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Abstract Suspended sediment is one of the most influ-
ential parameters on the water bodies’ pollution. It can
carry different pollutants with different concentration
through the suspension movement in the flow. There-
fore, it is of utmost importance to monitoring or model-
ling these loads so that an accurate sediment reduction
strategy can be adopted. However, the monitoring pro-
cess is laborious and time-consuming task. Thus,
modelling is suggested as an alternative method. In this
study, three different methods of artificial intelligence
(i.e., random forest, support vector machine (Radial
Basis Function), and artificial neural network) were
employed to model and predict the suspended load at
Sarai Station in Baghdad. To this end, observed flow
rate (m3/s) and the corresponding suspended sediment
concentration (mg/l) measured over the periods 1962–
1981 and 2000–2010 were collected. Auto and partial
correlation was used to identify the best combinations of
input model data. The data was randomly partitioned
into 75% for training and 25% for validation. The con-
fidence interval was hypothesized to assess the uncer-
tainty in the observed and predicted data. Whereas, the
k-fold cross validation was used to quantify the uncer-
tainty in the modelling results. The predictive modelling
results for the three evaluated methods were assessed
based on R2, RMSE, and NSE coefficient. Results show
that random forest has the superior performance among

the others. The total suspended sediment transported
was estimated to be 72,734,852 ton during the period
2000–2010.
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Introduction

Sediment transport by rivers is the main cause of critical
issues related to water quality, reservoir siltation, design
of dams, channel navigability, fish habitat, hydropower
plant malfunctioning, and soil loss (Kaveh et al. 2017;
Francke et al. 2010). Therefore, it represents an impor-
tant constraint for the hydraulic projects management,
environmental issues, and watershed management (Kisi
and Zounemat-Kermani 2016). Typically, sediment load
is classified into suspended sediment load (SSL), bed
load, or wash load (Efthimiou 2019). SSL constitutes a
serious problem in water resources field as it acts as a
physical pollutant leading to turbidity increase or as
chemical pollutant through chemical adsorption (Doğan
et al. 2007).

An estimation of SSL in the field is laborious and
time-money consuming. Thus, in most countries,
suspended sediment data with short sampling intervals
are rarely available (Al-Mukhtar and Al-Yaseen 2019).
In contrast, streamflow data are often available at daily,
hourly, or even shorter. The streamflow discharge is the
main driving force for the initiation of sediment motion
where the turbulent currents pendulant sediments by the
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upward flow components (Vafakhah 2013). Hence, it is
of great importance to determine the most suited model-
ling method of the suspended sediment-streamflow dis-
charge relationship, which can be applied for present
estimation and future projection.

In the literature, several techniques have been applied
to estimate the SSL. These techniques are classified into
(i) physically process based-distributed (e.g., Ascough
et al. 1997; Arnold and Srinivasan 1998), (ii) lumped
conceptual (Wichmeier and Smith 1978; Williams
1975), (iii) empirical/regression (Renard et al. 1996),
and (iv) data driven based.

Physical-based and lumped conceptual models are
required a large amount of input data and thus can be
difficult to apply. For better application of these models,
the data availability in the area should exceed the model
requirements (Kalbus et al. 2012).

Because of the inherent non-stationarity, dynamism,
and noise in the sediment mechanism, the conventional
methods such sediment rating curve or linear regres-
sion models have shown mostly incompetency to
achieve an accurate prediction of suspended sediment.
Given their simplicity, the above methods are not able
to understand the behavior of sediment transport in
rivers (Afan et al. 2016). In their study, Shiau and
Chen (2015) pointed out that “the sediment rating
curve is insufficient to describe the inevitable scatter
between sediment and discharge.”

Artificial intelligence (AI) as a type of data-driven
models has been widely used to modeling the sediment
transport as it has demonstrated capacity to address the
complexity and noise data problems (Nourani et al.
2014). However, the physical processes are not consid-
ered in these models; alternatively, AI models are only
tools used to capture the relationships between the rel-
evant input and output variables (Olyaie et al. 2015).
Hence, they are likely be more accurate than process
models because they are dependent on data (Solomatine
et al. 2008). AI models encompass, to name a few,
Artificial Neural Networks (ANNs), Fuzzy Rule-Based
Systems (FRBS), Random Forest (RF), and Support
Vector Machines (SVM).

ANNs have been widely used to solve hydrology-
related problems (Tayfur 2002). For example, in
rainfall-runoff modelling (Minns and Hall 1996;
Mason et al. 1996; Rajurkar et al. 2004; Harun et al.
2002), streamflow forecasting (Dolling and Varas 2002;
Kişi 2007), groundwater modelling (Coppola Jr et al.
2003; Daliakopoulos et al. 2005; Maiti and Tiwari

2014), water quality (Palani et al. 2008; Wen and Lee
1998; Singh et al. 2009; Maier and Dandy 1996), sed-
iment transport (Licznar and Nearing 2003; Ouellet-
Proulx et al. 2016; Kisi 2004; Zhu et al. 2007; Alp and
Cigizoglu 2007; Nagy et al. 2002; Rai andMathur 2008;
Rajaee et al. 2009), and many other hydrological
aspects.

The applications of RF and SVM have been success-
fully reported in the water-related studies. For example,
in the USA, Çimen (2008) applied SVM for predicting
SSL in two rivers using the discharges as inputs. The
study showed that SVM outperformed the fuzzy differ-
ential evolution and fuzzy logic. Francke et al. (2010)
used traditional sediment rating curves (SRC), general-
ized linear models (GLM), and RF and Quantile Re-
gression Forests (QRF) techniques to relate SSL to
discharges. They concluded that the AI methods provid-
ed the best performance. Moreover, they were superior
in calculating of confidence levels for the predictions,
which in turn useful in the computation of sediment
yields and the associated uncertainties. Kakaei Lafdani
et al. (2013) used the four different kernels of nu-SVM,
i.e., linear, polynomial, sigmoid, and Radial Basis Func-
tion (RBF), to predict SSL. They used streamflow and
rainfall data as input variables. They concluded that
RBF kernel function for SVM model has more
capability for prediction and thus represents the
reasonable and promising method than the other kernel
functions. Li et al. (2015) applied RF for forecasting
lake water level variations in Poyang Lake, China. They
demonstrated that for daily forecasting, the RF model
could attain more reliable and accurate forecasting re-
sults than ANN, SVM, and linear modeling in terms of
RMSE and R2.

The objective of this study was to determine the most
suited predictive model of SSL that can be satisfactory
applied in Tigris River-Sarai station. To attain the ob-
jective of this study, an evaluation and comparison of
three different AI methods were made. The evaluated
methods were random forest, support vector machine,
and ANN. An intermittent suspended sediment concen-
tration (SSC) data with their counterparts streamflow
discharges for the period 1962–1981 were employed
for the purpose of this study. As these period represents
the only available measured SSC data in the study area.
In addition, data set of daily flow discharges collected
over 11 years (2000–2010) was used to predict the SSL
from the best evaluated method. The auto and partial
correlation was utilized for determining the most
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effective predicting variables considering as far as pos-
sible a parsimonious predictive model. The uncertainty
in modelling results and population parameters was
quantified through the k-fold cross validation method
and confidence interval, respectively. All the computa-
tional modellings were done under R packages version
3.4.1.

Materials and methods

Study area and data

The Sarai station is a gaging station established in 1931
located on Tigris River in Baghdad at latitude 33° 18′ N
and 44° 23′ E longitude (Fig. 1). Tigris River flows
through Turkey, Syria, and Iraq with catchment areas
of 57614, 834, and 253000 km2, respectively (Bozkurt
and Sen 2013). The total drainage area of Tigris River
up to Sarai station is 134,000 Km2. The river enters
Baghdad city from the north where the river character-
ized as alluvial plain and multimeanders (Al-Ansari
et al. 1979). The bed of the river is composed of sand
and clay with slope about 7 cm/km. Due to the impacts
of climate change, anthropogenic activities, and water
policy of Turkey, the mean daily discharge in Tigris
River dropped from 1140 to 546 m3/s in 2000s (Ali
et al. 2017). Hence, recently, many islands and point
bars emerged in the river which ultimately affected on
the hydraulic performance and ecological behavior in
the river. Thus, it is of utmost importance to adopt some
strategies to mitigate the sediment transport amount.
Such strategies necessitate firstly an accurate quantifi-
cation of that amount.

However, for the purpose of this study, the data
collected for the Sarai Station were daily discharge
(m3/s) and their corresponding suspended sediment con-
centrations (mg/l), measured intermittently, at best four
readings per month. The only period where both data
sets were measured simultaneously is 1962–1981. De-
spite the station is currently in use to measure the water
discharges, unfortunately, no data available about the
SSC after that period. However, in total, only 111 mea-
surements were exist from the above period. Addition-
ally, the daily discharges from 2000 to 2010 were
collected.

The observed SSC and water discharges data were
randomly portioned into 75% for training the AI
models and 25% for validation. Table 1 below

describes the statistical summary of SSC and flow rates
used in this study. The minimum and maximum values
of training/validation SSC data were 27/181 mg/l and
3071/1262 mg/l, respectively. The first quartile and
third quartile values of training/validation data were
206/475 and 808/818 mg/l, respectively, and 50% of
the data during training and validation were greater
than 502 and 659 mg/l, respectively. On the other side,
the minimum and maximum values of training/
validation flow rates data were 294.19/331.54 m3/s
and 2647.59/1487.05 m3/s, respectively. The first quar-
tile and third quartile values of training/validation data
were 471.225/472.577 and 1179.81/962.9 m3/s, re-
spectively. Additionally, the mean values are greater
than the median in both data sets, which implies that
the right tail is longer than the left and hence proving
that the data are right skewed.

Random forest (RF)

RF is one of the most powerful ensemble-learning algo-
rithms. Breiman (2001) proposed the RF algorithm by
adding additional randomness layer to bagging method.
It functions by constructing multiple decision trees and
final predictions are obtained from the averaged results.
Each tree is constructed using different bootstrap sample
of the data by adopting changes in how the classification
or regression trees are constructed. These changes are
represented by randomly sample of the candidate pre-
dictors and choosing the best split among the variables
(Breiman 2001). Hence, two parameters are paramount
in RF, which are ntree andmtry. ntree is the number of trees
in the forest, while mtry is the number of variables in the
random subset at each node. In this study, the default
ntree and mtry values were considered, which is p/3 and
500, respectively, where p is the number of predictors.

The algorithm of RF starting by drawing ntree boot-
strap sample from the data. Subsequently, an unpruned
classification or regression tree is grown for each boot-
strap sample (Ouedraogo et al. 2019). Then, at each
node, a random sample of the predictors is to be taken
and the best split from among those variables
(predictors) is chosen. Lastly, a new data is predicted
by aggregating the prediction of ntree trees (Liaw and
Wiener 2003). For more detail description and mathe-
matical equations on RF, the reader is referred to
Breiman (2001), Breiman (1996) and Liaw and Wiener
2003.
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Support vector machine (SVM)

SVM is a soft computing AI method developed by
Vapnik (1995). The method has been successfully used

in classification and recently in regression (Kecman
2001). There are different types of kernel function in
support vector regression (SVR), i.e., linear, polynomi-
al, and radial basis function (RBF) (Lan 2014). RBF is
known to better handle the case when the relationship
between inputs and outputs is non-linear and it encom-
passes fewer numerical difficulties than others (Lin et al.
2006). Hence, the commonly used RBF kernel is
adopted in this study. Below is a brief description on
the RBF-SVM, also called ε-SVR. The regression form
for the SVR is

f xð Þ ¼ wiφi xð Þ þ b ð1Þ

where wi and b are the weight vector and bias, respec-
tively, and φi is the nonlinear converter function used to
map the input vectors into high dimensional space.
Minimizing Eq. 2 is done through a convex optimiza-
tion function given in Eq. 3 with an ε-insensitivity loss
function to ultimately produce the nonlinear kernel RBF
in Eq. 5.

1

2
∥W∥2 þ C ∑N

i ξi þ ξ*i
� �� � ð2Þ

Fig. 1 The study area location

Table 1 Descriptive statistics of suspended sediment concentra-
tion (mg/l) and river discharge (m3/s) at Sarai station during 1962–
1981 and 2000–2010

1962–1981 2000–2010

Training Validation All

SSC mg/l Min. 27.88 181.1

1st Qu. 206.03 475.1

Median 502.79 659.9

Mean 597.24 667.9

3rd Qu. 808.08 818.4

Max. 3,071.47 1262.90

Flow rate cumecs Min. 294.19 331.54 280

1st Qu. 471.225 472.577 520

Median 690.69 750.58 520

Mean 898.06 771.12 546.23

3rd Qu. 1179.81 962.9 520

Max. 2647.59 1487.05 1315
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Subject to
wiφi xð Þ þ bi−yi≤εþ ξ*i ; i ¼ 1; 2;…N
yi−wiφi xð Þ−bi ≤εþ ξ*i ; i ¼ 1; 2;…N
ξi; ξ

*
i ≥0

8<
:

ð3Þ
where C is the cost factor that defines the empirical error
in the optimization problem. ∥W∥2 is Euclidean smooth
vector. ξi and ξ*i are covariate variables which causes
training error for points out the tolerance error ε by loss
function.

ξεj j¼ y− f xð Þj jε ¼
0 if y− f xð Þj j≤ε
y− f xð Þj j−ε if otherwise

�
ð4Þ

K x; yð Þ ¼ exp −α x−xij j2
� �

ð5Þ

Artificial neural networks (ANNs)

ANN is a biological computational model inspired from
the human brain functions (Solomatine et al. 2008).
Typically, it consists of three layers, i.e., input, hidden
(neurons), and output. The relationships between input-
output and the state of network are extracted from the
data itself during the training of the network (Dumedah
et al. 2014). An input–output mapping is performed
using a set of interconnected simple processing through
the hidden layer (Ghumman et al. 2018). Each neuron in
the hidden layer receives signals externally or from
other neurons and processes it through an activation
transferable function. The common used activation
function is logistic, linear, or sigmoid curve. The data
are processed from the input to output through the
hidden layer successively in what is called feedforward.
The backpropagation algorithm (BPA), which was prin-
cipally developed by Werbos in 1974, is the most com-
monly used learning algorithm in feedforward neural
networks (Kasabov 1996). This algorithm minimizes
the error between the modelled and actual output values
through a gradient descent optimization algorithm. An
adjustment of the weighted connections between layers
is set after each training episode until the error in the
validation data set begins to increase (Dawson and
Wilby 2001).

In this study, a multilayer perception network with
one hidden layer using the BPA learning algorithm was
trained to establish the ANN model. The activation

function used in the hidden layer is a log-sigmoid func-
tion and a linear function in the output layer.

Selection of the predictors

In this study, the daily discharges of the Tigris River at
Sarai station with different time lags were considered as
inputs (predictors), and the current suspended sediment
concentration (mg/l) as outputs. Commonly, using ante-
cedent values of water discharges or SSLmight improve
the model performance. Predictor variable selection was
performed to find the optimal model and building con-
cise powerful models by preventing overfitting and
eliminating collinearity in the predictors (Harrell
2001). Subsequently, the auto (ACF) and partial auto
correlation (PACF) were employed to determine the
optimum lag of antecedent predictors using the default
time lag (up to 20 values). ACF is defined as a statistical
analysis used to determine the degree of correlation
between adjacent values correlation (McCuen 2002).
While, the PACF is the partial correlation of a time
series with its own lagged values without considering
the influences of intervening lagged autocorrelation (Al-
Mukhtar 2016).

Uncertainty analysis

Confidence interval

Confidence interval (CI) is defined as a plausible range
of the population’s parameters values. It is commonly
used to assess the uncertainty in the sampling distribu-
tion based on the central limit theorem (CLT) or
bootstrapping method. The difference between the
above methods is arisen from the way of the sampling.
In CLT, we sample from the original population while in
bootstrapping, the sampling is carried out from the
sample itself (DiCiccio and Efron 1996). Typically, it
is almost impossible to collect the entire population data
(as in our case). Therefore, and in order to quantify the
uncertainty in the population mean of the observed SSL
(1962–1981) and in the predicted SSL (2000–2010)
from the best-evaluated method, 95% CI was construct-
ed using above condition based on bootstrap samples
using the standard error method. This process was to
guarantee that the true population parameter (mean
SSL) is within the range of confidence levels in the
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respective intervals (1962–1981 and 2000–2010) with
95% confidence.

Cross validation

Data partition constitutes the main component in devel-
oping an accurate and reliable suspended sediment mod-
el. This fact emerges from the complexity of sediment
transport phenomenon, and hence, it is mostly unreli-
able to build a single predictive model that is able to
capture the entire system behavior based on one group.
Therefore, the k-fold cross validation was used in this
study to reduce the uncertainty in the modelling results.
In k-fold cross validation, the training data were ran-
domly partitioned into five equal-sized subsets where
the predictive model is trained on all, except one for
testing. The procedure is repeated k times where k is the
number of subsets and the evaluation criteria were av-
eraged to obtain the final performance (Casanueva et al.
2014). Subsequently, the best performance model was
applied to simulate SSC using the training and valida-
tion data sets.

Evaluation criteria

The quantitative statistics in hydrological modelling are
divided into three major categories (Moriasi et al. 2007),
i.e., standard regression, dimensionless, and error index.
For better assessment of the predictive model accuracy,
it is highly recommended that the statistical metrics
must consider these various types. Therefore, in this
study, the following statistics were used.

1- Determination coefficient R2 (standard regression
type)

R2 ¼
∑n

i¼1 Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi−O
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Pi−P
� �2

r
2
664

3
775
2

ð6Þ

where Oi is the actual value, O is the average actual

value, Pi is the predicted value, and P is the average
predicted value. Values of R2 range from 0 to 1. The
closer the value to 1, the better the model is.

2- Nash and Sutcliff coefficient efficiency NSE (di-
mensionless type)

NSE ¼ 1−
∑n

1 Oi−Sið Þ2

∑n
1 Oi−S
� �2 ð7Þ

The values of NSE range from -∞ to 1. A perfect fit
between the modelled and measured data is represented
by a value of 1. In general, a value of > 0.6 is considered
satisfactory (Zounemat-Kermani et al. 2016).

3- Root mean square error RMSE (error index type)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi−Pð Þ2
n

s
ð8Þ

The RMSE values range from 0 to ∞. The less this
index, the better is the performance of the model.

Results and discussion

Model building and the parsimonious case

The auto correlation correlogram and the PACF plot of
water discharges over the period 1962–1981 were plot-
ted with their 95% confidence intervals as shown in
Figs. 2 and 3, respectively. Obviously, as it can be seen
from Fig. 2 that there were strong correlations among
the various antecedent values up to 20 time lags at a
significance level (α) of 0.05. The ACF starts from a
value of 0.9 at time lag-0 and gradually decreased up to
~ 0.8 at time lag-20. On the other side, PACF plot (Fig.
3) show that there were a significant correlation at α =
0.05 up to 6-time lag. Thereafter, the values fall within
the confidence intervals and thus indicated an evidence
to accept the null hypothesis. Therefore, initially, the
common time lag between the two metrics was adopted
in model building. In other words, the time lag-6 ante-
cedent discharge values were used to model the current
SSC. But, according to the statistical metrics used,
adding the fifth and sixth values (time lags-5 and 6) to
the models has not improved the performance of pre-
dictive models. Hence, and in order to maintain as far as
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possible a parsimonious model, all the predictive
models were built based on time lag-1 to 4 (Table 2).

The evaluated methods

Table 3 shows the statistical performances of the evalu-
ated methods according to their different scenarios dur-
ing training and validation. All the models with four and
three input combinations show a superior performance
in comparison to the other structures. Thus, time lag of
discharge has a substantial influence on sediment load
variations. The observations were closely matched with
those modelled from RF, SVM, and ANN during train-
ing according to scenario 1. R2, NSE, and RMSE during
the training period from RF#01-SVM#01-ANN#01
were 0.9, 0.75, and 189.65; 0.73, 0.57, and 265.22;
and 0.85, 0.78, and 197.3, respectively. During the
validation period, R2, NSE, and RMSE from RF#01-
SVM#01-ANN#01 were 0.76, 0.71, and 144.98; 0.67,
0.60, and 194.02; and 0.68, 0.59, and 178.3, respective-
ly, which implies a satisfactory performance to capture
the observed variations. The highest R2 and NSE with
the lowest RMSE were obtained from RF. According to

scenario 2, R2, NSE, and RMSE during the training
period from RF#02-SVM#02-ANN#02 were 0.9, 0.75,
and 186.96; 0.62, 0.31, and 311.75; and 0.85, 0.78, and
197.3, respectively. During the validation period, R2,
NSE, and RMSE from RF#02-SVM#02-ANN#02 were
0.76, 0.71, and 144.98; 0.67, 0.6, and 194.02; and 0.78,
0.67, and 240.84, respectively. Obviously, the perfor-
mance of RF#02 was not considerably different on that
from RF#01 during the training. However, the perfor-
mance positively changed of RF#02 and ANN#02 on
that from scenario 1 during the validation. The values of
R2, NSE, and RMSE obtained from RF#02-ANN#02
models were 0.8, 0.75, and 130.71, and 0.68, 0.63, and
170.75, respectively. While results from SVM#02 show
lower values of that from SVM#01 with R2, NSE, and
RMSE equal to 0.53, 0.45, and 227.87, respectively.
With respect to scenario 3, generally all the evaluated
methods introduced poorer results than those from the
above scenarios, which implies that the sediment trans-
port process in the study area is highly dynamics and
thus associated to higher range of antecedent discharges.
R2, NSE, and RMSE obtained from RF#03-SVM#03-
ANN#03 models during the training period were 0.9,
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0.77, and 184.51; 0.62, 0.14, and 322.38; and 0.78,
0.63, and 240.79, respectively. During the validation
period, the performances were, 0.76, 0.69, and 145;
0.41, 0, and 266.01; and 0.58, 0.45, and 211.74, respec-
tively. Finally, results from scenario 4 also show poor
performance in comparison to scenarios 1 and 2. R2,
NSE, and RMSE during the training period from
RF#04-SVM#04-ANN#04 were 0.87, 0.77, and
192.76; 0.58, 0.26, and 330.24; and 0.68, 0.44, and
287.98, respectively. During the validation period, R2,
NSE, and RMSE from RF#04-SVM#04-ANN#04 were
0.68, 0.66, and 175.11; 0.42, 0.11, and 257.91; and 0.5,
0.34, and 233.1, respectively. Results from various sce-
narios of RF outperformed those from SVM and ANN
according to statistical metrics, indicating a superior
performance in modelling SSC in the study area.
Among the aforementioned model structures, the RF
model with a time lag of 3 days (RF#02) for the case

study exhibited the best performance with the lowest
RMSE values of 130.71 mg/l during validation. There-
fore, this scenario was adopted to predict the monthly
SSL using daily observed discharges along the period
2000–2010.

The superior performance of random forest might be
attributed to the fact that they do not consider easy
interpretation of the effects of single predictors (De’ath
2007). Instead, a random subset of the predictors is used
for each tree and at each node and hence is free of
overfitting problems as the number of trees increases.
Ultimately, and as pointed by Francke et al. (2010),
predictions are made from a weighted average of the
training data making the model predictions are always
within the range of the observations. This precludes
implausible values but inhibits extrapolation”. On the
other side, SVR shows poorer performance than that
from RF and ANN. In their studies, Haji et al. (2014),
Kakaei Lafdani et al. (2013), and Nourani and Andalib
(2015) also reported that “the performance of SVM is
worse than other AI methods such as ANN in modeling
sediment load”. Even the ANN model performed better
than SVM but worse than RF. It is well known that the
ANNmodels are unable to extrapolate beyond the range
of the data used for training (Flood and Kartam 1994;
Minns and Hall 1996). Additionally, when the valida-
tion data contain values outside the range of those used
for training; poor predictions can be expected. In other
words, it is necessary that the training and validation sets
are representative of the same population. Moreover, it
is noteworthy that the ANNs are highly dependent on
the amount of trained data to generate prediction. These
drawbacks might represent the limitation of using
ANNs in prediction procedure and could explain the
unsatisfactory performance of the ANNs in this study.

Uncertainty analysis

Given that the SSL data are highly complex and
uncertain, it was essential to make inference on what
the SSL population looks like. Figure 4 shows 50
confidence levels bootstrapped from 1000 random
samples of size n (n = 111) per each one of them.
The vertical line represents the true population mean
of SSL across the period 1962–1981, which is equal
to 645 mg/l. Each horizontal line depicts a confi-
dence calculated based on different random sam-
pling, which ranges from 385 to 1009 mg/l. There
are 50 interval plots and 49 of them contain the true

Table 2 Model descriptions

Scenarios Model structure

Scenario 1 SSC~Qt,Qt-1,Qt-2,Qt-3

Scenario 2 SSC~Qt,Qt-1,Qt-2

Scenario 3 SSC~Qt,Qt-1

Scenario 4 SSC~Qt

Table 3 Statistical performances of the evaluated models

Training Validation

Model name R2 NSE RMSE R2 NSE RMSE

rf#01 0.9 0.75 189.65 0.76 0.71 144.98

rf#02 0.9 0.75 186.96 0.8 0.75 130.71

rf#03 0.9 0.77 184.51 0.76 0.69 145

rf#04 0.87 0.77 192.76 0.68 0.66 175.11

svm#01 0.73 0.57 265.22 0.67 0.6 194.02

svm#02 0.62 0.31 311.75 0.53 0.45 227.87

svm#03 0.62 0.14 322.38 0.41 0 266.01

svm#04 0.58 0.26 330.24 0.42 0.11 257.91

ann#01 0.85 0.78 197.3 0.68 0.59 178.3

ann#02 0.78 0.67 240.84 0.68 0.63 170.75

ann#03 0.78 0.63 240.79 0.58 0.45 211.74

ann#04 0.68 0.44 287.98 0.5 0.34 233.1

#01: scenario 1; #02: scenario 2; #03: scenario 3; #04: scenario 4
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population mean. Therefore, the proportion of con-
fidence intervals is 98%, which implies that 98% of
random samples of SSL during the period 1962–
1981 will yield confidence intervals that contain
the true population mean. Thus, it can be judged
that the sample data are representative of the entire
population. In addition, Fig. 5 depicts 50 confidence
level bootstrapped from 1000 random samples of
size n (n = 3649, daily modelled SSC from 2000
to 2010) from RF#02 model structure during 2000–
2010. It can be clarified that the mean SSC during
2000–2010 was determined as 389 mg/l with range
of values from 366 to 447 mg/l. The whole 50
confidence intervals captured the true population
mean, indicating that the uncertainty in SSC during
the period 2000–2010 was fairly identified by
RF#02 model. Narrower range of confidence inter-
vals obtained from the modelling results implies that
the model precisely predict SSC during 2000–2010.

Based on the above, the total sediment amount from
October 2001 to 2010 was predicted using the optimal
model, i.e., RF#02. The suspended sediment

concentrations (mg/l) were converted into suspended
sediment load (ton) using their corresponding dis-
charges and a conversion factor. Figure 6 presents the
temporal variations of modelled monthly SSL (ton)
using box and whisker plot. Some outlier values were
detected mostly in March where higher values of flow
are released from Turkey due to the snow melting and
subsequently increasing the water release from the up-
stream dams and regulators. The monthly sediment load
in March ranges between 5073.75 and 50218.13 ton.
The interquartile range ranges between 12064.88 and
30146.05 ton, which implies that the most likely sedi-
ment load of 50% probability might occur within this
range. Also, it can be illustrated from Fig. 6 that the
summer months (July and August) recorded the highest
amounts of sediment load. The monthly sediment load
during July and August ranges between 5021.56 to
60960.28 and 4686.80 to 60874.21 ton, respectively.
The interquartile fluctuated between 9040.73 to
31008.70 and 9025.23 to 30693.95, respectively. The
total summed sediment load over the period 2001–2010
was estimated to be 72,734,852 ton, indicating the
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Fig. 4 Fifty 95% confidence
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urgent need in adopting some strategies to reduce and
mitigate the massive amount of SSL.

Conclusions

This study investigated three kinds of artificial
intelligence methods in modelling suspended sedi-
ment concentration in Tigris River-Baghdad. The
evaluation of the AI methods was performed based
on two datasets: training and validation. During
the training, the datasets was split into 5-subsets
using k-fold cross validation. The best performance
was determined based on the optimal average sta-
tistical metrics from the k-fold cross validation and
subsequently used with an independent data for
validation. Model structure was identified based
on auto and partial correlation with a significant
level of 0.05.

Results demonstrated that for SSC, the RF model
attained more reliable and accurate forecasting re-
sults than SVR and ANN in terms of R2, NSE, and
RMSE. Best prediction performance was obtained
by incorporating input data with 3-day time lag of
discharge from the river, showing the vital role of
discharge time lag on the current value of SSC. The
outcomes from this work would be providing a
better insight on the amounts of sediment carrying
by the river, and ultimately better water quality
management.
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