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Abstract This study compared the performance of dif-
ferent interpolation methods for mapping soil salinity of
three different agricultural fields having the same land
use but different dataset characteristics. Four common
spatial interpolation methods including global polyno-
mial interpolation (GPI), inverse distance weighted
(IDW), ordinary kriging (OK), and radial basis func-
tions (RBF) were employed for mapping soil EC. The
performance of interpolation methods in predicting soil
EC was evaluated based on mean bias error, root mean
square error, mean absolute percentage error, and coef-
ficient of determinations criteria. Results showed that
dataset characteristics, including central tendency and
distribution, were significantly different among the stud-
ied fields. Experimental semivariogram and fitted model
parameters indicated that three studied fields were also
different in their spatial dependence strength. Consider-
ing all of the performance assessment measures used,

the best interpolation method for fields A and Cwas OK
and IDW for field B. The performance of interpolation
methods was found to be affected by data characteristics
of the studied fields, which were mostly ascribed to
management practices. This study suggests in order to
obtain accurate mapping of soil salinity in agricultural
fields, it is essential to first find the best spatial interpo-
lation method compatible with the characteristics of the
collected data from the selected agricultural land.
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Introduction

Soil salinity is a serious problem for agricultural lands,
especially in arid and semiarid areas where a high per-
centage of the irrigated lands are located (Abuelgasim
and Ammad 2018). Soil salinity adversely affects soil
and water quality and crop production and eventually
leads to land degradation (Daliakopoulos et al. 2016). In
order to implement efficient agronomic and environ-
mental management, as well as soil reclamation pro-
grams to prevent any further salinization of agricultural
lands, accurate soil salinity mapping is essential (Allbed
et al. 2014; Gebbers and de Bruin 2010).

Soil is a heterogeneous, diverse, and dynamic system
where characteristics continuously change temporally and
spatially on both large and small scales (McBratney et al.
2003). The temporal–spatial variability of soil characteris-
tics is controlled by a variety of factors associated with soil
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formation and landscape (i.e., climate, parent material, and
topography) as well as land management– and land use–
related factors (Denton et al. 2017; Douaik et al. 2008).
Soil salinity is a continuous variable with spatial depen-
dence reported for scales ranging from a few meters to
several kilometers (Zewdu et al. 2017), and therefore, it
must be studied in a way that also considers spatial vari-
ability (Denton et al. 2017; Gorji et al. 2015).

Accurate mapping of soil attributes, like soil salinity,
needs an intensive dataset which properly covers the
spatial variability of soil salinity throughout the field
(Denton et al. 2017). Meanwhile, there are numerous
factors such as accessibility, surveying cost, and topogra-
phy that limit the amount of spatial data needed to de-
scribe the variability of the soil with a resolution sufficient
for precise decision making (McBratney et al. 2003;
Simakova 2011). To intensify data density and produce
estimated data at unsampled locations based on already
prepared data on sampled locations, a variety of classical
and geostatistical interpolation methods have been
employed (Li and Heap 2011). While classic statistical
techniques do not include any spatial information associ-
ated with the data in their interpolating procedure,
geostatistical interpolators do incorporate information
about the spatial position of the sample points during data
processing (Webster and Oliver 2001).

Spatial variability of soil salinity and the performance
of interpolators in agricultural fields can be influenced by
inherent characteristics of the field, land use, sampling
design, management practices, as well as implemented
interpolation techniques (Juan et al. 2011; Ahmed et al.
2017; Zewdu et al. 2017). This study aimed to analyze the
spatial variability of topsoil salinity and evaluate the
performance of four different interpolation methods in-
cluding global polynomial interpolation (GPI), inverse
distance weighting (IDW), radial basis function (RBF),
and ordinary kriging (OK) techniques for mapping spatial
distribution of soil salinity (i.e., soil EC) in three different
agricultural lands with similar land use but different
management systems in the northern plains of Varamin
city in the Tehran province, Iran.

Materials and methods

Study area and data collection

The study area is located in the northern plain of
Varamin city in the Tehran province, Iran. The

geographical coordinates of the study area lie between
Universal Transverse Mercator (UTM) easting from
567,600 to 573,000 and UTM northing from
3,908,880 to 3,913,200. The area has a semiarid conti-
nental climate with mean annual precipitation and mean
annual temperature of 156 mm and 17.8 °C, respective-
ly. The average elevation of the study area is 1300 m
above mean sea level. Three different fields, simply
labeled fields A, B, and C, each with an area of 80 ha
were selected according to the similarity of their agri-
cultural land use. All three fields were under cultivation
of wheat with different irrigation, fertilizing, and tillage
practices. The position of the three selected agricultural
fields and the distribution of sampling points is shown in
Fig. 1.

The soil moisture and temperature regimes of the
region are Torric and Thermic, respectively. The soil
texture in each field was homogeneous with textural
classes of sandy loam, loam, and sandy clay loam for
fields A, B, and C, respectively. With a pH above
neutral, all soils were alkaline. The means of total neu-
tralizing value (TNV) of the three fields showed that all
soils were calcareous. Soil bulk density ranged from
1.28 to 1.60 g cm−3 throughout the study area, while
field B had the highest BD followed by fields C and A,
respectively. The organic carbon content of the study
area decreases from fields A to C with the mean values
of 12.0, 8.3, and 6.8 g kg−1 for A, B, and C fields,
respectively. The characteristics of soils in the three
studied fields are presented in Table 1. A total of 35
discrete samples were systematically sampled from each
field at the vertices of a 150 × 150-m grid. The total
number of soil samples collected was thus 105 from a
depth of 0 to 30 cm across the entire study area. UTM
spatial coordination of each sample point was recorded
by a GPS instrument. All soil samples collected were air
dried, sieved (< 2 mm), and soil solution electrical
conductivity (EC), as a measure of soil salinity, was
determined using a soil saturated paste extract
(Rhoades 1996).

Descriptive statistics of dataset

Exploratory statistical analysis was first investigated to
understand the general character of the datasets. Mean,
variance, standard deviation, the coefficient of variation,
minimum and maximum values, skewness, and kurtosis
of data were determined using the SPSS V22 software.
The normality of the data from the three selected fields
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was also evaluated using the Kolmogorov–Smirnov test.
Whenever initial analysis indicated that the dataset
lacked a normal frequency distribution, before proceed-
ing with geostatistical analysis, the dataset was properly
transformed to obtain a nearly normal distribution. As
required, the e data were then back-transformed for
mapping and interpretation (Webster and Oliver 2001).

Spatial analysis of soil salinity

Spatial dependence of soil salinity was investigated by
means of semivariogram analysis (Goovaerts 1997). In
geostatistical analysis, a semivariogram is a function
describing the degree of spatial dependence of a regional
(spatial dependent) variable and measures the variance
between the response variable (y-axis) as a function of
distance in lags (x-axis). A semivariogram is usually
characterized by three parameters including the nugget,

sill, and range (Chiles and Delfiner 1999). The nugget
refers to the variability in the field data that cannot be
explained by the distance between the observations. The
sill refers to the maximum observed variability in the
data and corresponds to the variance of the data as
normally estimated in statistics. The difference between
the sill and the nugget (structural variance) represents
the amount of observed variation that can be explained
by distance between observations. The range in
semivariogram is the maximum distance in which field
data are spatially correlated (Goovaerts 1997). An ex-
perimental semivariogram calculates the variance of
pairs of data separated by a vector (eq. 1) (Isaaks and
Srivastava 1989). A hypothetical example of a
semivariogram and its different parts is illustrated in
Fig. 2.

γ hð Þ ¼ 1

2 N hð Þ ∑
n hð Þ
i¼1 Z xi þ hð Þ−Z xið Þ½ �2 ð1Þ

Fig. 1 Location of the study area and the distribution of sampling points across the three selected agricultural fields

Table 1 Selected physicochemical properties of the three agricultural field soils used in this study

Field OC (g kg-1) pH BD (g cm-3) TNV (%) Texture Class

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

A 9.8 14.4 12.0 7.2 8.2 7.7 1.28 1.41 1.32 15.2 21.0 17.2 Sandy clay loam

B 6.8 12.4 8.3 7.1 7.8 7.3 1.35 1.60 1.53 7.5 19.2 13.3 Sandy loam

C 2.3 10.5 6.8 7.3 8.2 7.5 1.30 1.51 1.44 15.0 25.5 18.1 Loam

OC organic carbon, BD bulk density, TNV total neutralizing values

Environ Monit Assess (2019) 191: 684 684 Page 3 of 12



where γ(h) is the semivariogram, N(h) is the number of
data pairs separated by the lag distance h, and Z(xi) and
Z(xi + h) are the values of the measured variable at
spatial locations i and i + h, respectively.

In this study, experimental semivariograms were
fitted to a variety of theoretical models, namely spheri-
cal, exponential, and Gaussian models and the best
models were selected based on the minimum error using
coefficient of determination (R2) and residual sum of
squares (RSS) as indicators (Chiles and Delfiner 1999).
The semivariograms were calculated in different direc-
tions to include geometric and zonal anisotropies
(Goovaerts 1997). Geometric and zonal anisotropy, the
variability of the target variable along with spatial direc-
tions, was also considered during variography. The geo-
metric anisotropy occurs when the range varies with the
direction of the semivariogram for the constant sill. The
zonal anisotropy occurs when both the range and sill
vary with the direction of the semivariogram (Isaaks and
Srivastava 1989).

Interpolation methods and mapping

Four of the most common interpolation methods, in-
cluding GPI, IDW, OK, and RBF, were applied for
mapping soil salinity in the three studied fields. ArcMap

10.2 (ESRI, CA, USA) was used for spatial dependence
analysis, interpolation and consequent mapping of soil
EC in all three fields.

In global polynomial interpolation (GPI), a two-
dimensional polynomial equation of the first, second,
or a higher degree was fit to the input sample points
during interpolation to capture coarse-scale patterns in
the data (Yao et al. 2014). For n + 1 interpolation nodes
(xi), polynomial interpolation defines a linear bijection
as below:

p xið Þ ¼ yi i ¼ 0;… ; n: ð2Þ

Ln : Κnþ1→Πn ð3Þ

whereΠn is the vector space of polynomials of degree at
most n.

Inverse distance weighting (IDW) produces estima-
tions by launching a neighborhood search of points and
weighting these points by a power function (Yao et al.
2013). A distance reverse power function of every point
from neighboring points is defined to describe the rate of
correlations and similarities between neighbors as below
(Setianto and Triandini 2013).

Fig. 2 General schematic of a semivariogram illustrating the different elements
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Z* x0ð Þ ¼ ∑n
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i¼1
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dpi
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CCAZ xið Þ ð4Þ

where Z*(x0) is the value of variable Z at the unsampled
location x0, estimated based on the data from the sur-
rounding samples, Z(xi); di is the distance between
known point xi and unknown point x0 and p is the
user-defined exponent for weighting; and n is the total
number of predicted for each validation case.

Ordinary kriging (OK) is a geostatistical interpola-
tion method that gives weights to the surrounding mea-
sured values to derive a prediction for an unsampled
location by incorporating the spatial dependence
expressed by the semivariogram in estimation procedure
(Johnston et al. 2003). The basic equation for interpola-
tion by kriging at an unsampled location is given as Eq.
5.

Z x0ð Þ ¼ ∑N
i¼1λiZ xið Þ ð5Þ

where Z(x0) is the value of variable Z at the unsampled
location x0 and λi = weights associated with the data
points, which takes in account the spatial relationship of
the sampled points. Z(xi) is the observed value of Z at
sampled locations xi (Xie et al. 2011).

Cross-validation was conducted by varying model
parameters and the numbers of the closest neighboring
samples from 3 to 10 until the highest estimation accu-
racy was reached (Webster and Oliver 2001).

Radial basis function (RBF) is a form of artificial
neural networks, which provides a very flexible and
general way of interpolation in multi-dimensional
spaces, even for unstructured data where it is often
impossible to apply a polynomial or spline interpolation
(Lin and Chen 2004). Each basis function has a different
shape and results in a slightly different interpolation
surface having the general form described by Eq. 6
(Jakobsson et al. 2009).

s xð Þ ¼ ∑n
i¼1γiϕ x−xik kð Þ þ h xð Þ ð6Þ

where the approximating function s(x) is represented as
a sum of N radial basis functions, each associated with a
different center xl, and weighted by an appropriate co-
efficient γl. The weights γl can be estimated using the
matrix methods of linear least squares, because the
approximating function is linear in the weights γl. The
φ value depends only on the distance from the origin
(Buhmann 2003).

Assessment of method performance

The following evaluation criteria including mean bias
error (MBE), mean absolute percentage error (MAPE),
root mean square error (RMSE), and R2 were calculated
for each method to select the optimal model
(Seyedmohammadi et al. 2016; Yao et al. 2013). MBE
index was used to measure average bias of employed
models and to indicate overall overestimation and un-
derestimation of each models’ prediction. MAPE is an
accuracy measure based on percentage (or relative) er-
rors, RMSE measures the average magnitude of the
error, and R2 indicates the degree of closeness of the
predicted data to the measured validation points. When
MBE is different from 0, then model has a bias. Positive
and negative values of MBE indicate over and underes-
timation of the interpolation method, respectively. The
lowest MAPE and RMSE value indicated the most
accurate estimation. The closer the R2 value to 1, the
higher the prediction accuracy. The MBE, MAPE, and
RMSE are calculated as follows:

MBE ¼ 1

n
∑N

i¼1 pi−oið Þ ð7Þ

MAPE ¼ 1

n
∑N

i¼1 pi−oið Þ=oij j ð8Þ

RMSE ¼ 1

n
∑N

i¼1 pi−oið Þ2
� �1=2

ð9Þ

where n is the number of validation points, pi is the
predicted value at point i, and oi is the observed value at
point i.

The degree of similarity in salinity mapping between
the four interpolators for each of the studied fields was
also analyzed using Cohen’s kappa coefficient (κ). Kap-
pa assumes its theoretical maximum value of 1 only
when categorizing of observed points is completely
identical.

Results

Descriptive statistics of the data

Exploring descriptive statistics of the collected data
indicated that soil salinity was substantially different
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regarding central tendency and variability statistics
through the three studied fields (Table 2).

The EC of the soil samples ranged from 670 to 2840,
1030 to 3110, and 540 to 7120 μS cm−1 in fields A, B,
and C, respectively. ANOVA and Duncan multiple
range tests at the α error level 0.05 (Table 2) showed
that the mean soil EC in field A (1419 μS cm−1) was
significantly different from fields B (2020 μS cm−1) and
C (2150 μS cm−1). The standard deviation of data was
significantly higher for field C (with Std.dev of 1760 μS
cm−1) compared to fields A and B. The variation of EC
data in field C was found to be very high regarding the
coefficient of variation (CV) value of 0.82. Fields A and
B with CV values of 0.48 and 0.33 exhibited almost the
same amount of considerable heterogeneity (Table 2).
The skewness values of all three datasets were positive
(skewed right), and the asymmetry was obvious for
fields A and C with values of 0.62 and 1.41, respective-
ly. While an excess kurtosis value of 0 is expected for a
normal distribution, all three variables had nonzero neg-
ative kurtosis values. Values of negative kurtosis for
fields A and B indicated a mean distribution that had a
flatter peak, fatter shoulders, and thinner tails than a
normal distribution. In contrast, the positive kurtosis
value of field C indicated that the data distribution had

heavier tails than the normal distribution (Joanes and
Gill 1998). Histograms of the measured soil EC (Fig. 3)
allowed the variability of data to be visually confirmed.
While the Kolmogorov–Smirnov normality test indicat-
ed a normal distribution of data from field B, the data
from fields A and C were not normally distributed.
However, after log-transformation, a normal data distri-
bution was obtained for the transformed data. Therefore,
log-transformed datasets were used in the Kriging inter-
polation method, which strictly demands normality of
the dataset.

Spatial dependence analysis

The optimized experimental semivariograms and associat-
ed fitted models of soil EC for each of the three studied
fields are presented in Fig. 4. No significant geometric and
zonal anisotropy was detected during variography proce-
dure via calculating semivariogram in various directions.
Therefore, isotropic semivariogramswere calculated for all
the fields. The Gaussian model fitted well experimental
semivariograms of fields A and C, while the best-fitted
model for field B was the spherical model. The parameters
of the fitted models on experimental semivariograms for
fields A, B, and C are presented in Table 3. The

Table 2 Descriptive statistics of measured EC (μS cm−1) in the three fields studied

Field Number Minimum Maximum Mean* Std.dev CV Skewness kurtosis p value**

A 35 670 2840 1419b 681 0.48 0.62 − 0.52 0.04

B 35 1030 3110 2020a 670 0.33 0.07 − 0.19 0.20

C 35 540 7120 2150a 1760 0.82 1.41 1.29 0.00

*Mean values with different letters are significantly different at p < 0.05

**According to normality test for p value ≤ 0.05, the data do not follow a normal distribution

500 1000 1500 2000 2500 3000 1000 1500     2000 2500     3000    3500   0    2000        4000   6000        8000

10

8

6

4

2

0

EC (µS/cm)

ycneuqerF

a b c

Fig. 3 Histograms of EC values of the three investigated fields including field A (a), field B (b) and field C (c).
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coefficients of determination (R2) of all fitted models
ranked as A > C > B, while RSS values ranked as A < B
< C. Therefore, theoretical models were best fitted for field
A, followed by field C and B. According to the
variography results, spatial dependence of soil EC was
different amongst the three studied fields. While fields A
and C showed strong spatial dependency with C/C0 + C
values of 0.99 and 0.95, field B showed only a moderate
spatial dependence with C/C0 + C equal to 0.54 (Shi et al.
2007). According to semivariograms parameters, soil EC
in field C had the greatest effective range (3642 m), which
was significantly higher than either of the other two fields:
A (2341 m) and B (1920 m).

Interpolation method performance

The performance assessment for the four interpolation
methods used here based on cross-validation results is
presented in Table 4.

For field A, all employed methods except OK
underestimated soil EC according to the MBE criterion.
The lowest RMSE and highest R2 corresponded to the
OK method with values of 0.17 and 0.87, respectively.
Overall the performance of the four interpolationmethods
in this field was ranked asOK> IDW>RBF>GPI based

on these assessment criteria. For field B, IDW (with a
power value of 1) showed the best performance with R2,
RMSE, MAPE, and MBE values of 0.89, 0.32, 0.18, and
0.09, respectively. In this field, all methods overestimated
soil EC except OK which underestimated EC based on
the MBE value of − 0.13. Overall ranking of the method
performance in field B decreased in the order IDW > OK
> RBF > GPI. For field C, the OK method generated
more accurate results for predicting soil EC than either
the RBF, IDW, and GPL models. The MBE measure
showed that OK and IDW underestimated soil EC while
RBF and GPI overestimated it. MAPE values ranged
from 0.15 to 0.56 in field C. Considering all evaluation
criteria, method performance in field C was decreased in
the order OK > RBF > IDW > GPI. Comparing MAPE
(as it provides the possibility of EC comparisons among
fields with different mean) and R2 values across the three
fields showed that the most accurate interpolation results
were obtained for field B followed by field A and C. A
ranking of methods based on their good performance is
also presented in Table 4, where overall the results indi-
cated that OK interpolation method generally performed
better than all other models in predicting soil EC in terms
of all three assessment indicators regardless of the field
studied.

Fig. 4 Experimental semivariograms and fitted models of soil EC in fields a, b, and c

Table 3 Semivariogram model parameters of the three fields studied

Field Fitted model R2 RSS Nugget (C0) Sill (C0 + C) Proportion (C/C0 + C) Spatial dependency** Effective range (m)

A* Gaussian 0.98 0.08 20 1880 0.99 Strong 2341

B Spherical 0.78 0.12 250 560 0.54 Moderate 1920

C* Gaussian 0.87 2.31 1030 22030 0.95 Strong 3642

*Log-transformed data were used for all geostatistical analysis

**Spatial dependency was defined as strong, moderate, weak and pure nugget based on structural variance (C) to sill (C0 + C) ratios of > 75,
75–50, 50–25, and < 25 respectively
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The κ values between different interpolation methods
were determined for each of the studied fields separately
(Table 5) The highest similarity in EC values for sam-
pled points was found between OK and IDW (κ = 0.91)
for field A, between RBF and GPI (κ = 0.72) for field B,
and between OK and IDW (κ = 0.95) for field C. The κ
values for field B were generally smaller than those of
either field A and C which indicated poor agreement
amongst interpolation methods in field B. The greatest
difference in κ values was also observed between GPI
and other interpolators in field C.

While a more precise mapping of soil EC was ob-
tained by applying OK in fields A and C, for field B, the
IDW method gave superior results. However, OK pro-
duced smoother maps compared to all other methods
(Fig. 5). The percentage of the area, covered by the same
level of soil salinity, is illustrated in Table 6. Compari-
son of salinity mapping in Table 6 indicated that the area
of delineated map units for the different levels of soil
salinity in each field was significantly different for dif-
ferent interpolation methods.

Discussion

The results showed that spatial distribution of soil EC in
the three studied fields could be described with Gauss-
ian (for fields A and C) and spherical (for field B)
models. The Gaussian model normally has higher re-
sponse to the variance increase against distance rather
than the spherical model (Goovaerts 1997). The value of
nugget effect for EC in the A and C fields was relatively
small which suggests low random variance, strong au-
tocorrelation of data, and large spatial continuity be-
tween the neighboring points in the study area (Chiles
and Delfiner 1999). The larger effective range for field
C indicated that this field had a more widespread spatial
structure than either fields A or B. Therefore, the virtual
range that data can be used to estimate the amount of soil
EC at unknown points is larger in this field (Juan et al.
2011). While for field B, EC showed weaker spatial
structure than the other fields; it may show a stronger
spatial structure on a smaller scale with an extended
dataset (Simakova 2011). The smaller effective range

Table 4 Performance assessment results of the four interpolation methods tested for predicting soil EC in each of the three studied fields

Fields Interpolation methods MBE MAPE RMSE R2 Method performance ranking*

A IDW − 0.08 0.20 0.28 0.85 OK > IDW > RBF > GPI
GPI − 0.21 0.42 0.55 0.61

RBF − 0.09 0.31 0.44 0.51

OK +0.04 0.12 0.17 0.87

B IDW +0.09 0.18 0.32 0.89 IDW > OK > RBF > GPI
GPI +0.15 0.48 0.78 0.43

RBF +0.23 0.24 0.50 0.62

OK − 0.13 0.21 0.42 0.73

C IDW − 0.06 0.41 0.86 0.57 OK > RBF > IDW > GPI
GPI +0.12 0.56 1.17 0.33

RBF +0.03 0.34 0.71 0.66

OK − 0.03 0.15 0.31 0.83

MBE mean bias error, MAPE mean absolute percentage error, RMSE root mean square error, R2 coefficient of determinations

*The superior method is in italics for each field

Table 5 Cohen’s kappa (κ) values compare performance similarity of interpolator in the 3 investigated fields

Field A Field B Field C

IDW RBF GPI IDW RBF GPI IDW RBF GPI

OK 0.91 0.86 0.73 OK 0.65 0.50 0.51 OK 0.92 0.95 0.41

IDW 0.89 0.78 IDW 0.68 0.66 IDW 0.90 0.42

RBF 0.80 RBF 0.72 RBF 0.40
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of soil EC in field B can probably be ascribed to man-
agement practices (non-intrinsic) impacts rather than
intrinsic processes which are typically associated with
strong spatial structure and large effective range values
(Kavianpoor et al. 2012). The average value of RMSE in
field Awas significantly higher than the other two fields,

which indicated a greater probability that errors occur in
this field.

In agreement with many previous studies, the
dissimilar performance of the given interpolation
methods in the three different fields indicated that
the performance of interpolation methods is site-

Fig. 5 Soil EC mapping based on OK, IDW, RBF, and GPI interpolation methods in a, b, and c agricultural fields from the Varamin area

Table 6 Percentage of total area (%) covered by different map units created by each of the interpolation methods for fields A, B, and C

Fields
Interpolation 

Methods
Salinity Levels*

A

OK 75 10 8 7

IDW 80 7 7 6

RBF 80 10 6 4

GPI 100 0 0 0

B

OK 0 85 15 0

IDW 2 50 30 18

RBF 25 25 25 25

GPI 10 40 30 20

C

OK 50 25 10 15

IDW 50 20 15 15

RBF 60 15 10 15

GPI 15 60 25 0

*Salinity levels for each of the three fields have been delineated in Fig. 5
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dependent (Li and Heap 2011; Yao et al. 2013). For
example, in this research for all employed methods,
the worst performance was obtained for field C. This
observation can be ascribed to greater heterogeneity
and a short autocorrelation range of EC in this field
compared to field A. In the case of field B with
moderate spatial dependency, the performance of
the IDW method was slightly better than the OK
method simply because IDW relies on the similarity
of neighboring sample points to predict the unmea-
sured points. Over and underestimation of methods
also seems to be site and dataset dependent. For
example, all the methods overestimated ECs in field
B, while they mostly underestimated ECs were in
field A.

According to the classical descriptive statistics,
field C showed the greatest variability with the highest
CV value; however, spatial dependence analysis indi-
cated that field B had the weakest spatial structure
amongst the three investigated fields. Comparison
between field A and C, both with strong spatial de-
pendency and the same semivariogram model (Gauss-
ian model), indicated that field A, with a lower CV
value than field C, showed stronger spatial structure.
Thus, it was concluded that, while spatial structure
was not directly linked to data variability, it certainly
may be negatively affected by CV (Kumari et al.
2018). Yao et al. (2013) and Zhu and Lin (2010)
reported that the performance of a spatial interpolation
method depends not only on the features of the method
itself but also on the sample pattern and data
characteristics such as data variation. Kumari et al.
(2018) reported that the quality of the dataset in dif-
ferent case studies for a given variable influences the
accuracy of different interpolation methods. Different
systems of land management in soils with the same
parent materials and land use may result in different
dataset characteristics. Li and Heap (2011) pointed out
that data variation has significant effects on the perfor-
mance of the methods. Generally, as the variation in the
dataset increases, the accuracy of interpolation methods
decreases and the magnitude of decrease is method
dependent. Many researchers reported that data normal-
ity, and sample pattern might also affect the performance
of spatial interpolation methods (Kumari et al. 2018; Li
and Heap 2011; Seyedmohammadi et al. 2016).

Regardless of the field of study, comparison be-
tween interpolation methods showed that while OK
generally had superior performance to other methods,

it was not always the best interpolation method in all
fields, but it was found to be the best method in
location A and B and the second best method in field
C. The two basic assumptions of OK are that obser-
vations are spatially autocorrelated and data is nor-
mally distributed (Zimmerman et al. 1999). The per-
formance of the OK method increased as the spatial
dependency of data increased. Thus, OK performed
very well when the collected data had a acceptable
degree of homogeneity and structural spatial
dependency, as it includes spatial dependency
information during the prediction. The OK method
can also mitigate the negative effects of high data
heterogeneity on interpolation performance when
strong structural dependency exists, as happened in
the case of field C. Similar results were reported by
Seyedmohammadi et al. (2016) for predicting
groundwater EC by spatial interpolation methods.
According to the evaluation criteria, the effectiveness
of the RBF methods was significantly better than the
GPI method. RBF had a slightly better performance
for estimating EC compared to IDW in field C. Pre-
viously, Li and Heap (2011) reported that IDW was
highly sensitive to sample density and data variation
(CV). Although increasing sampling density can im-
prove the performance of both geostatistical and de-
terministic interpolation methods, the performance of
deterministic methods is more sensitive to sampling
density as these methods rely only upon information
provided by values of known points for predicting
the values of unknown points (Kumari et al. 2018). In
all cases, the GPI method which is based on global
interpolation and is not a precise interpolation was
found to be the worst interpolation method. Accord-
ing to Xiao et al. (2016), the GPI method is only
suitable when the variability of the dataset is relative-
ly small and it is not very accurate when extreme
values are present.

Whenever the Cohen’s kappa results showed
strong agreement between interpolators, this meant
that both interpolators were mapping soil salinity in
a similar manner. However, it is worth noting that
even if two interpolators strongly agree, this does
not necessarily mean that their prediction and the
subsequent mapping is correct, because both models
could be equally poorly estimating results. For in-
stance, in the case of field A and C, highest simi-
larity (according to κ values) belonged to interpola-
tion methods that were also the best predictive
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methods, however in field B poor predictors (i.e.,
GPI and RBF) recorded the highest κ value
(McHugh 2012).

Comparison of del ineated map units by
employing the four interpolation methods in each
field indicated that significantly different manage-
ment zones may be discriminated in a given field
by employing different interpolation approaches.
For instance, for field A, while the GPI method
covered 100% of the area for salinity at level 1,
the optimal OK method assigned only 75% of this
area at this level of salinity. The GPI method sig-
nificantly underestimated EC which resulted in a
uniform map and elimination of higher EC level
zones compared to other methods. Likewise, under-
estimation of the OK interpolator resulted in re-
moval of the highly saline zone for field B where
more precise mapping was obtained using IDW
method. In the case of field C, while visual map-
pings of OK, IDW, and RBF were almost similar,
different mappings of GPI were due to overestima-
tion of this interpolator. So it is crucial to discrim-
inate the management zones of soil salinity based
on the most accurate produced maps with simulta-
neous consideration variety of assessment criteria
(Gebbers and de Bruin 2010).

Conclusions

In this study, OK and IDW methods were considered to
be optimal methods for producing salinity maps in ag-
ricultural lands. The output maps of such interpolation
methods can help in applying precise and more suitable
site specific management, maintain, and conserve soil in
different land use applications. Both interpolation meth-
od features and data properties, which are often site-
dependent, affect the performance of interpolation ap-
proaches. Results of this study suggest that in an area
with strong spatial dependence of the target variable,
geostatistical interpolation methods perform much bet-
ter than the distance-based and deterministic methods in
predicting the spatially continuous surface. Since utili-
zation of proper interpolation methods is crucial for
producing a precise map, the best interpolation method
should first be investigated among common interpola-
tion techniques in each specific agricultural land.
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Abbreviations
EC electrical conductivity

GPI global polynomial interpolation

IDW inverse distance weighted

MAPE mean absolute percentage error

MBE mean bias error

OK ordinary kriging

R2 coefficient of determination

RBF radial basis functions

RSS residual sum of squares

TNV mean total neutralizing values

κ Cohen’s kappa coefficient
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