave CMs with 23.08% correct assignations using only
the pH parameter. In the spatial DA, Wilk’s lambda
statistics were 0.663 for standard mode, 0.688 for for-
ward mode, and 0.886 for backward mode. Thus, the
spatial DA results suggest that a linear discriminant
function does not assign the cases correctly.

The standardized coefficients for the four linear dis-
criminant functions shown in Table 8 pertain to the
standardized variables and therefore to comparable
scales. The first function has a higher explained variance
(72.8%). The considered parameters have the following
order of significance: pH, chemical oxygen demand,
alkalinity, total hardness, biochemical oxygen demand,
nitrate, and nitrite. The most significant variable is pH
with coefficient 0.956; thus, a positive relationship is
suggested; observations with low pH will have low
scores for the first discriminant function and vice versa.
Additionally, the one-way ANOVA and the coefficients
of the classification functions in backward mode suggest
that there is a pH variation between sampling points. The
plot of means for this variable (Fig. 3) shows that the
mean pH in SP1 is lower than for the remaining sampling
points, but this difference is nonsignificant to characterize
the data of each specific sampling point. Out of the 7
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parameters for the second linear discriminant function
(with explained variance of 25.7%), the most significant
are nitrate and nitrite with coefficients of − 1.784 and
1.456, respectively, indicating that observations with
high nitrate values have low scores for this function.
The first discriminant function mostly discriminates be-
tween SP1 and the others by means of the pH values;
since SP1 observations have low pH, their scores for this
function are low. The second function provides a dis-
crimination for approximately 10 observations of SP3;
since this sample point has the highest nitrate mean
(Fig. 3), these observations have low scores.

The DA results indicate that there was no reliable
classification for the water quality data for the different
lake sampling points, indicating the lack of a significant
spatial variation in the lake’s water quality. These results
may be associated with the continuous mixing of the
lake waters due to advection and diffusion processes
driven predominantly by wind, which are exacerbated
in shallow lakes with a mean depth < 3 m (Cajititlán
Lake has a mean depth of 3.87 m) (de Anda et al.
2019a). Momentum transferred by wind via surface
shear stresses generates waves, currents, and associated
turbulence, which cause mixing of the lake water and
diminishes spatial variations (Liu et al. 2018).

A CAwas performed on the vector of means for each
sampling point (see Table 3), and the resulting dendrogram
is shown in Fig. 4. A useful criterion to select the number
of statistically significant clusters is to consider the groups
such that (Dlink/Dmax)*100 < 60. In this case, there
would be only two clusters, one of which groups sampling
points two to five, and the remaining group is made up of
SP1. If the inequality (Dlink/Dmax)*100 < 45 is consid-
ered, as presented by Yang et al. (2010) for Lake Dianchi
in China, there would be three clusters, one of which
groups SP2, SP3, and SP4, and two groups (SP1 and
SP5) with only one sampling point. These results are
consistent with the lake configuration, as sites SP2, SP3,
and SP4 are in the center of the lake, whereas SP1 is in the
extreme west and SP5 is in the extreme east.

Figure 3 presents spatial distribution models and the
plots of means of selected water quality parameters to give
a graphical interpretation of the spatial variation of the
means of these parameters (pH, nitrite, and nitrate). These
parameters were selected since the DA results suggest they
show the most spatial variation. Considering three clusters
(C1 with SP1; C2 grouping SP2, SP3, and SP4; and C3
with SP5), the values of pH increase from C1 to C3 (C1 <
C2 <C3).T
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These clusters have different characteristic pollution

sources. Along the lake shoreline, there are four opera-
tional wastewater treatment plants. The largest plant
treats approximately 60 L/s, and it is located closest to
SP1 within the community of SanMiguel Cuyutlán (see
Fig. 1), which receives sewage from a significant num-
ber of users and has been reported to work only inter-
mittently because of operation failures (de Anda et al.
2019a) and may be the reason why SP1 is separately
clustered from the remaining sampling points. As men-
tioned earlier, low pH values may be indicative of
anaerobic bacterial environments that develop in reac-
tors within treatment plants.

Of the 7 parameters for the second linear discriminant
function, the most significant were nitrate and nitrite.
Most of the nitrate and nitrite in the lake surface waters
result from runoff from agricultural land. Figure 1 shows
that agricultural activity is intense and consistent around
the lakeshore and that all of the regions of the lake are

connected to them, which might contribute to the fact
that the spatial variations of NO3

− and NO2
− do not

present as clear of trends as the spatial pH variations.
Temporal variations in water quality were further eval-

uated through DA. Temporal DA was performed after
dividing the entire data set into three seasonal groups.
Classification functions (Cfs) and matrices (CMs) obtain-
ed from the standard, forward stepwise, and backward
stepwise modes of DA are shown in Tables 9 and 10,
respectively. The standard stepwise mode Cfs using 12
discriminant variables yielded the corresponding CMs,
assigning 77.2% of the cases correctly. The forward
stepwise DA mode included 8 discriminant variables in
the classification function, with 76.92% of the cases
assigned correctly. However, in backward stepwise
mode, DA gave CMs with 77.51% correct assignations
using only five discriminant parameters (Table 10), with
little difference in match for each season compared with
the standard and forward stepwise modes. In the temporal
DA, Wilk’s lambda statistics were 0.342 for standard
mode, 0.348 for forward mode, and 0.369 for backward
mode. Thus, the temporal DA results suggest that con-
ductivity, hardness, nitrite, pH, and temperature are the
most significant parameters to discriminate between the
three seasons, which means that these five parameters
account for most of the expected temporal variations in
the lake water quality. Table 8 presents the standardized
coefficients for the linear discriminant functions of sea-
sonal variations. In this case, two discriminant functions
were estimated. For each stepwise mode, the significant
variables were the same as for the classification functions,
but in this analysis, the absolute value of each coefficient
is related to the importance of the variable in classifying
an observation. The following interpretations are given
for the functions obtained from the backward stepwise
mode. In the first discriminant function, temperature has
the most significant coefficient (0.991); thus, observa-
tions with high temperature will have high scores for this
function and vice versa. pH, total hardness, and nitrite
contribute negatively for the function but are less signif-
icant than temperature. For the second discriminant func-
tion, total hardness and nitrite have significant compara-
ble coefficients (− 1.227 and − 1.040, respectively), such
that an inverse relationship is suggested; that is, observa-
tions with high values for these variables will have low
scores for the second discriminant function and vice
versa. Figure 5 shows the scatterplot for the scores of
the two linear discriminant functions; a pattern exists with
overlapping zones for the data in the three different

Table 7 Summary of classification with cross-validation

Sampling points %Correct Sampling point assigned by
DA

SP1 SP2 SP3 SP4 SP5

Standard DA mode

SP1 57.35% 39 9 5 11 4

SP2 38.24% 8 26 9 9 16

SP3 26.47% 11 16 18 10 13

SP4 16.42% 11 17 8 11 20

SP5 37.31% 6 16 13 7 25

Total 35.21% 75 84 53 48 78

Forward stepwise DA
mode
SP1 55.88% 38 14 5 6 5

SP2 25.00% 14 17 7 9 21

SP3 22.06% 14 10 15 7 22

SP4 74.63% 16 20 6 5 20

SP5 47.76% 5 12 11 7 32

Total 31.66% 87 73 44 34 100

Backward stepwise DA mode

SP1 42.65% 29 9 11 8 11

SP2 8.82% 15 6 5 8 34

SP3 2.94% 14 5 2 10 37

SP4 4.48% 18 5 10 3 31

SP5 56.72% 13 4 7 5 38

Total 23.08% 89 29 35 34 151
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seasons. Observations in the wet season have higher
scores for the first discriminant function, followed by
cases in the hot-dry season, and then the cold-dry season
with lower scores (with an overlap during the last two
seasons). This pattern is expected since the highest mean
temperature occurs during the wet season (Fig. 6). On
average, the observations during the hot-dry season have
the lowest scores for the second discriminant function;
this agrees with the interpretation that this season has the
higher mean for total hardness.

The mean plots of selected parameters identified
by DA are presented in Fig. 6. As mentioned above,

parameters showed different patterns during the year.
A decrease in the average concentration of conduc-
tivity from the hot-dry season to the cold-dry season is
observed. The average total hardness has the highest
value for the hot-dry season. These trends in conduc-
tivity and hardness may be due to the effect of dilution
of minerals and solute content during and after the
rainy season. Because Cajititlán is a shallow lake
located close to the Tropic of Cancer, water level
variations between the dry and wet seasons are usu-
ally significant (de Anda et al. 2019a), and the dilu-
tion effects may be significant.

Fig. 3 Spatial distribution models and plot of the means showing spatial trends
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The nitrite average has slightly increasing variations
from the hot-dry season to the cold-dry season, even
though it is not statistically significant (shown by the
bars’ overlap). The nitrite increase in the water column
may be caused by increased water runoff in the wet
season. Superficial runoff is a seasonal pathway that
may transport fertilizers (Ouyang et al. 2006), which

can significantly increase the ammonium cation and
ammonia (present in most fertilizers) and nitrite and
nitrate due to the process of nitrification.

The average water temperature is higher in the wet
season compared to the hot-dry season and the cold-
dry season. At the same time, the average pH de-
creases from the hot-dry season to the wet season,
and then increases in the cold-dry season. pH may
increase due to the dragging of soil from the basin to
the lake during the wet season. The predominant soil
type is vertisol, which is alkaline because of its high
content of clays (IIEG 2018). At the same time, higher
temperature during the wet season would also result
in elevated rates of nutrient uptake and oxygen pro-
duction by blue-green algae, which would also in-
crease the pH. As temperature increases, algae density
levels may also increase, together with photosynthetic
processes, which may reduce the water carbon diox-
ide levels in the water column and thus increase its pH
(Qin et al. 2013).

In the studies performed by Singh et al. (2004) and
Shrestha and Kazama (2007), discriminant analysis was
used to find the most significant parameters to classify the
samples in temporal groups (seasons) and spatial groups
(sampling sites). Then an interpretation of the variability
between the groups was given for each parameter, but the
authors did not determine the importance of each water
quality parameter to determine the membership of water
quality data to some of the groups. In this study, the

Table 9 Classification functions for discriminant analysis of temporal variations

Standard mode Forward stepwise mode Backward stepwise mode

HDS CDS WS HDS CDS WS HDS CDS WS

Constant − 575.740 − 549.666 − 558.721 − 530.007 − 503.456 − 512.091 − 504.842 − 475.582 − 485.211
ALK 0.408 0.411 0.425 0.221 0.223 0.235

CL − 1.325 − 1.274 − 1.286
CON 0.107 0.098 0.112 0.034 0.025 0.039 0.074 0.065 0.081

BOD 0.221 0.192 0.176

COD − 0.110 − 0.113 − 0.113
HAR 0.622 0.557 0.530 0.459 0.396 0.369 0.644 0.586 0.567

NH3 3.414 3.920 3.290 4.542 5.036 4.396

NO3
− − 36.984 − 47.510 − 44.319 − 34.803 − 45.427 − 42.468

NO2
− 2381.109 2277.586 2274.520 1972.181 1874.019 1872.272 1958.124 1827.997 1807.614

PH 92.399 92.652 89.079 85.641 85.707 82.079 82.179 81.916 78.675

TDS − 0.066 − 0.071 − 0.071
T 3.037 2.591 3.914 2.588 2.152 3.464 2.524 2.097 3.360

Table 10 Summary of classification with cross-validation

Monitoring seasons %Correct Season assigned by DA

HDS CDS WS

Standard DA mode

HDS 65.22% 75 19 21

CDS 72.04% 17 67 9

WS 91.54% 11 0 119

Total 77.22% 103 86 149

Forward stepwise DA mode

HDS 63.48% 73 21 21

CDS 72.04% 16 67 10

WS 92.31% 10 0 120

Total 76.92% 99 88 151

Backward stepwise DA mode

HDS 64.35% 74 23 18

CDS 70.97% 14 66 13

WS 93.85% 8 0 122

Total 77.51% 96 89 153
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analysis was improved by adding the standardized coef-
ficients for linear discriminant functions and the
scatterplot of the scores for these functions, providing an
interpretation of the influence of some variables to classi-
fy the observations.

Conclusions

Water quality monitoring in many Mexican rivers and
lakes is relatively new, and the data generated are very
rarely analyzed and interpreted to generate more ef-
fective monitoring and management strategies. This

study contributes to the literature by providing a bet-
ter understanding of the temporal and spatial varia-
tions of Lake Cajititlán to improve the monitoring
strategies so that better decisions can be made and
measures can be implemented to improve the lake’s
water quality and protect its esthetic, social, environ-
mental, and economic value. Further multivariate wa-
ter quality studies of Lake Cajititlán should include
other important water quality parameters, such as
blue-green algae, chlorophyll, fecal coliforms, and
heavy metals.

The fact that Lake Cajititlán is a subtropical shal-
low endorheic body of water that receives a sustained

Fig. 4 Dendrogram for the vector
of the means for each sampling
point

Fig. 5 Scatterplot for the scores
of the two first linear discriminant
functions using the stand
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and significant amount of poorly treated municipal
wastewaters and other discharges of agricultural
drains and agricultural runoff during the rainy season,
results in important temporal variations of water qual-
ity parameters. No significant spatial variations were
identified in the water quality of the lake because of
lake mixing caused by wind, which may be a signif-
icant momentum transfer process for shallow lakes.
Variables such as biological oxygen demand, chemi-
cal oxygen demand and nutrient concentration are
strongly associated with the phenomenon of blue-
green algae growth in the lake. The presence of high
blue-green algae populations is the main cause of
important variations in the measured dissolved oxy-
gen concentrations of the surface lake waters. When

the dissolved oxygen measurements are made during
the first hours of the morning, the concentrations are
usually low due to the respiration of blue-green algae.
As the intensity of the light increases during the day,
the process of photosynthesis begins to dominate and
high concentrations of dissolved oxygen can be
measured.

In order to improve the analysis carried out, time-
series modeling could be used to detect trends and to
predict the quality of water. To provide a quick way to
assess the water quality of Lake Cajititlán, a widely
used water quality index (WQI) could be implemented
(such as the National Sanitation Foundation Water
Quality Index, NSF-WQI). This index is a performance
measurement that combines the information from

Fig. 6 Plots of means showing temporal trends
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significant physical, chemical, and biological parame-
ters into a functional form and it is a very practical
method to take into account the critical quality param-
eters of a body of water and to reduce large amounts of
data to a single number. Modified versions of the NSF-
WQI could be developed to be applied for local condi-
tions of Lake Cajititlán, to identify the change of trends
and reflect seasonal variations of water quality as well
as reduce the costs associated with monitoring water
quality parameters.
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