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Abstract Shanghai is one of the largest metropolitan
areas in the world, during the rapid urbanization of the
past decades, impervious surface expanded dramatically
and became a main factor influencing surface water
quality. Thus, exploring the driving forces of impervious
surface has great implications in such metropolitan area.
In this study, an impervious surface coefficient method
(ISC) was used to measure the percentage of total im-
pervious area (PTIA) of Shanghai; regression analysis
was conducted to define the relationship between PTIA
and three socio-economic factors, population density,

unit area gross domestic product, and unit area industrial
output at the city and district scale. Results showed that
the industrial land use generated the highest ISC value,
followed by high-density residential. Strong correlations
were showed between PTIA and socio-economic indi-
cators, in which population density was the most signif-
icant. Threshold effect was presented that when popu-
lation density was higher than 15000 per/km2, this rela-
tionship would become less significant and PTIA
remained stable. Similar effects were found when unit
area gross domestic product exceeded 125 million
yuan/km2. Scale effect was also discussed that the rela-
tionship was more significant at city scale than district.
An improved understanding of the threshold effect and
scale effect will help guide future urban planning and
design new urban ecosystem policies.

Keywords Impervious surface coefficient . Driving
forces . Population density . Threshold

Introduction

During processes of urban expansion, a large proportion of
pervious surfaces transform into impervious (Chaudhuri
et al. 2017; Sekertekin et al. 2018). Impervious surfaces are
often defined as roads, parking lots, rooftops, etc. (Ma et al.
2018; Xian et al. 2007), and the percentage of total imper-
vious area (PTIA) has been identified as a reliable indicator
of environment quality (Xian and Crane 2005; Yan et al.
2019). Relationships between impervious surfaces and
related socio-economic driving forces may explain why
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impervious surfaces expand, and guide urban and environ-
mental planners in designing policies related to PTIA
control. Previous researches on impervious surfaces have
mainly focused on estimation and mapping techniques,
spatial distributions, and relationships between PTIA and
environmental indicators (Wu and Murray 2003; Jat et al.
2008; Xian 2008; Yue 2009; Jacobson 2011; Nagy et al.
2012; Uygun and Albek 2015; Hafsi et al. 2016; Tahmina
et al. 2018).

However, few studies have discussed on whether
there is a linear relationship between PTIA and the
socio-economic indicators, and whether the relationship
has a scale effect. The threshold and scale effects are
essential for planning the future of urban development,
particularly for the studies of typical rapid-urbanization
megacities. The objective of this study is to quantify the
relationship between socio-economic indicators and
PTIA to test the capability of socio-economic indicators
for predicting the trends of impervious surface expan-
sion, while examining whether this relationship shows
threshold and scale effects.

There are three methods that have been employed to
estimate and map PTIA: manual extraction, GIS-based
model, and impervious surface coefficient method (ISC).
The first one, which involves manually digitizing imper-
vious surfaces from aerial photographs or satellite im-
ages, is generally the most accurate but cost effective for
small areas. However, it is too expensive and time-
consuming to employ when examining larger-scale ap-
plications (Weng 2012). The second, which involves
extracting impervious surface bases via GIS, spectral
mixture analysis (SMA), and classic vegetation-
impervious surface-soil (V-I-S) models, must be con-
ducted by researchers with professional background in
geography and remote sensing, and typically used in
specific cases of impervious surface extraction (Rashed
et al. 2001;Wu andMurray 2003; Guo and Huang 2013;
Henits et al. 2017). The third method involves applying
field survey-derived ISC to specific land uses in order to
measure PTIA; land uses can typically be divided into
industrial, commercial, residential, forest, agriculture,
public, road, and water area (Sleavin et al. 2000; Lu
and Weng 2006; Barbara et al. 2010; Beck et al. 2016).

Taking Shanghai as a case, we developed an imper-
vious surface coefficient (ISC) set for land uses in this
metropolitan area; the PTIA and its spatial distribution
were displayed; it is also discussed whether socio-
economic indicators such as population density (PD),
unit area gross domestic product (UAGDP), and unit

area industrial output (UAIO) played as driving forces in
impervious surface expansion, and the threshold and
scale effects were then displayed. An improved under-
standing of the relationships and its threshold effects
will help guide future planning efforts aimed at urban
ecosystem management.

Study area and method

Study area

Shanghai is a metropolitan area composed of 18 districts
(nine urban and nine suburban districts) with a total area
of 6340.5 km2, making it one of the largest metropolises
in the world. In the past three decades, Shanghai has
experienced rapid urbanization, growing from a popu-
lation of 11.46 million in the 1980s to 24.15 million in
2010; the city’s GDP has also increased from RMB 33.7
billion Yuan to 2496.5 billion Yuan. Although the pro-
cess of rapid urbanization has brought prosperity to the
city, it also caused environmental problems. Figure 1
illustrates Shanghai’s location in China and population
density histograms of each district.

Data

The imagery data of sampling sites is fromZY-3 satellite
and provided by the China National Platform for Com-
mon Geospatial Information Services, and the image
resolution is 0.6 m, while the land use data of Shanghai
were originated from STOP-5 satellite remote sensing
image and interpreted by the Key Laboratory of Geo-
graphic Information Science of the Education Ministry
of East China Normal University; the image resolution
is 1.4 m.

It should be stressed that in the land use data of
Shanghai, land uses dominated by impervious area, such
as residential and industrial, were interpreted as entirely
impervious, for example, the permeable surfaces like the
green spaces in residential were ignored. Moreover, the
green spaces and parks were interpreted as entirely
pervious, and the impervious elements like roads and
buildings embedded in the pervious areas were
interpreted as impervious. Therefore, the land use data
is not suitable to measure the impervious surface coef-
ficients in Shanghai.

The data of socio-economic indicators of Shanghai
were drawn from Shanghai statistical yearbook (2007)
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(Table 1), while the PD, UAGDP, and UAIO for all 18
districts were derived from statistical yearbook (2007)
of each district. Statistical Yearbook of Shanghai and
each district contain economic and social statistical data
(e.g., population, GDP, total industrial output, acreage)
collected by Shanghai Municipal Bureau of Statistics
and China National Bureau of Statistics.

Methods

The imagery data can be used to map the impervious
surfaces such as roofs, roads, and parking lots in various
land uses (e.g., residential, industrial, and green space).
Therefore, this paper combined the land use data with
imagery data to assess the impervious surface coeffi-
cients of sampling sites in Shanghai (Fig. 2). Based on
the land use data, a total of 240 samples were selected
for six land uses (50 high-density residential, 50 middle-
density residential, 50 low-density residential, 30

public, 30 industrial, and 30 green space) (Fig. 3). With
imagery data, the impervious surfaces were interpreted
in ArcGIS vectorization module. First, the roof, road,
parking lot, and square were mapped for each sampling
site, and the ISC for each sampling site was then calcu-
lated. Finally, the ISC value of each land use was
assigned as an average of sampling sites; furthermore,
when mapping the PTIA for Shanghai and its districts/
towns, the ISC of each land use would be applied to all
corresponding land uses.

Two regression analyses were conducted to define
the relationship between PTIA and three socio-
economic indicators at the city and district scale, which
would display the threshold effect and scale effect. At
city scale, this paper takes Shanghai as the research
subject and 18 districts or 136 towns as samples. In
terms of district scale, the study took nine suburban
districts as the research subjects and towns/sub-
districts in each district as samples.

Fig. 1 Location of Shanghai and population density of each district
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It should be noted that the area of each urban district
(city center) in Shanghai is too small, and even the total
area of urban districts may be smaller than that of any
suburb district. Furthermore, the level of urbanization in
the urban district is usually higher, and there were no
differences between towns and sub-districts in city cen-
ter. For suburb districts, they cover a larger area and the
urbanization level is unevenly distributed in towns and
sub-districts. Therefore, the urban districts were no lon-
ger subdivided into sub-districts and towns in our anal-
ysis, but the suburbs were further subdivided into towns
and sub-districts.

Results

Impervious surface coefficients of land uses

Industrial land uses generate the highest ISC with a
value of 0.75 and are followed by high-density residen-
tial and public areas with ISC values of 0.73 and 0.64,

respectively, and green spaces generate the lowest value
of 0.33 (Table 2).

Spatial variations of impervious surfaces

Figure 4 illustrates spatial variations of PTIA for Shang-
hai; it shows that PTIA levels in the city center were
higher than those of suburban areas. The average PTIA
value for the city center (nine urban districts) was re-
corded as 64.9% and the average PTIA value for the
nine suburban districts was 19.24%. Chongming dis-
trict, an island isolated from mainland Shanghai, gener-
ated the lowest PTIA of 3.69%. Overall, PTIA levels in
the city center and in the center of suburban district were
found to be higher due to the presence of impervious
structures such as buildings, roads, and parking lots.
However, PTIA levels were found to be lower in less-
developed suburban area and water resource protection
area composed of agricultural land and suburban
residents.

Table 1 Social and economic conditions of each district in Shanghai (2006)

Districts in center
Shanghai

Area (km2) Population (thousands) PD (per/km2) UAGDP (millions yuan/km2) UAIO (millions yuan/km2)

Huangpu 12.4 599.7 48324.6 570.3 1021.7

Luwan 8.0 316.6 39326.8 277.5 497.2

Xuhui 54.7 883.9 16141.1 520.9 933.3

Changning 38.3 633.9 16551.4 137.5 246.4

Jingan 7.6 309.9 40666.5 214.4 384.2

Putuo 54.8 857.5 15638.3 220.2 394.5

Zhabei 29.2 719.1 24576.6 292.8 524.6

Hongkou 23.4 791.9 33727.3 146.3 262.1

Yangpu 60.7 1028.4 16934.0 444.6 796.6

Average 32.1 682.3 27987.4 313.8 562.3

Districts in suburban
Shanghai

Area (km2) Population (thousands) PD (per/km2) UAGDP (millions yuan/km2) UAIO (millions yuan/km2)

Pudong 1210.4 2562.0 2116.7 111.5 229.9

Baoshan 270.9 759.6 2802.9 101.8 240.1

Minhang 370.7 853.6 2302.3 126.9 815.2

Jiading 464.2 541.1 1165.7 104.7 342.8

Jinshan 586.0 552.5 942.8 33.0 131.2

Songjiang 605.6 531.9 878.2 85.6 417.7

Qingpu 670.1 495.9 740.0 58.1 161.8

Fengxian 687.3 508.4 739.5 28.0 107.9

Chongming 1185.4 705.1 594.8 5.7 9.5

Average 597.0 834.5 1364.8 72.8 272.9

PD population density, UAGDP unit area gross domestic product, UAIO unit area industrial output
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Relationship between PTIA and population density

Relationships at the city scale

Figure 5 shows regression results for the relationship
between PTIA and population density (PD) at the city
scale. When a total of 18 districts in Shanghai were
examined, strong correlations were found between
PTIA and PD (R2 = 0.922). From Fig. 5, we could
deduce that when PD increase five times, PTIA of
corresponding areas increase by 20%. However, when
PD reached 15,000 per/km2, PTIAwould remain stable.

In order to verify the above conclusions, 136 towns
and sub-districts were also examined; a strong correla-
tion was also found between PTIA and PD (R2 = 0.670).

Figure 5 also shows a threshold effect wherein the rela-
tionship between PTIA and PD becomes insignificant
when PD levels exceed 15,000 per/km2. At the same
time, it can be found that the results of the study using 18
districts as samples were significant than those for towns.

Relationships at the district scale

Relationships between PTIA and PD for nine suburban
districts were examined. Table 3 shows regression
models for the relationship between PTIA and PD in
suburban districts. The Jiading, Jinshan, and Minhang
districts generated higher R2 values of 0.682, 0.661, and
0.634, respectively, while the Qingpu district showed
the lowest R2 with a value of 0.108. Generally, districts

Fig. 2 Land uses in Shanghai (2006) and sampling imagery data of each land use type
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with higher PD (> 1000 per/km2) presented better rela-
tionship (R2 > 0.5), and districts with lower PD (< 750
per/km2) expressed unclear relationship. An average R2

value of 0.473 was found at the district scale, which is
much lower than that found at the city scale. The anal-
yses suggested that the relationship between PTIA and
PD is more significant at city scale (the whole Shanghai)
than district scale (each suburban district).

Relationships between PTIA and economic variables

Relationships at the city scale

Figure 6 shows regression models of the relationships
between PTIA and economic factors at the city scale.
When a total of 18 districts in Shanghai were examined,
a stronger positive correlation between PTIA and

Fig. 3 Sampling map of six land uses in Shanghai

Table 2 ISC value of each land use in Shanghai

Land uses Detailed description Samples ISC Standard deviation (%)

Industrial Factories gathered industrial parks 30 0.75 11.95

Public Schools, hospitals, libraries 30 0.64 11.03

High-density residential Multi-family residential, built before year 2000 50 0.73 10.36

Middle-density residential Multi-family residential, built after year 2000 50 0.55 9.64

Low-density residential Single-family residential 50 0.49 10.82

Green space City greenbelts, parks 30 0.33 14.12

Roads Railway land, aviation land, port land - 1.00 -

Agricultural Cultivated land, garden, woodland - 0.00 -

Water areas River, lake, ponds - 0.00 -

Since there are no impervious surfaces in agricultural and water area, the ISC of agricultural and water area is zero
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Fig. 4 Spatial variation of PTIA in Shanghai
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UAGDP (R2 = 0.739) was found than that between
PTIA and UAIO (R2 = 0.463). This implies that PTIA
was affected more by UAGDP. Figure 6 also shows a
threshold effect of the relationship between PTIA and
economic indicators. Also, an interesting finding was
displayed, namely, when UAGDP increased five times,
the PTIA increased by 20%, and this relationship was
less significant when UAGDP was higher than 125
million yuan/km2. Similar results were found for the
relationship between PTIA and UAIO. Rather, when

UAIO was higher than 250 million yuan/km2, PTIA
remained stable.

In order to verify the above conclusions, 136 towns
and sub-districts were also examined; positive correla-
tions were found between PTIA and economic factors.
The relationship between PTIA and UAGDP was cal-
culated as R2 = 0.520, and R2 = 0.355 was found for the
relationship between PTIA and UAIO. Thus, UAGDP
represents a more significant factor when analyzing
relationships between PTIA and economic factors.

y = 13.65ln(x) - 73.64
R² = 0.922

0

20

40

60

80

100

200 2000 20000 

PT
IA

%

PD per/km2

taking 18 districts as samples

PTIA = 14.06ln(PD) - 74.31
R² = 0.67

0

20

40

60

80

100

200 2000 20000 

PT
IA

%

PD per/km2

taking 136 towns as samples

Fig. 5 Relationships between
PTIA and PD at city scale
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Relationships at the district scale

Table 3 presents regression models of the relationship
between PTIA and economic factors at the district scale.
Positive correlations were observed for the relationships
between PTIA and UAGDP (average R2 = 0.392), and
PTIA and UAIO (average R2 = 0.257). Minhang district
showed the highest UAGDP correlation while Fengxian
district generated the highest UAIO correlation (R2 =
0.912). It should be noted that Jiading district generated
the lowest UAGDP value while Chongming district
generated the lowest UAIO values.

When all regression models for the relationship be-
tween PTIA and socio-economic indicators are consid-
ered together, relationships between PTIA and PD were
superior for all of the socio-economic indicators at the
district scale (R2 = 0.473), which was inferior to rela-
tionships between PTIA and PD at the city scale (R2 =
0.922). The analyses suggested that PD serves as the
most significant factor; additionally, larger scale cases
show better relationships.

Discussion

ISC and impervious surface estimations

ISC values for six land uses were compared with previ-
ous studies. Several differences were found, and espe-
cially in relation to residential, industrial, green spaces,
and public land uses.

(1) We examined residential areas based on three cat-
egories (high, middle, and low density) following
Choi and Ball (2002) and found ISC levels of 0.73,
0.55, and 0.49, respectively. Chen et al. (2006)
showed ISC values for middle- and high-density
residential areas of between 0.55 and 0.95 for
Nanjing, another Chinese city, consisting with our
results. Carlson (2001) found the values of ISC
range from 0.30 to 0.75, echoing with our results.
Prisloe et al. (2001) found an ISC value of 0.36 for
mixed residential and commercial areas, while the
ISC value is 0.12 for suburban residential areas.
Sleavin et al. (2000) found ISC values for residen-
tial areas ranged from 0.08 to 0.39. However, our
average ISC for residential areas are 50–100%
higher than those of previous studies (Lu and
Weng 2006; French 2009). This is attributable toT
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the fact that percentage of low density residential
land in China, a huge population country, is quite
lower than those of developed countries.

(2) An ISC value of 0.75 was found for industrial
areas. Previous studies have found ISC values
for such areas range between 0.5 and 0.9
(Sleavin et al. 2000; French 2009; Barbara
et al. 2010). Reporting on California, Barbara
et al. (2010) found an ISC value of 0.91 for
heavy industry areas and an ISC value of 0.81
for light industry areas, exceeding our results
by 15%. While American industrial sites in-
clude little vegetation and bare soils (Chen
et al. 2006), industrial sites in Shanghai include
more green spaces in accordance with munici-
pal regulations, thus explaining our lower ISC
results for industrial areas.

(3) ISC value of green spaces is 0.33 in Shanghai.
Chabaeva et al. (2009) found ISC values of 0.13,

0.046, and 0.049 for turf and grass, deciduous
forest, and coniferous forest areas, respectively.
Prisloe et al. (2001) found ISC values of 0.09 for
turf and grass areas and ISC values of 0.045 for
forested areas. Green spaces in this study refer to
man-made parks and grass areas with few paved
surfaces and buildings, while forested areas exam-
ined in previous studies were natural with virtually
no impervious features, and thus, our results for
green spaces are much higher.

(4) ISC value of public areas is 0.64 in Shanghai.
Barbara et al. (2010) found an ISC value of 0.44
for public/quasi-public areas, while Chen et al.
(2006) displayed a value of 0.83 for public areas.
These results showed the highest degree of vari-
ance of the results for land uses considered, as
designations were based on ownership rather than
on types of use (Barbara et al. 2010). Hence, ISC
values for public areas were more variable.

PTIA = 17.72ln(UAGDP) - 122.9
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Fig. 6 Relationships between PTIA and UAGDP (a) and UAIO (b) at the city scale
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Driving forces of impervious surface

Several researchers have showed positive correlations
between PTIA and socio-economic factors (Dhorde
et al. 2012; Ma et al. 2016; Liao et al. 2017; Chen
et al. 2018; Li et al. 2018; Cao et al. 2019). Azar et al.
(2010) conducted a regression analysis to determine the
relationship between impervious surfaces and PD levels
at three administrative levels. R2 values of 0.94, 0.81,
and 0.85 were found for department (1st level), com-
mune (2nd level), and section scales (3rd level), respec-
tively. The same result was found by Dhorde et al.
(2012). Our study finds a similar result that at the city
scale, PD levels correlate strongly with PTIA. However,
at the district scale, several districts (e.g., Fengxian,
Songjiang, and Qingpu) showed very low R2 values
(0.10–0.35).

Cao et al. (2019) indicated that the growths of pop-
ulation and gross domestic product (GDP) are regarded
as the key drivers for urban expansion associated with
an increase of ISC. The same result was showed by Liao
et al. (2017) and Li et al. (2018). Chen et al. (2018)
thought that tertiary industry product, GDP, secondary
industry product, total population, and urban population
were driving factors of urban land sprawl in Northeast
China from 1990 to 2015.

We also made clear that positive relationships were
showed between PTIA and economic forces, and
UAGDP may be having a more significant effect than
UAIO. As a world-famous developing country,
China’s industrialization is the most important driving
force of urbanization (Ma 2002; Eng. 2010). As one of
the most developed city in China, Shanghai had en-
tered the post-industrialization stage after the 1990s.
In this stage, the development of cities no longer
depended solely on industry, and technological inno-
vation and service industry have become primary fac-
tors leading urbanization. For example, according to
our study (Zhao 2008), the percent of industrial land in
center Shanghai increased from 4.86% in 1947 to
22.07% in 1989, but decreased to 13.05% in 2006. It
can be speculated that the urbanization of Shanghai
was dependent on industrialization before 1989, and
then the industrial land has transmitted to the suburbs
and concentrated in industrial parks. At the same time,
the percentage of residential and public land is rising.
As the best indicator of a country’s economic,
UAGDP shows more significant relationship between
PTIA than UAIO.

As to population, when a city was at its preliminary
stage, low population density areas have more impervi-
ous surface per resident because of roads and non-
residential land use. When the city is in the stage of
rapid development, the population increases rapidly, the
living facilities continue to increase due to the increase
of population, and high population density areas have
less impervious surface per resident. Thus, the relation-
ship between PD and PTIA is more significant in the
case of high population density.

It should be stressed that China’s urban population
includes the local population, permanent immigrants,
and floating population, and the floating population is
the main source of urban population growth. With the
continuous development of the economy, labor produc-
tivity has increased and labor demand has begun to
decrease, which slowed down the increase in the float-
ing population. Furthermore, the inflow of young labor
and the outflow of mature labor have formed a cycle in
the internal structure of population mobility. With some
arbitrary, we hold that floating population had no influ-
ence on this research.

In addition, since the actual population of some high-
ly migrated areas is difficult to count, the PTIA can also
be used to estimate the actual population. This paper can
provide a way of estimating internal migration, for
regions that have a high level of unofficial movement
to cities.

Threshold effect and scale effect

A clear threshold effect was indicated. When PD levels
exceeded 15,000 per/km2, the relationship with PTIA
was less significant. Similar results were found when
UAGDP exceeded 125 million yuan/km2. Since the
city’s land is limited, we argue that processes of imper-
vious surface expansion have limits, and eventually,
PTIA must reach the summit and remain stable.

The relationship between PTIA and socio-economic
factors was more significant at city scale than district
scale, which means that the relationship was more sig-
nificant on a larger scale. At the same time, the results in
the case of 18 districts as samples were more significant
than those of 136 towns.

Limitations

The results of this study are limited by the following
factors. First, our ISC of land use calculations were less
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specific, as ISC levels were regarded as 1 for roads and
as 0 for agricultural and water areas. Second, only 240
samples were examined and our use of fewer samples
may have introduced sampling bias. Third, while our
explanations of threshold phenomena and scale effects
found are empirical to a degree, more quantitative anal-
yses should be conducted such as the piecewise regres-
sion method, such as R software.

Conclusion

Taking Shanghai, a world metropolitan area, as a case,
this paper examined coefficients for all land uses, and it
is found that industrial land use generates the highest
impervious surface coefficient (ISC) with a value of
0.75, followed by high-density residential. A regression
analysis was also conducted to define the relationship
between PTIA and three socio-economic factors at city
scale and district scale. The results suggest that there is a
significant positive correlation between PTIA and socio-
economic indicators, in which PD was the most signif-
icant one. Threshold effect and scale effect were also
presented. When PD exceeded 15,000 per/km2, the
relationship between PTIA and socio-economic indica-
tors would be less significant. Similar results were found
for UAGDP, which exceeded 125 million yuan/km2.
Moreover, the relationship became more significant at
larger scale. The results of this paper would give sug-
gestions for urban planning and environmental
management.
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