
An artificial neural network ensemble approach
to generate air pollution maps

S. Van Roode & J. J. Ruiz-Aguilar &

J. González-Enrique & I. J. Turias

Received: 28 March 2019 /Accepted: 17 October 2019
# Springer Nature Switzerland AG 2019

Abstract The objective of this research is to propose an
artificial neural network (ANN) ensemble in order to
estimate the hourly NO2 concentration at unsampled
locations. Spatial interpolation methods and linear re-
gression models with regularization have been com-
pared to perform the ensemble. The study case is based
on the region of the Bay of Algeciras (Spain). This area
is very industrialized and presents high concentrations
of traffic. Air pollution data has been collected from the
monitoring network maintained by the Andalusian Gov-
ernment in the region. On one hand, two totally different
methods have been used and compared such as inverse
distance weight (IDW) and least absolute shrinkage and
selection operator (LASSO) in order to generate maps of
pollutant concentration values. On the other hand, an
ensemble approach has been developed using the out-
puts of the previous models. The ensemble is based on
an ANN with backpropagation learning. An experimen-
tal procedure using cross-validation has been applied in
order to compare the different models based on several
performance indexes (R correlation coefficient, MSE,
MAE and d index of fitness) and together to Friedman
test and Bonferroni correction. The results reveal that
the proposed ensemble approach presents better perfor-
mance than single models in general terms. Avalidation

procedure has been conducted using a leave-one-out
strategy using each monitoring station. IDW method
presents an average value of R equals 0.72 and a max-
imum R equals 0.87, a minimum MSE equals 78.00, a
minimum MAE equals 5.841 and a maximum d equals
0.913. LASSO presents an average value of R equals
0.76 and a maximum R equals 0.86, a minimum MSE
equals 59.13, a minimum MAE equals 5.490 and a
maximum d equals 0.900. Finally, the ANN ensemble
shows an average value of R equals 0.77 and a maxi-
mum R equals 0.87, a minimum MSE equals 54.05, a
minimum MAE equals 4.972 and a maximum d equals
0.915. The main objective has been to produce adequate
atmospheric pollutant concentration maps and, there-
fore, to obtain estimations for locations that are distinct
to themonitoring stations. Another objective has been to
have in hand a system to produce robust measurements.
This kind of system could be useful for missing data
imputation and to find out reading errors (i.e. unexpect-
ed deviations or calibration problems) in some of the
nodes of a network.
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Introduction

Nowadays, air pollution is one of the most important
environmental problems and, therefore, particular atten-
tion should be paid to the promotion of monitoring and
control air pollution strategies and systems. It is defined
as the presence of certain substances harmful to humans
and other living beings in the atmosphere. Air pollution
comes from natural causes, such as the eruption of
volcanoes, but especially comes from human activities,
such as industry and the burning of fossil fuels, such as
coal. Due to the great development of current industries,
it is becoming increasingly difficult to stop it.

In Europe, the emissions of many atmospheric pol-
lutants have been reduced significantly during the last
decades, and as a result air quality has improved
throughout the region. However, air pollution concen-
trations remain very high and air quality problems per-
sist. Most of the European population lives in urban
areas where air quality levels are exceeded. Bay of
Algeciras region has important population centres with
a population of approximately 300,000 inhabitants. The
area shows a high concentration of industries from
different sectors. This important activity and the current
traffic require the necessary control of their environmen-
tal impact.

It is widely acknowledged that particles, nitrogen
dioxide and ozone are the three pollutants that most
affect human health (Donahue 2018; Sellier et al.
2014). The effects produced by long exposures to these
pollutants range from respiratory system affections to
premature death. Nitrogen dioxide pollutant (NO2) has
been selected in this research since it is one of the most
harmful contaminants. It is also one of the main green-
house gases which has potentially harmful effects on the
ecosystem, biodiversity and human livelihood on the
planet (Mora et al. 2013). The World Health Organiza-
tion (WHO) establishes the annual NO2 threshold limit
cannot exceed 40 μg/m3 and the hourly NO2 threshold
limit of 200 μg/m3, a value that should not be exceeded
more than 18 times per year. 2008/50 EU Directive sets
that the Member States should apply air pollution re-
duction policies to ensure fulfillment of the limit values.
Therefore, there is a need to make environmental mea-
surements for planning, risk analysis and decision-
making.

Nowadays, a very important task is environmental
monitoring. A wireless sensor network consists of a
number of spatially distributed sensor nodes for

monitoring environmental conditions. These collected
data are sent to a central location. On the one hand,
mapping environmental or pollution values are possible
due to the volume and the accessibility to the remote
sampled data. On the other hand, failures in the network
occur and missing data are commonly found. Thus, an
interesting approach would be to develop algorithms
capable of estimating values in unsampled locations.

Considering the importance of estimating NO2 con-
centrations, the present study has been undertaken to
compare the accuracy of two different techniques such
as inverse distance weight (IDW) and least absolute
shrinkage and selection operator (LASSO) and a new
approach based on an ANN ensemble of the results of
the individual methods. The main objective of this study
is to estimate the air pollution concentrations in
unsampled locations from sampled locations.

There are many possibilities to interpolate and to
generate maps. Hence, selecting the correct method for
a given input data could be a difficult task. Dubois and
Galmarini (2005) performed a spatial interpolation com-
parison exercise where they compared from splines,
kriging algorithms, to neural networks. Li and Heap
(2014, 2011, 2008) listed different techniques (non-
geostatistical interpolators, geostatistical interpolators
and combined methods) as possible spatial interpolation
or prediction methods. Tadić et al. (2015) also compared
geostatistical and machine learning methods for inter-
polation and tested the effectiveness of hybrids between
them.

Spatial interpolation methods are strongly recom-
mended from many different approaches in the study
of environmental sciences, as mentioned above. IDW is
a spatial interpolation technique (Shepard 1968). It is
based directly on the neighbouring sampled values. The
value of the study variable in a new location can be
derived as a weightedmean inversely proportional to the
distance. Kriging (Matheron 1965) is another popular
spatial interpolation method where weights are calculat-
ed objectively considering statistical concepts. It as-
sumes that the distance or direction between points
reflects a spatial correlation that can be used to explain
the variability of a phenomenon. Normally statistical
methods such us kriging explain phenomena better,
but in other cases, deterministic methods such us IDW
can perform the same or even better (Hengl et al. 2009).
The selection of the most suitable interpolation method
depends on the objectives to be achieved and the sample
type. The sample size is one of the main aspects to
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consider. Kriging method supposes an improvement in
samples bigger than 30-point data; nevertheless, IDW
produces better results in smaller samples. Thus, kriging
has not been carried out in this research. These tech-
niques have been commonly used in the estimation of
pollutants (de Mesnard 2013; Gong et al. 2014). Yu
et al. (2018) compared different methods, which include
IDW, for developing spatiotemporal air pollutant con-
centration estimates of several pollutants. They conclud-
ed that IDWand kriging methods present similar results.
Lastly, these methods are suitable for dense monitoring
network areas. Gómez-Losada et al. (2019) used hidden
Markov models to estimate the exposure of four air
pollutants (NO2, PM10, SO2 and O3). Then, their spatial
distribution was performed combining the interpolation
results of ordinary kriging and inverse distance
weighting.

LASSO is grouped within linear regression models
(Tibshirani 2011; Tibshirani 1996). It uses the L1 regu-
larization technique and automatically performs a vari-
able selection. LASSO improves the performance of
common multiple linear regression. Previous authors
consider linear regression models as one of the most
useful techniques in environmental sciences (Li and
Heap 2014; Li and Heap 2011). Regression models are
usually used to generate soil characteristic maps such as
concentrations of heavy metals and organic matter con-
tent (Jiang et al. 2019; Piccini et al. 2018). Other authors
(Aznarte 2017; Naughton et al. 2018; Shahbazi et al.
2018; Sharma et al. 2018) use regression techniques for
forecasting or to compute imputations of missing data.
Beelen et al. (2009) compared the validity of ordinary
kriging, universal kriging and regression mapping in
order to produce maps of air pollution. Universal
kriging produced better results than regression
mapping and ordinary kriging for NO2, PM10 and O3.
They deduced it is possible to develop detailed maps of
air pollution. Contreras and Ferri (2016) used different
techniques for forecasting air pollution including linear
regression and LASSO and, furthermore, the predictions
have been interpolated all around the city using IDW
and kriging. Ma et al. (2019a) used a standard land use
regression to represent the NO2 dispersion in a city. This
model outperformed IDW and ordinary kriging. They
concluded this approach is a robust option for modelling
and mapping spatial concentrations of air pollutants in
large areas with different designs and configurations.
Requia et al. (2019) compared the predictive capabilities
of ordinary geostatistical interpolation (ordinary

kriging), hybrid interpolation (empirical bayesian
kriging and land use regression) and machine learning
techniques (random forest-based regression) for estimat-
ing PM2.5 components. The random forest model
reached the best performance, the next was the hybrid
model and finally ordinary kriging.

Ensemble methods are machine learning techniques
that combine multiple models in order to improve pre-
dictions or estimations, reducing variance and reducing
bias. These methods are used to improve the stability
and accuracy of an experimental procedure. There are
different methods to create ensembles such as bagging
(Breiman 1996), boosting (Drucker et al. 1994) or stack-
ing (Ting and Witten 1999; Wolpert 1992). In the liter-
ature, ensemble methods have been performed
obtaining good results predicting and generating maps;
for example, Wang and Song (2018) showed that en-
semble model is superior to the base model and
improves predictions and mapping accuracy; similarly,
Healey et al. (2018) perform a stacking approach where
an ensemble of maps is used to improve the accuracy
using anANN as a meta-model. ANNs are used inmany
different fields in order to study non-linear relations, and
are commonly used to forecast airborne pollutant con-
centrations in the atmosphere (Cabaneros et al. 2019;
Feng et al. 2015; J. Ma et al. 2019b; Martín et al. 2008;
Muñoz et al. 2014; Russo and Soares 2014; Van Roode
et al. 2020). Alimissis et al. (2018) use an ANN in order
to produce the spatial estimation of O3 and determines
that ANN outperforms multiple linear regression (MLR)
for air pollution forecasting. He and Christakos (2018)
proposed a synthetic approach for spatiotemporal PM2.5

mapping. This approach combines the following meth-
od among other: a land use regression and an ANN. Ma
et al. (2019b) proposed an ANN approach to interpolate
the spatial distribution of PM2.5. This work showed that
the ANN model achieved better results compared to
traditional spatial interpolation techniques such as
IDW or kriging. Qi et al. (2019) suggested a hybrid
model for PM2.5 spatiotemporal forecasting based on
two types of ANN models.

So far, few studies have been conducted in this area
related to air pollution monitoring. Most of the works
have been developed by the authors of this paper. In
these previous works, the authors focused on the esti-
mation and prediction of several air pollutants in the
main cities of the study area, such as Algeciras and La
Linea de la Concepción. The different works address
estimation and prediction of different atmospheric
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pollutants in certain locations and considering spatial,
meteorological and traffic relevance (García et al. 2011;
González-Enrique et al. 2019a, 2019b, 2019c, ; Martín
et al. 2008; Muñoz et al. 2014; Turias et al. 2006, 2017,
2008; Van Roode et al. 2018, 2020).

The remainder of the paper is organized as follows:
“Area and data description” gives a brief description of
the database and the study area. “Methods” discusses
the applied methodology. “Experimental procedure” de-
scribes the experimental procedure performed and the
results obtained are in “Results and discussion.” Finally,
conclusions are drawn in “Conclusions.”

Area and data description

Bay of Algeciras is the study area in this work which is
located at the southern end of Spain (Europe). Its climate
is Mediterranean and the predominant winds blow from
East and West. The area has important centres with a
population of almost 300,000 inhabitants in 2018. It is a
very complex scenario. It is one of the most industrial-
ized areas in the South of Spain. There are industries
from different sectors such as an oil-refinery, different
petrochemical factories and an important steel factory,
among other important activities. In addition, it is locat-
ed at the most important trading port of the

Mediterranean Sea. The Port Bahía de Algeciras is also
the fifth in Europe with a total freight traffic of
9 ,390,000 tons in 2018 (h t tp : / /www.apba .
es/estadisticas). The proximity to the African continent
(a distance of 14 km between its shores) makes this port
a link between continents, involving an important
racking of heavy tracks (approximately 325,000 ro-ro
vehicles per year). A highway run from southwest to
northeast connecting the different population, industry,
administration and work centres and becoming the
backbone of the bay. The road supports an average daily
intensity of almost 70,000 vehicles/day, of which heavy
trucks are 4000 (Dirección General de Carreteras 2017).
Figure 1 shows the land uses.

Pollution data have been provided by the Environ-
mental Agency of the AndalusianGovernment (research
project TIN2014-58516-C2-2-R supported by MICINN
Ministerio de Economía y Competitividad-Spain). Data
has been collected with a 1-h sampling resolution during
6 years (2010–2015). The Andalusian Automatic Air
Quality Network (Spain) is composed of a series of
monitoring stations that measure emission levels of
different pollutants. There is a data logging package in
these locations, which collected the information of all
sensors and sends it, via GPRS or internet, to the Air
Quality Data Centre. Our local monitoring network is
composed of 14 air pollution monitoring stations

Fig. 1 Locationmap.Monitoring
network and land uses

Environ Monit Assess (2019) 191: 727727 Page 4 of 15

http://www.apba.es/estadisticas
http://www.apba.es/estadisticas


distributed throughout the area. Table 1 lists each air
pollution monitoring station, its name and its position in
UTM coordinates. Figure 1 shows also the monitoring
network. No imputation methods have been used.

Methods

This study proposes a two-stage ANN ensemble con-
sidering the combination of two different methods in
order to produce air pollution maps. On the one hand,
IDW is a spatial-based interpolation method and, on the
other hand, LASSO is a multiple linear regression meth-
od. A stacking ensemble has been developed using a
BPNN as a meta-model and using the outputs (of the
first stage) obtained by the previous models described.
Both simple techniques have shown satisfactory results
in the estimation of air pollution. Thus, the merging of
the two techniques can add the strengths of each, im-
proving the overall performance. Calculations have per-
formed using NO2 values measured in the air pollution
monitoring station (Table 1) and distances between lo-
cations. The different methods are described briefly
below and more thoroughly in the cited references.

Ensemble

It is widely known that individual models usually have
worse performance than ensemble models. Ensembles

are machine learning techniques that merge different
methods. The methodology is used to improve predic-
tions or estimations, reducing the estimated error vari-
ances and reducing bias. There are different methods
such as bagging (Breiman 1996), boosting (Drucker
et al. 1994) or stacking (Ting and Witten 1999;
Wolpert 1992). In bagging approach, different random
subsets from the original dataset with replacement are
generated, the same learning method on each sample is
trained later and, finally, outputs of each model are
simply weighted. This technique decreases the variance
but does not improve the prediction. Boosting is sim-
ilar to bagging. In boosting approach, different random
subsets with replacement are also generated but train-
ing models are applied sequentially to each subset
considering the previous model performance and, fi-
nally, outputs of these models are averagely weighted.
In this case, a stacking approach has been used. It is
similar to boosting. In the first step, outputs of different
models (base-method) are performed and, in a second
step, these outputs are used as inputs of another model
(meta-model). Outputs of this last model are the final
output values of the experiment. These models are able
to understand the unstable behaviour of the variables.
Thus, base-method outputs are combined to estimate
the difficult behaviour of air pollution in this work.

As mentioned above, a stacking technique has been
used in this case. This approach introduces the concept
of a meta-learner. First, the base-learned models are
trained based on a complete training set and then the
meta-learned model is trained based on the outputs of
the base-learned models as inputs. There are different
approaches on which base models and meta-models are
used (Sun and Li 2008; Woźniak et al. 2014)

In this paper, two different models have been used as
basemodels and another learner model as a meta-model.
LASSO and IDWare the base-learner models. As meta-
model, the approach uses an artificial network model
(ANN) based on the outputs of the previous models to
perform estimates in new locations of the area

IDW

A spatial interpolation method is a procedure in which
the value of a phenomenon is estimated in locations not
sampled from other sampled locations within an area.
There are different methods: deterministic, geostatistic
or based on experts (Hengl 2009). All are based on the

Table 1 Location of monitoring network

Air pollution monitoring station name X UTM Y UTM

1 Algeciras EPS 279239 4001847

2 Campamento 286237 4006469

3 Cortillijos 280980 4007826

4 Escuela Hostelería 285698 4009196

5 Colegio Los Barrios 276184 4007408

6 Colegio Carteya 285021 4009758

7 Rinconcillo 280289 4004653

8 Palmones 281205 4006069

9 Estación San Roque 281534 4010206

10 El Zabal 289371 4005695

11 Economato 285910 4007229

12 Guadarranque 283147 4006841

13 La Línea 288757 4004181

14 Madrevieja 283811 4009303
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idea that closer locations are more related than locations
that are further away (Burrough and McDonnell 1998).

IDW is an interpolation method based on
neighbouring sampled values (Shepard 1968). The esti-
mations are made as a weighted average, as is shown in
Eq. (1).

Z 0
k s0ð Þ ¼ ∑

n

i¼1
wi s0ð Þ � Z sið Þ ð1Þ

where wi is the weight for neighbour i, s0 is the
location of a new point and si the location of a known
sample point. The sum of weights must be equal to one
to ensure that the interpolation is unbiased. The weights
are determined according to the inverse distance from
sampled points to the new point, as is shown in the Eq.
(2).

wi s0ð Þ ¼
1

dβ s0; sið Þ
∑n

i¼1

1

dβ s0; sið Þ
; β > 1 ð2Þ

where d(s0, si) is the distance between the new point
and the known sample point and β is a parameter that is
used to highlight the spatial relationship between points.
Farther points will be less important larger β. The pa-
rameter has an arbitrary character. Some authors deter-
mine which exponent should be chosen depending on
what form of pollution you want to study (de Mesnard
2013). The established limits are between 1–4 for air
pollution.

There are several criteria to select the number of
neighbouring points. The selection of criteria is very
important since the result of the interpolation strongly
depends on it. One approach is to use all sampled points.
Another approach would be to establish the maximum
radius of the search from the point to be estimated. The
remaining problem is to estimate that maximum distance.
In this work, all available sampled points were used to
compute the new measurement at a point (x, y, z, t).

LASSO

LASSO is a multiple linear regression method that uses
a regularization term in order to avoid overfitting
(Tibshirani 1996). An overfitted model is a model that
contains more parameters than it really needs to explain
the data. If a model is overfitted, the results are too
dependent on training data and the model presents a

worse behaviour on new unseen data. Therefore, the
models suffer a lack of generalization. Regularization
methods correct the overfitting issue. They impose a
penalty on the different parameters of the model to
reduce the model freedom. In this way, the model im-
proves the generalization capability. The methods pre-
sented below use the following form of penalization:

– L1-norm penalty (used by LASSO)
– L2-norm penalty (used by Ridge)
– L1-norm and L2-norm penalty (used by Elastic net)

The different methods solve the following optimiza-
tion problem, as shown in Eq. (3).

min
β

1

2 N
∑
N

i¼1
yi−βxið Þ2 þ λ α ∑

k

j¼1
βij j þ λ

1−α
2

∑
k

j¼1
βi

2

" #
ð3Þ

where yi is the response variable, xi = (xi1, xi2, …,
xip)

T is the input variable vector for i = 1, 2, …, N, β =
(β1, β2,…, βk)

T is the model coefficient vector for j = 1,
2, …, k and λ is the hyperparameter that controls the
penalty term. Lambda is zero or greater than zero. The
higher the lambda value, the bigger is the penalty and
thus coefficients are reduced. The α parameter depend
on the method. LASSO uses α equal to 1, Ridge uses α
equal to 0 and Elastic net uses other values of α.

In this case, LASSO is the method tested. In LASSO,
with larger values of lambda, more coefficients are
shrunk to zero. Thus, LASSO is also a feature selection
method selection because reducing coefficients to zero
remove them from the model.

ANNS
ANNs are one of the main tools used in machine

learning. Its approach tries to simulate the biological
nervous system behaviour. They are composed of a
number of artificial neurons, or units, arranged in sev-
eral layers and linked by synaptic weights. A typical
ANN architecture includes an input layer, one or more
hidden layers and an output layer. Feedforward multi-
layer perceptron using backpropagation (Rumelhart
et al. 1986) is the most used ANNs model.
Backpropagation networks are considered universal
approximators (Hornik et al. 1989) and, in this sense,
they are able to perform any non-linear relationship
between inputs and outputs. In normal performance,
the values of the inputs cross the network from front to
back. The activation function in each layer determines
the output value of each neuron that becomes the input
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value for neurons in the next hidden layer connected to
it. Backpropagation algorithm calculates the difference
between output values and real output values to change
the weights of the connections between the artificial
neurons. The process is repeated until the error is min-
imized on the output nodes over all the patterns present-
ed to the neural network. Levenberg-Marquardt is the
minimization algorithm used in this work. Overfitting
has to be avoided using an adequate experimental pro-
cedure as the one explained below.

Experimental procedure

The aim of this study is to estimate the hourly NO2

concentration in unsampled locations (x, y, t) in order
to produce air pollution maps with many objectives,
such as missing data imputation and robust measure-
ment. IDW, LASSO and an ANN ensemble were used
as estimation methods.

A flowchart that describes the experimental proce-
dure is shown in Fig. 2. The main points of the exper-
imental procedure are described as follows:

(a) IDW and LASSO have been used as base models.
Two variable types have been used: NO2 concen-
trations at each monitoring station and distances to
eachmonitoring station have been used to calculate
the NO2 concentration at a certain point.

(b) Outputs of base models are used as inputs to a
meta-model (ensemble). An ANN has been used

as the meta-model. ANN model consists of a
backpropagation feedforward multilayer neural
network (BPNN). A resampling procedure is used
to compute the optimal number of hidden units
(using only one hidden layer). Authors have suc-
cessfully used this procedure in order to guarantee
independence of the results and to avoid overfitting
(Martín et al. 2008; Muñoz et al. 2014; Turias et al.
2008). The BPNN used contained a single hidden
layer and were performed using a different number
of hidden neurons (from 1 to 20). Friedman test
and Bonferroni correction have been performed to
select the optimal number of hidden neurons in the
experiment (14 neurons).

(c) IDW is a deterministic model and hence weights
are estimated empirically but it is necessary to
determine the parameter β. A leave-one-out cross-
validation has performed to determine this param-
eter, as explained below. A trial-error search meth-
od has been used to find out the best value of beta
resulting in a value equal to 2.3. It was proved that
this value is within the limits previously
established in order to interpolate air pollution.

(d) In the case of LASSO and ANN, it is necessary
to determine the parameters of each model. For
that purpose, the sample has been divided into a
subset for training-validation and another subset
for testing. The testing subset is 25% of the data
selected randomly. The procedure has been car-
ried out 4 times. A k-fold cross-validation is
used with these training-validation subsets to

Fig. 2 The process described in
the experimental procedure
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select the best model. In the case of LASSO, the
best lambda is selected, and in the case of
ANNs, the number of hidden neurons is select-
ed. The method relies on dividing the original
sample into k equal-sized subsamples. A single
subsample is removing for validation, the model
and the remaining k–1 subsamples are used for
training data. The process is repeated k times; in
this way, each subset is used once for validation.
In this case, k equals to 2 has been used. Once
the best model has been obtained, the model is
re-trained with the whole no-test subset (train-
ing-validation). Finally, the model is tested with
the reserved test subset. It is repeated 2 times
due to the randomness of the experiment.

(e) A leave-one-out (LOO) validation strategy has
been performed to assess the accuracy of all
methods. The method relies on removing one data
point from the data set and estimating the value of
this point with the remaining known values. In this
case, the procedure is carried out for each sample
station attempting to estimate its value from the
remaining sample stations.

(f) As a result, NO2 concentrations have been estimated
for the whole time series and the parameters R,MSE,
MAE and d have been calculated for unseen data not
used for training and validation purposes in order to
evaluate the generalization capabilities of themodels.
These performance indexes are shown in Eqs. (4–7).

R ¼
∑N

i¼1 Zi−Z
� �

Z 0
i−Z

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Zi−Z
� �2

∑N
i¼1 Z 0

i−Z
� �2

r ð4Þ

MSE ¼ 1

N
∑N

i¼1 Z 0
i−Z

� �2
ð5Þ

MAE ¼ 1

N
∑N

i¼1 Z
0
i−Zij j ð6Þ

d ¼ 1−
∑N

i¼1 Z 0
i−Zið Þ2

∑N
i¼1 Zi−Z

��� ���þ Z 0
i−Z

��� ���� � ð7Þ

where Z is observed value and Z’ is the estimated
value. The R index has a value between + 1 and – 1. A
value of ± 1 indicates total linear regression between Z
and Z’, and 0 indicates no linear regression. The index
MSE represents the average squared difference between
the estimated values and the estimator (Lehmann and
Casella 1998). The index MAE represents the average
absolute error between the estimated value and the real
value. Finally, the index d varies between 0 and 1. A
value of 1 indicates a perfect match and 0 indicates no
agreement at all (Willmott 1981).

Spatial estimation is a process of applying an algo-
rithm to an array of grid nodes (point-to-point spatial
estimation). The grid represents the domain of interest.
In this case, base models have been performed to esti-
mate the value in each node (step (a)) and then meta-
model has been performed to produce a final value in
each node (step (b)), as shown Fig. 3.

Results and discussion

The main objective of this work has been to estimate air
pollution concentration in unsampled locations in order
to produce air pollution maps. Furthermore, the present
study has been undertaken to compare the performance
of the proposed two-stage approach with individual
IDW and LASSO techniques.

Asmentioned above, parametersR,MSE,MAE and d
have been calculated once the data have been estimated
for the whole time series. Table 2 shows the aforemen-
tioned performance indexes and, furthermore, their re-
spective mean and standard deviation are obtained con-
sidering of each model.

Fig. 3 Spatial estimation in an
unsampled location using
estimations from the base models
first (step (a)) and using a meta-
model (ANN) later (step (b))

Environ Monit Assess (2019) 191: 727727 Page 8 of 15



The performance indexes have been calculated for
each station in order to study the spatial behaviour of
models. Each station has been left out using a LOO
procedure. The proposed two-stage model and the two
individual models (IDWand LASSO) have been carried
out and an estimation of the concentration of NO2 was
computed for each station. Performance indexes have
been computed using the model results and the real
concentration values measured at each station. Also,
the average of each model performance indexes has
been calculated. The different models show similar av-
erage values but the ANN ensemble always presents
better results, then LASSO and finally IDW. Likewise,
the standard deviation of the performance indexes of
each model has been calculated. The standard deviation
of the performance indicates how stable a model is. For
example, IDW presents maximum R and maximum d
values greater than LASSO but its averages values are
lower than LASSO values. The ANN ensemble presents
the lower standard deviations.

The general results of each model are commented
below. Simple models (LASSO and IDW) present sim-
ilar performances. ANN ensemble model has
outperformed simple models for all parameters. This
model presents the most stable results since the standard
deviation of its performance indexes are the lowest.
IDW presents an average R equals 0.729, LASSO an
average R equals 0.759 and the proposed ANN ensem-
ble an average R equals 0.774. IDW presents an average
MSE equals 158.13, LASSO an average MSE equals
121.62 and the ANN ensemble an average MSE equals
115.05. IDW presents an average MAE equal to8.494,
LASSO an average MAE equals 7.615 and ANN

ensemble an average MAE equals 7.180. IDW presents
an average index d equals 0.817, LASSO an average d
equals 0.845 and ANN ensemble an average d equals
0.861. The best results of the performance indexes for
each monitoring station are marked in bold in Table 2.

A colour performance ranking has been performed as
shown in Table 2. The ranking sorts the results of each
index considering the three methods. The ranking shows
a range of colours from red to blue where intense red
means the worst result and intense blue means the best
result obtained. Stations 6, 7, 8, 9 and 10 show the best
results while stations 1, 12 and 13 show the worst
results. The general performances have been represent-
ed graphically according to the spatial distribution of
monitoring stations, as shown in Fig. 4. Figure 4 repre-
sents the overall performance of each of the models with
different sized circles according to the spatial distribu-
tion ofmonitoring stations, as mentioned above. Smaller
circles represent the worst general results and larger
circles represent the best general results according to
the rest of the stations. All methods present similar
behaviour according to the monitoring station locations.
As discussed above, stations 1 and 12 present the worst
results. Station 1 is far from the rest of the stations and
thus the methods extrapolate to calculate the value at
that point. IDW model tends to an average value at
points located outside the area defined by the sampling
sites. LASSO and ANN ensemble tend to limit values in
the points located outside the area defined by sampling
locations (see Fig. 5). Station 12 is located in the emis-
sion focus so it records the highest concentration peaks.
It is surrounded by other monitoring stations and the
whole area is highly influenced by easterly and westerly

Table 2 Results of the model performance indexes (R, MSE, MAE and d) for each monitoring station. Best values in bold

R MSE MAE d

station IDW LASSO ANN IDW LASSO ANN IDW LASSO ANN IDW LASSO ANN

1 0.572 0.659 0.715 425.32 263.79 228.98 14.802 12.657 11.169 0.675 0.741 0.794
2 0.711 0.734 0.736 140.21 114.00 116.71 8.211 7.532 7.547 0.819 0.846 0.851
3 0.700 0.737 0.735 151.10 128.45 130.01 9.191 7.766 7.879 0.811 0.846 0.846
4 0.736 0.757 0.770 164.82 138.03 131.99 8.702 8.474 8.036 0.825 0.835 0.854
5 0.620 0.727 0.755 116.22 75.37 66.98 7.309 6.220 5.474 0.772 0.846 0.858
6 0.757 0.804 0.831 139.88 75.14 66.65 8.119 5.943 5.464 0.844 0.879 0.901
7 0.865 0.861 0.871 78.00 83.95 75.61 5.841 6.383 5.933 0.913 0.900 0.915
8 0.797 0.818 0.819 132.73 112.18 111.27 7.377 7.003 6.761 0.861 0.884 0.889
9 0.797 0.805 0.830 93.67 59.13 54.05 7.145 5.747 4.972 0.848 0.895 0.903
10 0.840 0.785 0.810 81.42 99.98 85.73 6.559 7.087 6.551 0.901 0.829 0.872

11 0.728 0.725 0.736 134.62 108.92 107.62 8.338 6.581 6.568 0.823 0.835 0.846
12 0.667 0.667 0.663 209.12 204.22 206.07 9.447 9.790 9.650 0.775 0.802 0.799

13 0.776 0.772 0.781 235.42 175.63 166.27 10.509 9.931 9.243 0.787 0.820 0.844
14 0.635 0.777 0.781 111.30 63.92 62.81 7.361 5.490 5.277 0.788 0.878 0.880

mean 0.729 0.759 0.774 158.13 121.62 115.05 8.494 7.615 7.180 0.817 0.845 0.861

std 0.085 0.056 0.055 88.72 58.18 54.06 2.185 2.005 1.850 0.059 0.042 0.036

max 0.865 0.861 0.871 78.00 59.13 54.05 5.841 5.490 4.972 0.913 0.900 0.915

Environ Monit Assess (2019) 191: 727 Page 9 of 15 727



Fig. 4 General model
performances according to the
spatial distribution of monitoring
station. The size of the circles
presents the overall performance
of each model
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Fig. 5 NO2 concentration values (μg/m3) in t using the following methods: a IDW, b LASSO and c ANN ensemble. Maps (2D) and
different perspectives (3D) are shown in order to understand the different model performances.
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winds. Stations 6, 7, 8, 9 and 14 located around the main
focus (station 12) present the best average performance.

Maps and different perspectives generated by each
model are shown for an instant of time in Fig. 5. Simple
models (LASSO and IDW) have similar performances
in general but it can be noticed that surfaces generated
by each model have completely different behaviour. On
the one hand, IDW can fit better the local trends of the
data and the result values are always within the range of
the database domain. Then, estimated and measured
values match exactly at each monitoring location. On
the other hand, LASSO shows a global trend for the
whole area and sometimes the output values can fall
outside the range of given values. Estimated and mea-
sured values do not match exactly at monitoring loca-
tions. Therefore, and in order to improve the results, a
staking ensemble has been proposed. The objective here
has been to develop a model capable of weighing the
outputs of simple models. The idea is that ANN learns
the relationship between estimated value errors (obtain-
ed with IDW and LASSO) and real values. ANN en-
semble model generates a surface that presents an inter-
mediate (and more general) behaviour. The ensemble
takes the LASSO global trend but is influenced by local
peaks generated by IDW. As has been commented
above, this model presents a better performance against
a simple model.

Figure 6 shows the measured values versus estimated
values by the three methods for any period. The mea-
sured and estimated values for January 2015 have been
represented for all air pollutionmonitoring stations. This
period has been selected randomly in order to visualize
results. Note that models are able to fit adequately the
real values. Models are quite adapted to the different
peaks and valleys that the real time series present.

Asmentioned in Section 1, Yu et al. (2018) compared
different methods. They obtained better-suited results
for secondary pollutants than for primary pollutants;
for example, average R2 > 0.85 for PM2.5 but R2 <
0.35 for NO2. Ma et al. (2019a) used a regression model
for a city obtaining an R2 of 0.86 and RMSE of 3.53 μg
m−3 considering a leave-one-out cross-validation. A
value of R2 slightly higher than 0.7 was obtained in
the work of Requia et al. (2019) estimating PM2.5 con-
centrations. Also, Qi et al. (2019) using a hybrid model
obtained an R2 of 0.72 for PM2.5 estimations. In this
work, NO2 estimations reach a maximum average R2

value of 0.76.

Conclusions

As commented above, the main objective of this
work has been to propose an ANN ensemble in order
to estimate the hourly NO2 concentration at
unsampled locations. In addition, spatial interpola-
tion methods (IDW) and linear regression model with
regularization (LASSO) have been compared and
then combined using an ANN as a meta-learner.
The following concluding remarks can be made from
the results discussed above:

& IDW presents R values from 0.572 to 0.865, MSE
values from 78.00 to 425.32, MAE values from
5.841 to 14.802 and d values from 0.675 to 0.913.
LASSO presents R values from 0.659 to 0.861,MSE
values from 59.13 to 425.32, MAE values from
5.490 to 12.657 and d values from 0.741 to 0.900.
ANN ensemble presents R values from 0.663 to
0.871, MSE values from 54.05 to 228.98, MAE
values from 4.972 to 11.169 and d values from
0.794 to 0.915.

& The standard deviation of the results has been cal-
culated in order to indicate how stable the models
are. ANN ensemble is the most stable model due to
its standard deviation is lower. Comparing the base
models, LASSO presents better average perfor-
mance indexes than IDW. Nevertheless, IDW pre-
sents maximum R and maximum d values greater
than LASSO and LASSO presents minimum MSE
and minimum MAE values lower than IDW. LAS-
SO is most stable than IDW considering their stan-
dard deviation.

& ANN ensemble outperforms base models in all
stations. The model shows an important im-
provement at station 1, which is the station lo-
cated further away and that presents the worst
results. The ensemble model was able to increase
R by 25% and d by 18% and was also able to
decrease MSE by 46% and MAE by 24.5%. The
improvement was not so substantial in the rest of
the stations.

& The results obtained with the proposed ANN en-
semble were very satisfactory achieving an R coef-
ficient above 0.80 in most of monitoring stations.
The results were always computed for test or unseen
data within a cross-validation procedure and a LOO-
station strategy.
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Fig. 6 Measured hourly values (y) vs. estimated hourly values (IDW, LASSO and ANN ensemble) for January 2015. x axis represents the
days of January
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& The base models present very similar performances
(similar values of R, MSE, MAE and d) but generate
completely different surfaces. IDW generates an
abrupt surface strongly influenced by local values
of sampling stations while LASSO generates a
smooth surface of average values.

& The meta-model (ANN ensemble) presents the best
and the most robust results. The model creates a
mixture surface from the other two previous sur-
faces. The new surface presents an intermediate
and better behaviour.

& The interpolation performed using IDW produced
values always within the range of the database do-
main; however, the interpolation through LASSO
and ANN models can produce values outside the
range of given values.

& Models have very good results within the area de-
fined by sampling locations. Nevertheless, the per-
formance of the model decreases for points furthest
from sampling location centroids. Stations 6, 7, 8, 9
and 10 show the best results while stations 1, 12 and
13 show the worst. The models have a good perfor-
mance when points are in the interior domain (as an
interpolation inside the area formed by the consid-
ered stations) while the performance decreases when
the points are located outside the domain
(extrapolation).

& Base methods have only considered two variable
types, NO2 concentrations and distances as inputs
in order to compute NO2 concentrations at a certain
location (x, y, t). IDW is a very simple method that
produces very good yields. It is a deterministic
model and hence weights are estimated empirically.
LASSO is a more complex method. It considers the
NO2 concentration at monitoring stations and the
distances between those stations in order to generate
the model.

& Meta-model considers only two independent vari-
ables, the IDWoutput and the LASSO output, which
are composed to a final solution using the proposed
ensemble approach (NO2 estimates) which is finally
compared to the NO2 real value.

& The monitoring network density affects the models
predicting ability. Obviously, the more points, the
more information and better interpolation results.

& The results have been promising in order to obtain
air pollution map concentrations and to be used as a
decision support system to prevent people, admin-
istrations or companies.

Therefore, the results obtained are very promising in
order to provide new insights into the research. Thus,
this approach could be used to a robust tool with the
power of disposal of concentration measurements at any
point (x, y, t) of a study area. This knowledge will be
certainly useful to further researches in order to make as
a decision support tool, to analyse risks or to design a
new monitoring network.
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