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Abstract This study makes a first attempt at a detailed
estimation of the background radioactivity level and its
distribution at the Sinop nuclear power plant site. The
activity concentration levels of 226Ra, 232Th, 40K and
137Cs radionuclides in soil samples collected from 88
locations around Sinop Province, Turkey, in November
2016, were measured using gamma spectrometry. The
distributions of radionuclide levels obtained from the
results were evaluated using a geostatistical method, and
the estimated radiation levels were determined using the
ordinary kriging (OK) method, which is the best linear
unbiased estimator (BLUE) for unmeasured points. Es-
timates of distribution results were evaluated using
cross-validation diagrams, and it was shown that the
OK method could predict radiological distributions for
appropriate criteria. Finally, using the kriging parame-
ters, distributions of radiation levels for the entire work
area were mapped at a spatial resolution of 100 ×
100 m2. These maps show that the natural radionuclides
(226Ra, 232Th and 40K) are distributed at higher levels to
the southeast of Sinop than in the other regions, and the
activity of an artificial radionuclide (137Cs) is high in the
interior and northern sections.
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Introduction

In the increasingly developing world, power plays a fun-
damental role in the process of economic growth and
development. All countries in the world aim to achieve a
cost-effective, reliable and safe electricity source to sustain
modern ways of living (Brahmanandhan et al. 2007). In
developing countries such as Turkey, the demand for
electricity is constantly increasing, and to sustain the econ-
omy, long-term planning is needed. The Turkish Atomic
Energy Commission (TAEC) is planning to install a nu-
clear power plant (NPP) (four ATMEA1 reactors, each of
1120 MWe) within the Sinop Province (İnceburun) in
northern Turkey (Fig. 1).

The human being is intertwined with radiation in its
environment and is exposed to natural radioactivity
continuously. It is present in our environment due to
the cosmogenic and primordial radionuclides present in
the Earth’s crust. External exposure of living organisms
to natural and artificial radioactivity due to the region
where they live differs according to the geological and
geographic conditions of the investigated region and
occurs at different levels in the soil of different regions
around the world (UNSCEAR 2000).

The main reason for the presence of artificial radio-
nuclides in the environment is due to nuclear anthropo-
genic activities including weapons, industry, medical
and energy. Soil is the main terrestrial ecosystem that
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detains and holds natural and anthropogenic (artificial)
pollutants in its structure (Lukšienė et al. 2012). Radio-
active substances occurring after a nuclear accident may
spread across the continents and across the world, caus-
ing great damage to the environment and long-term
permanent effects (Leelőssy et al. 2011). At the same
time, with the increasing use of NPPs around the world
due to increased energy demand, there is often the
possibility of exposure to radioactive contamination in
neighbouring countries (Mičieta and Murín 2007).

Determining the distribution of naturally or artificially
radioactive nuclides that are present in the environment is
necessary for assessing the effects of radiation exposure for
public health (Kam et al. 2010). Monitoring of radioactiv-
ity in soil is very important to determine any changes in
activity with time as a result of radioactive release (Kurnaz
et al. 2011). Transfer of radionuclides present in the soil
into the air and the food chain causes intake of systemic
doses in the living organisms and human population

(Kayakökü and Doğru 2017). Soil is one of the major
sources of radiation exposure to a population via the
transfer of radionuclides into the environment (Durusoy
and Yildirim 2017). In this way, soil contributes signifi-
cantly to the internal and external exposures to environ-
mental radioactivity by gamma rays that increase the risk
to human health (Elsaman et al. 2018). For this reason,
measurements of natural and artificial radioactivity in soil
samples are continuously carried out by many researchers
in Turkey and many other countries (Kam et al. 2010;
Kurnaz et al. 2011; Lukšienė et al. 2012; El Samad et al.
2013; Karadeniz et al. 2015; Yeşilkanat et al. 2015;
Durusoy and Yildirim 2017; Kayakökü and Doğru 2017).

Before and after the construction of a NPP, it is critical
to monitor the environmental radiation in the soil sam-
ples around the NPP and to assess the dose rates to which
people receive. Such monitoring is very useful in
assessing the possible radiological risks to public health
in the area where the power plant is installed before a

Fig. 1 The study area and sampling stations
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power plant is installed, and for the guarantee of normal-
ity during commercial operation (Tsai et al. 2008).

The present work aims to estimate the activity concen-
tration of the radionuclides 226Ra, 232Th and 40K and the
man-made radionuclide 137Cs in soil samples collected
from the terrestrial area of the Sinop Province for which
theNPP is planned, and to evaluate the radiological indices
and their effects on the populationwithin this environment.
Consequently, the results of the radioactivity concentration
obtained in this studywill provide background information
for the current radioecological condition in Sinop before
any new NPP is established and started to operate.

Materials and methods

Study area and sampling

Sinop is a peninsula located in the Boztepe Peninsula,
which extends towards the north of the Black Sea coast-
line. It is located in the central Black Sea region (41° 36′
33″ N, 34° 54′ 07″ E). The surface area is 5862 km2,
equivalent to 0.8% of Turkey’s surface area. The total
length of its borders is 475 km, 300 km of these borders
are land borders and 175 km coastal borders. It is
surrounded by Kastamonu in the west, Çorum in the
south, Samsun in the southeast andKaradeniz in the north.

In November 2016, a total of 88 surface soil samples
from nine major sites were collected at a depth of 0–10 cm
randomly from the city centre and from around the pro-
posed NPP site (Fig. 1). The nine sites were Sinop city
centre (10 samples), Ayancık (18 samples), Boyabat (14
samples), Dikmen (seven samples), Durgan (nine sam-
ples), Erfelek (nine samples), Gerze (eight samples),
Saraydüzü (six samples) and Türkeli (seven samples). All
of the samples were collected following standard proce-
dures as per IAEA guidelines (Holm and Ballestra 1989).

Radioactivity measurements

The soil samples were dried in a temperature-controlled
oven at 85 ° C for 24 h to remove the moisture and water
contained therein. The dried samples were crushed in
porcelain mortar and mixed well. Then, all samples
were passed through a 63-μm (400 mesh) sieve to
homogenize the particle size of the samples. About
120 g of each sample was sealed in a gas-tight, radon-
impermeable, cylindrical polyethylene plastic container
(5.5 cm diameter, 5 cm height) for gamma activity

analysis. Before measurements were taken, the con-
tainers were kept sealed for 4 weeks, in order to reach
an equilibrium between 226Ra and its short-lived prog-
eny (Baltas et al. 2014).

The activity concentrations of 226Ra, 232Th, 40K and
137Cs in all samples were measured using a coaxial
HPGe detector of 55% relative efficiency and a resolu-
tion of 1.9 keVat the 1332 keV gamma of 60Co (Ortec,
GEM55P4-95 model). A detailed description of the
detector characteristics, system operation, calibration
and the gamma lines used to determine the activity
concentration of 226Ra, 232Th, 40K and 137Cs has been
presented elsewhere (Baltas et al. 2014; Baltas et al.
2017; Baltas et al. 2018).

The activity concentration values for the radionu-
clides in the measured samples were computed using
the following equation:

C ¼ N
ε� Pγ � m

Bq kg−1
� � ð1Þ

where N is the net count per second for the gamma
emission; ε is the photopeak efficiency of the used
detector; Pγ is the abundance of the gamma line in a
radionuclide, the absolute transition for gamma decay;
and m is the weight of the dried sample in kilogrammes
(Baltas et al. 2018).

The minimum detectable activity (MDA) of this
measurement system was calculated as follows (Currie
1968):

MDA ¼ σ
ffiffiffi
B

p

ε� Pγ � T � m
ð2Þ

where MDA is expressed in becquerels per
kilogramme; σ is the statistical coverage factor, which
is equal to 1.645 (confidence level 95%); B is the
background for the region of interest of a certain
radionuclide; and T is the counting time in seconds
(Baltas et al. 2018). The MDA for the radionuclides of
interest was calculated as 0.16, 0.24, 1.69 and
0.02 Bq kg−1 for 226Ra, 232Th, 40K and 137Cs, respec-
tively. In IAEA-447-coded certified reference materi-
al sample, 226Ra, 232Th, 137Cs and 40K activity con-
centrations are given as 25.04, 37.3, 371.11 and
550 Bq kg−1, respectively. The activity concentrations
of 226Ra, 232Th, 137Cs and 40K for the counting system
were calculated as 23.96, 35.7, 362.55 and
521 Bq kg−1, respectively. Accuracy, expressed as
recovery of reference material, was 95–98% for all
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of the radionuclides. The specific activities of soil
samples were in accordance with their certified
values, within errors of the order of 3–7%.

Geostatistic analysis and interpolated mapping

Geostatistics is a statistical analysis technique that
determines the relationship between spatial sam-
ples, not only by using the statistical properties
of samples but also by taking into account the
coordinates of samples taken at the same time.
The most important advantage of this calculation
method is that the size of the error in the calcula-
tion can be determined within certain confidence
intervals (Clark 1979). Thus, measurement results
from a specific area are only specific to the

sampled stations. It is generally necessary to inter-
polate unknown values for unsampled intermediate
stations, in order to determine the distribution of
the results. The similarity between the results of
measurements using geostatistical methods is de-
fined as a function of the distances between the
stations, and unbiased and minimum variance esti-
mations can be made by considering this function
(Matheron 1970; Olea 1982). In geostatistics, the
distance-dependent variations of regional variables
are determined by the variogram function, and this
function is expressed as the variance of the differ-
ence between two variables spaced apart by h
(Webster and Oliver 2001). As the distance be-
tween the variables increases, the differences be-
tween the values of the variables increase, and

Table 1 Statistical summary of activity levels of radionuclides for each district

Statistic
Summary

Center
(N=10)

Ayancık
(N=18)

Boyabat
(N=14)

Dikmen
(N=7)

Duragan
(N=9)

Erfelek
(N=9)

Gerze
(N=8)

Saraydüzü
(N=6)

Türkeli
(N=7)

All Study
Area
(N=88)

226Ra (Bq kg-1) Min. 3.61 8.62 6.47 12.83 13.58 7.43 10.21 7.12 9.09 3.61

Max. 41.07 17.94 25.21 25.37 27.63 20.77 19.02 12.62 18.46 41.07

Mean 15.05 12.72 13.97 16.64 20.04 12.23 13.91 11.01 13.17 14.22

Stand. dev 10.48 2.43 5.99 4.85 5.58 4.75 2.47 1.96 4.09 5.66

Median 12.21 12.60 14.19 17.01 17.86 9.89 13.58 11.62 11.52 13.00

Skewness 1.86 0.26 0.58 0.72 0.19 1.05 0.10 -2.17 0.32 1.63

Kurtosis 4.39 -0.27 -0.13 1.13 -2.06 -0.17 -2.00 5.09 -2.32 2.06
232Th (Bq kg-1) Min. 4.55 9.30 5.29 17.56 20.39 9.24 13.30 2.45 11.94 2.45

Max. 26.66 26.25 38.51 49.26 40.72 36.80 30.93 16.82 23.15 49.26

Mean 17.10 17.24 19.37 24.27 27.80 17.18 18.15 12.51 16.89 18.93

Stand. dev 6.09 3.69 9.43 12.25 7.42 8.25 4.00 5.63 3.86 7.78

Median 16.87 17.65 19.00 18.19 25.52 14.81 17.56 14.96 15.27 17.55

Skewness -0.58 0.08 0.59 1.78 0.69 1.94 0.55 -1.46 0.64 1.25

Kurtosis 1.28 1.83 0.14 3.05 -0.83 4.39 -0.62 1.42 -0.37 2.85
40K (Bq kg-1) Min. 65.40 118.50 127.00 260.70 292.30 153.10 192.20 50.60 197.50 50.60

Max. 673.20 371.10 485.70 467.10 519.80 373.50 362.70 258.30 368.90 673.20

Mean 240.03 267.23 285.31 334.14 394.63 255.87 275.35 181.53 261.21 278.62

Stand. dev 51.92 16.43 26.24 26.70 32.84 28.15 23.22 30.29 21.69 10.94

Median 216.20 283.95 288.45 320.30 342.30 241.90 288.70 198.60 257.00 269.90

Skewness 2.32 -0.65 0.29 1.05 0.32 0.12 -0.22 -1.21 0.97 0.82

Kurtosis 6.57 -0.46 -0.25 1.56 -2.23 -1.51 -1.99 1.52 1.65 2.01
137Cs (Bq kg-1) Min. 2.31 1.16 1.16 4.01 1.46 1.06 0.51 0.96 0.48 0.48

Max. 15.60 26.00 12.83 11.19 6.95 27.92 9.83 5.19 8.68 27.92

Mean 7.26 4.61 4.18 3.33 2.28 5.52 4.61 2.81 3.35 4.37

Stand. dev 4.79 6.21 4.05 3.59 1.90 8.72 2.85 1.27 2.94 4.88

Median 7.08 2.07 1.85 1.80 1.50 1.70 3.97 2.35 1.92 2.11

Skewness 0.34 2.78 1.42 2.31 2.31 2.63 0.92 1.73 1.42 2.72

Kurtosis -0.81 8.49 0.91 5.45 5.39 7.18 0.06 2.97 0.44 9.26
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thus, the variance (semivariance) increases. This
increase in variance can be interpreted as a de-
crease in the relationship between the variables

(Diggle and Ribeiro Jr 2007). Semivariance is a
measure of the degree of spatial dependence be-
tween samples. The semivariance for the entire

Fig. 2 Activity levels of radionuclides, using a box whisker plot for each district

Environ Monit Assess (2019) 191: 660 Page 5 of 14 600



space is determined by Eq. (3) (İnal and Yiğit
2003):

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ–Z xi þ hð Þð Þ2 ð3Þ

where γ(h) is semivariance value, h is distance
between two measuring points, N(h) is number of
point pairs in the length h, Z(xi) is value of the
variable at point i and Z(xi + h) is value of the
variable measured at point xi + h.

Despite the existence of many different methods
(Oliver and Webster 2014) that can be used for vari-
ous purposes in geostatistical analysis, this metric is
generally referred to as the weighted average calcula-
tion and is the best linear unbiased estimator (BLUE)

in the literature (Matheron 1970; Krige 1966), where
the ordinary kriging (OK) method is used. In
geostatistical analysis, any non-uniformity in the dis-
tribution leads to miscalculation of the kriging weights
by distorting the structure of the variogram. Thus,
experimental data that are often log-normal are ap-
plied to data transformations to ensure a normal dis-
tribution fit (Krige 1966; Li et al. 2009; Yeşilkanat
et al. 2015). In recent years, this method has often
been used to determine the radiological distribution
(Yeşilkanat et al. 2015; Cafaro et al. 2014; Hiemstra
et al. 2009; Kobya et al. 2015; Kucukomeroglu et al.
2016; Sanusi et al. 2014; Savelieva 2005; Warnery
et al. 2015).

All statistical analyses and interpolation estima-
tions used in this study were carried out in the R

Fig. 3 Mean values (± SD) of Raeq, DR, AEDE and ELCR radiological risk levels for each district in the study area
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programming language (Ihaka and Gentleman 1996;
Team 2005). R is an open source language, and a
free version of the S programming language is avail-
able under the general public license (GPL). The
GSTAT (Pebesma and Wesseling 1998) and sp
(Pebesma and Bivand 2005) packages in R were
used for geostatistical calculations.

Results and discussion

226Ra, 232Th, 40K and 137Cs activity concentrations

Table 1 shows a statistical summary of the 226Ra,
232Th, 40K and 137Cs activity levels for each dis-
trict, based on the soil samples taken from the
stations shown in Fig. 1. According to the findings
from the measurements, the average activity con-
centrations in Sinop Province were determined as
14.22 Bq kg−1 for 226Ra, 18.93 Bq kg−1 for 232Th,
278.62 Bq kg−1 for 40K and 4.37 Bq kg−1 for

137Cs. The concentrations ranged from 3.61 to
41.07 Bq kg−1 for 226Ra, 2.45 to 49.26 Bq kg−1

for 232Th, 50.60 to 673.20 Bq kg−1 for 40K and
N.D. to 27.92 Bq kg−1 for 137Cs. Figure 2 shows
the variation in radionuclide levels using a box
whisker plot for each district in the study area. A
Kruskal-Wallis test was used to determine whether
there was a significant difference between the ra-
dionuclide distributions and the sampling stations.
A one-way analysis of variance could not be used
in this study, since there were insufficient samples
for each district. Significant differences (p < 0.05)
were determined between districts, according to the
results of the Kruskal-Wallis test for natural radio-
nuclides. A Mann-Whitney pairwise comparison
test was used to determine which of these differ-
ences were significant.

From the 226Ra activity in Fig. 2, it was deter-
mined that the Saraydüzü district had a significantly
different (p < 0.05) distribution from Dikmen, while
the Durağan district showed a significantly different

Fig. 4 Mean values (± SD) of the
Hin, Hex and Iγr radiological risk
indices for each district in the
study area
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(p < 0.05) distribution from Ayancık, Boyabat,
Erfelek, Gerze, Saraydüzü and province as a whole.
For 232Th activity, it was determined that the
Saraydüzü district had a significantly different (p <
0.05) distribution from Dikmen, Ayancık and the
province as a whole, while the Durağan district

showed a significant difference (p < 0.05) from all
districts except Dikmen and the province overall.
Likewise, for 40K activity, it was found that the
Saraydüzü district had a significantly different (p <
0.05) distribution from Dikmen, Gerze, Ayancık and
the province as a whole, while Durağan showed a

Table 2 Statistical summary of parameters for radiological risk levels

Statistic
summary

Centre
(N = 10)

Ayancık
(N = 18)

Boyabat
(N = 14)

Dikmen
(N = 7)

Duragan
(N = 9)

Erfelek
(N = 9)

Gerze
(N = 8)

Saraydüzü
(N = 6)

Türkeli
(N = 7)

All study area
(N = 88)

Raeq (Bq kg−1) Min. 15.15 34.36 27.68 50.33 67.01 32.52 44.67 14.52 41.41 14.52

Max. 104.38 80.96 117.68 131.78 125.02 102.15 77.86 55.10 78.98 131.78

Mean 57.98 57.94 63.64 77.07 90.18 56.49 61.07 42.87 57.43 62.74

Stan. dev 25.77 10.23 25.76 27.11 22.93 21.98 12.32 15.12 13.18 22.47

Median 53.22 59.01 63.50 67.74 78.77 52.47 58.63 48.50 53.01 60.11

Hin Min. 0.05 0.12 0.09 0.16 0.22 0.11 0.15 0.06 0.14 0.05

Max. 0.36 0.26 0.39 0.42 0.41 0.33 0.26 0.18 0.26 0.42

Mean 0.20 0.19 0.22 0.25 0.30 0.19 0.20 0.15 0.19 0.21

Stan. dev 0.09 0.03 0.08 0.09 0.08 0.07 0.04 0.05 0.05 0.07

Median 0.18 0.20 0.21 0.23 0.26 0.17 0.19 0.16 0.17 0.20

Hex Min. 0.04 0.09 0.07 0.14 0.18 0.09 0.12 0.04 0.11 0.04

Max. 0.28 0.22 0.32 0.36 0.34 0.28 0.21 0.15 0.21 0.36

Mean 0.16 0.16 0.18 0.21 0.24 0.15 0.16 0.12 0.16 0.17

Stan. dev 0.07 0.03 0.07 0.07 0.06 0.06 0.03 0.04 0.04 0.06

Median 0.14 0.16 0.17 0.18 0.21 0.14 0.16 0.13 0.14 0.16

Iγr Min. 0.11 0.26 0.21 0.38 0.50 0.24 0.33 0.11 0.31 0.11

Max. 0.81 0.61 0.88 0.97 0.93 0.76 0.58 0.41 0.59 0.97

Mean 0.43 0.44 0.48 0.58 0.67 0.42 0.46 0.32 0.43 0.47

Stan. dev 0.19 0.08 0.19 0.20 0.17 0.16 0.09 0.11 0.10 0.17

Median 0.40 0.44 0.48 0.51 0.59 0.39 0.44 0.36 0.40 0.45

DR (nGy h−1) Min. 7.51 16.71 13.72 24.56 32.34 15.78 21.59 7.22 20.13 7.22

Max. 52.65 38.82 56.00 63.25 59.46 48.25 37.32 26.69 38.04 63.25

Mean 28.50 28.32 30.93 37.14 43.30 27.69 29.78 20.79 27.90 30.51

Stan. dev 12.57 5.02 12.09 12.87 10.87 10.42 5.98 7.27 6.27 10.67

Median 26.86 29.44 30.59 33.23 38.22 25.31 28.84 23.40 25.77 29.80

AEDE (mSv year−1) Min. 0.01 0.02 0.02 0.03 0.04 0.02 0.03 0.01 0.02 0.01

Max. 0.06 0.05 0.07 0.08 0.07 0.06 0.05 0.03 0.05 0.08

Mean 0.03 0.03 0.04 0.05 0.05 0.03 0.04 0.03 0.03 0.04

Stan. dev 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Median 0.03 0.04 0.04 0.04 0.05 0.03 0.04 0.03 0.03 0.04

ELRC (× 10−3) Min. 0.03 0.07 0.06 0.11 0.14 0.07 0.09 0.03 0.09 0.03

Max. 0.23 0.17 0.24 0.27 0.26 0.21 0.16 0.11 0.16 0.27

Mean 0.12 0.12 0.13 0.16 0.19 0.12 0.13 0.09 0.12 0.13

Stan. dev 0.05 0.02 0.05 0.06 0.05 0.04 0.03 0.03 0.03 0.05

Median 0.12 0.13 0.13 0.14 0.16 0.11 0.12 0.10 0.11 0.13
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significant difference (p < 0.05) from all districts
except Dikmen and the province overall. These dif-
ferences in natural radionuclides are thought to be
due to geological rock formations and the variability
in soil structure (Abba et al. 2017; Hung et al.
2016). Although the 137Cs radionuclide distribution
was not significantly different from the Kruskal-
Wallis test (p > 0.05), the Mann-Whitney pairwise
comparison showed a statistically significant differ-
ence (p < 0.05) between the city centre of the
Durağan district, Gerze and the province as a whole.
The high activity value of the coastal areas com-
pared with that of the inner regions, due to the

Chernobyl NPP accident, was considered to be the
source of this regional difference in the distribution
of the artificial radionuclide.

Radiological risk levels

There are many parameters that arise from radionuclides
and which indicate hazard criteria for radioactivity. The
parameters most used in the literature are the radium
equivalent (Raeq), absorbed dose rate (DR), annual ef-
fective dose equivalent (AEDE), excess lifetime cancer
risk (ELCR), internal hazard index (Hin), external haz-
ard index (Hex) and gamma representative level index

Fig. 5 Histograms for each radionuclide
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(Iγr). These radiological risk levels can be calculated
using the following equations (UNSCEAR 2000;
Beretka and Mathew 1985; ICRP 1991; Krieger 1981):

Raeq Bq kg−1
� � ¼ ARa þ 1:43ATh þ 0:077AK ð4Þ

DR nGy h−1
� � ¼ 0:461ARa þ 0:623ATh

þ 0:0417AK þ 0:1243ACs ð5Þ

AEDE mSv year−1
� � ¼ DR � DCF� OF � T ð6Þ

ELRC ¼ AEDE � DL� RF ð7Þ

Fig. 6 Cross-validation diagrams for radionuclides
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Hin ¼ ARa

185 Bq kg−1
þ ATh

259 Bq kg−1

þ AK

4810 Bq kg−1
ð8Þ

H ex ¼ ARa

370 Bq kg−1
þ ATh

259 Bq kg−1

þ AK

4810 Bq kg−1
ð9Þ

Iγr ¼ ARa

150 Bq kg−1
þ ATh

100 Bq kg−1

þ AK

1500 Bq kg−1
ð10Þ

where ARa, ATh and AK are the activity concentrations
(Bq kg−1) of 226Ra, 232Th and 40K, respectively, in the soil
sample,DR is the absorbed dose rate in air, DCF is the dose
conversion factor (0.7 Sv Gy−1), OF is the outdoor occu-
pancy factor (0.2), T is the time (8760 h year−1), DL is the
average duration of life (70 years) and RF is the risk factor
(Sv−1), which reflects the fatal cancer risk per Sievert. For
stochastic effects, ICRP 60 uses values of 0.05 for the
public (ICRP 1991; Taşkın et al. 2018).

The mean values (± SD) of Raeq, DR, AEDE and
ELCR radiological risk levels calculated for each district
in the study area are presented in Fig. 3. The highest
average risk levels are shown in the Durağan district,
and the lowest average risk levels in the Saraydüzü
district. Mean risk values for the Dikmen and Durağan
districts were determined to be higher than the provin-
cial average, while the average risk levels of the Gerze
and Boyabat districts are close to the provincial average.
The mean values of Raeq, DR, AEDE and ELCR radio-
logical risk levels for the entire working area were
calculated to be 62.74 Bq kg−1, 30.51 nGy h−1,
0.04 mSv year−1 and 0.13 × 10−3, respectively. The
mean value of Raeq is lower than the recommended
maximum value of 370 Bq kg−1, and the mean values
of DR and AEDE are lower than the world mean value
(60 nGy h−1 and 0.080 mSv year−1, respectively)
(UNSCEAR 2000). The mean values of ELCR in all
researched stations are lower than the world’s average
value (0.29 × 10−3) (Taskin et al. 2009).

The mean values (± SD) ofHin, Hex and Iγr radiolog-
ical index levels for all districts and provinces in the
study area are presented comparatively in Fig. 4. Similar
to the results shown in Fig. 3, the highest risk indices are

found for the Durağan district, and the lowest risk indi-
ces for the Saraydüzü district. The radiological index
values for Boyabat, Dikmen and Durağan districts were
higher than the mean value for all districts. The mean
values of theHin,Hex and Iγr radiological risk indices for
the entire working area were calculated as 0.21, 0.17 and
0.47, respectively. All values of Hin, Hex and Iγr were
calculated to be lower than the criterion value (< 1)
(Shohda et al. 2018). Parameters for radiological risk
levels are presented in Table 2 as a statistical summary
for each district and province.

Interpolated mapping of radionuclide activities

In order to properly map the distributions of the radio-
nuclides, it is necessary to determine the positional
correlation between the stations and thus to estimate
the activity values of the unmeasured intermediate
zones. At this stage, it is important that the data for each
station in the study area have normal distribution char-
acteristics (Krige 1966;McGrath et al. 2004); otherwise,
the structure of the variogram, which is an indicator of
the spatial correlation, may be distorted, leading to a
miscalculation of the kriging weights. Histogram curves
for the entire working area are presented in Fig. 5.
According to these histograms and the results of the
Shapiro-Wilk normality test, it was determined that the
artificial radionuclide (137Cs) shows a log-normal distri-
bution, while the natural radionuclides (226Ra, 232Th and
40K) show a normal distribution for the entire working
area. Therefore, log-transformed values of 137Cs activity
results should be used in spatial analysis calculations. At
this stage, natural radionuclides do not need transforma-
tion, since they have a normal distribution.

Figure 6 shows descriptive diagrams of the cross-
validation results and estimation results based on actual
measured values for predicted data using the OK ap-
proach for natural and artificial radionuclides. For cross-
validation, the result of a radiological measurement at a
station is excluded from the dataset, and the activity
result of this station was estimated using the kriging
model generated based on the other measurement re-
sults. This process was then applied to all points in the
dataset. The descriptive diagrams for each radionuclide
are as follows: maps of residuals, showing the magni-
tudes of prediction errors; cross-validation, showing the
relationship between the actual and estimated values:
residual vs. predicted data, showing that the errors are
independent of the predicted values; and histograms of
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residuals, showing the distribution of errors. In the maps
of residuals, prediction errors for the entire working area
were determined to be generally small. In the cross-
validation diagrams, there is a good correlation between
the actual measurement results and the predicted values,
except for a few outliers. This suggests that the calcu-
lated estimation results are appropriate and reliable. In
addition, the random and homogeneous distribution of
errors in the residuals vs. predicted data diagram shows
the normal distribution feature by adding errors close to
“0” in the histogram of residual diagram, showing the
reliability and appropriateness of the estimates obtained
as a result of OK calculations. The results in Fig. 6 show
that the OK model proposed for this study area can be
used to determine radiological distributions.

Radiographic maps of the activity distribution of
226Ra, 232Th, 40K and 137Cs radionuclides are presented
in Fig. 7. In the creation of these maps, the study area

was divided into 100 × 100 m2 (1-ha spatial resolution)
cells and was represented by a grid system. Then, based
on the parameters used in the cross-validation process,
estimates of the activity levels of natural and artificial
radionuclides were calculated for each grid point, and
the results were coloured as a distribution map. When
the distribution maps were examined, it was determined
that the activity concentrations of natural radionuclides
(226Ra, 232Th, 40K) were distributed at a high level in the
Durağan district (southeast of Sinop), and the activity
concentration of the artificial radionuclide (137Cs) was at
a high level in the inner and northern areas.

Conclusions

The activity concentrations of the natural (226Ra, 232Th,
40K) and artificial (137Cs) radionuclides were

Fig. 7 Interpolated estimation maps for the activity distributions of 226Ra, 232Th, 40K and 137Cs radionuclides
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determined by gamma ray spectroscopy in 88 different
soil samples collected around the site of the Sinop NPP
in Turkey, which is under construction. The mean activ-
ity concentrations of 226Ra, 232Th, 40K and 137Cs in the
soils were determined to be 14.22, 18.93, 278.62 and
4.37 Bq kg–1, respectively. These values were found to
be lower than the world average values. The values of
Raeq, DR, AEDE, ELCR, Hin, Hex and Iγr were calcu-
lated for each site in the study area. These values were
determined to be lower than the recommended safety
limits.

Using the OK method based on the results of mea-
surements in the study area, predicted values were also
calculated for the unmeasured regions, and the perfor-
mance of the results was evaluated using cross-
validation diagrams. The distributions of both natural
and artificial radionuclide levels are shown using inter-
polated estimation maps. According to these maps, it is
observed that the activity concentrations of 226Ra, 232Th
and 40K are high in the south-eastern parts of the study
area, and that of 137Cs is high in the central and northern
parts. As a result, it was observed that these soils do not
present any significant health risk to humans in this area.
These data will be also useful as a baseline for monitor-
ing future changes in radioactivity in the environment of
the Sinop NPP.

Funding information This work was supported by Scientific
Research Projects Coordination Unit of Recep Tayyip Erdogan
University (project number: FBA-2016-661) in 2016.

References

Abba, H. T., Hassan, W. M. S. W., Saleh, M. A., Aliyu, A. S., &
Ramli, A. T. (2017). Terrestrial gamma radiation dose
(TGRD) levels in northern zone of Jos Plateau, Nigeria:
Statistical relationship between dose rates and geological
formations. Radiation Physics and Chemistry, 140, 167–
172. https://doi.org/10.1016/j.radphyschem.2017.01.023.

Baltas, H., Kiris, E., Ustabas, I., Yilmaz, E., Sirin, M., Kuloglu, E.,
&Gunes, B. E. (2014). Determination of natural radioactivity
levels of some concretes and mineral admixtures in Turkey.
Asian Journal of Chemistry, 26(13), 3946–3952. https://doi.
org/10.14233/ajchem.2014.16045.

Baltas, H., Kiris, E., & Sirin, M. (2017). Determination of radio-
activity levels and heavy metal concentrations in seawater,
sediment and anchovy (Engraulis encrasicolus) from the
Black Sea in Rize, Turkey. Marine Pollution Bulletin,
11 6 ( 1 – 2 ) . d o i : h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
marpolbul.2017.01.016.

Baltas, H., Sirin, M., Dalgic, G., & Cevik, U. (2018). An overview
of the ecological half-life of the 137Cs radioisotope and a

determination of radioactivity levels in sediment samples
after Chernobyl in the Eastern Black Sea, Turkey. Journal
of Marine Systems, 177, 21–27.

Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of
Australian building materials, industrial wastes and by-prod-
ucts. Health physics, 48(1), 87–95.

Brahmanandhan, G., Selvasekarapandian, S., Malathi, J., Khanna,
D., Rajan, M., & Hegde, A. (2007). Natural radioactivity in
the soil samples in and around Kudankulam nuclear power
plant site. Journal of Radioanalytical and Nuclear
Chemistry, 274(2), 361–366.

Cafaro, C., Bossew, P., Giovani, C., & Garavaglia, M. (2014).
Definition of radon prone areas in Friuli Venezia Giulia
region, Italy, using geostatistical tools. Journal of environ-
mental radioactivity, 138, 208–219.

Clark, I. (1979). Practical geostatistics (Vol. 3). London: Applied
Science Publishers.

Currie, L. A. (1968). Limits for qualitative detection and quanti-
tative determination, Application to radiochemistry.
Analytical chemistry, 40(3), 586–593.

Diggle, P. J., & Ribeiro, P. J., Jr. (2007).Model based geostatistics.
New York: Springer.

Durusoy, A., & Yildirim, M. (2017). Determination of radioactiv-
ity concentrations in soil samples and dose assessment for
Rize Province, Turkey. Journal of Radiation Research and
Applied Sciences, 10, 348–352.

El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013).
Determination of natural and artificial radioactivity in soil at
North Lebanon province. Journal of Environmental
Radioactivity, 125, 36–39.

Elsaman, R., Omer, M. A. A., Seleem, E. M. M., & El-Taher, A.
(2018). Natural radioactivity levels and radiological hazards
in soil samples around Abu Karqas Sugar Factory. Journal of
Environmental Science and Technology, 11(1), 28–38.

Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink,
G. B. M. (2009). Real-time automatic interpolation of ambi-
ent gamma dose rates from the Dutch radioactivity monitor-
ing network. Computers & Geosciences, 35(8), 1711–1721.

Holm, E., & Ballestra, S. (1989).Measurement of radionuclides in
food and the environment, A Guidebook. Vienna, Ser: IAEA
Tech. Rept.

Hung, N. Q., Chuong, H. D., Thanh, T. T., & Van Tao, C. (2016).
Intercomparison NaI (Tl) and HPGe spectrometry to studies
of natural radioactivity on geological samples. Journal of
environmental radioactivity, 164, 197–201.

Ihaka, R., & Gentleman, R. (1996). R: A language for data
analysis and graphics. Journal of Computational and
Graphical Statistics, 5(3), 299–314.

İnal, C., & Yiğit, C. Ö. (2003). Jeodezik uygulamalarda kriging
enterpolasyon yönteminin kullanılabilirliği (pp. 177–185).
Konya: Coğrafi Bilgi Sistemleri ve Jeodezik Ağlar Çalıştayı.

Kam, E., Bozkurt, A., & Ilgar, R. (2010). A study of background
radioactivity level for Canakkale, Turkey. Environmental
Monitoring and Assessment, 168, 685–690.

Karadeniz, Ö., Karakurt, H., & Akal, C. (2015). Natural radionu-
clide activities in forest soil horizons ofMount IDA/Kazdagi,
Turkey. Environmental Monitoring and Assessment, 187,
319.

Kayakökü, H., & Doğru, M. (2017). Radioactivity analysis of soil
samples taken from the western and northern shores of Lake
Van, Turkey. Applied Radiation and Isotopes, 128, 231–236.

Environ Monit Assess (2019) 191: 660 Page 13 of 14 600

https://doi.org/10.1016/j.radphyschem.2017.01.023.
https://doi.org/10.14233/ajchem.2014.16045.
https://doi.org/10.14233/ajchem.2014.16045.
https://doi.org/10.1016/j.marpolbul.2017.01.016.
https://doi.org/10.1016/j.marpolbul.2017.01.016.


Kobya, Y., Taşkın, H., Yeşilkanat, C. M., Çevik, U., Karahan, G.,
& Çakır, B. (2015). Radioactivity survey and risk assessment
study for drinking water in the Artvin province, Turkey.
Water, Air, & Soil Pollution, 226(3), 49.

Krige, D. G. (1966). Two-dimensional weighted moving average
trend surfaces for ore evaluation. South African Institute of
Mining and Metallurgy Johannesburg.

Krieger, R. (1981). Radioactivity of construction materials.
Betonwerk Fertigteil Techn, 47(468).

Kucukomeroglu, B., Karadeniz, A., Damla, N., Yesilkanat, C. M.,
& Cevik, U. (2016). Radiological maps in beach sands along
some coastal regions of Turkey. Marine pollution bulletin,
112(1), 255–264.

Kurnaz, A., Kucukomeroglu, B., Damla, N., & Cevik, U. (2011).
Radiological maps for Trabzon, Turkey. Journal of
Environmental Radioactivity, 102, 393–399.

Leelőssy, Á., Mészáros, R., & Lagzi, I. (2011). Short and long
term dispersion patterns of radionuclides in the atmosphere
around the Fukushima Nuclear Power Plant. Journal of en-
vironmental radioactivity, 102(12), 1117–1121.

Li, C., Lu, Z., Ma, T., & Zhu, X. (2009). A simple kriging method
incorporating multiscale measurements in geochemical sur-
vey. Journal of Geochemical Exploration, 101(2), 147–154.

Lukšienė, B., Marčiulionienė, D., Rožkov, A., Gudelis, A., Holm,
E., &Galvonaitė, A. (2012). Distribution of artificial gamma-
ray emitting radionuclide activity concentration in the top soil
in the vicinity of the Ignalina Nuclear Power Plant and other
regions in Lithuania. Science of the total environment, 439,
96–105.

Matheron, G. (1970). Random structures and mathematical geol-
ogy. REVUE DE L INSTITUT INTERNATIONAL DE
STATISTIQUE-REVIEW OF THE INTERNATIONAL
STATISTICAL INSTITUTE, 38(1), 1.

McGrath, D., Zhang, C., & Carton, O. T. (2004). Geostatistical
analyses and hazard assessment on soil lead in Silvermines
area, Ireland. Environmental Pollution, 127(2), 239–248.

Mičieta, K., & Murín, G. (2007). Wild plant species in bio-
indication of radioactive-contaminated sites around
Jaslovske Bohunice nuclear power plant in the Slovak
Republic. Journal of Environmental radioactivity, 93(1),
26–37.

Olea, R. A. (1982). Optimization of the high plains aquifer obser-
vation network. Kansas: Kansas Geological Survey.

Oliver, M. A., & Webster, R. (2014). A tutorial guide to
geostatistics: Computing and modelling variograms and
kriging. Catena, 113, 56–69.

Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for
spatial data in R. R news, 5(2), 9–13.

Pebesma, E. J., & Wesseling, C. G. (1998). Gstat: A program for
geostatistical modelling, prediction and simulation.
Computers & Geosciences, 24(1), 17–31.

Protection, I. C. on R. (1991). ICRP Publication 60: 1990
Recommendations of the international commission on radio-
logical protection. Elsevier Health Sciences.

Radiation, U. N. S. C. on the E. of A. (2000). Sources and effects
of ionizing radiation: Sources (Vol. 1). United Nations
Publications.

Sanusi, M. S. M., Ramli, A. T., Gabdo, H. T., Garba, N. N.,
Heryanshah, A., Wagiran, H., & Said, M. N. (2014).
Isodose mapping of terrestrial gamma radiation dose rate of
Selangor state, Kuala Lumpur and Putrajaya, Malaysia.
Journal of environmental radioactivity, 135, 67–74.

Savelieva, E. (2005). Using ordinary kriging to model radioactive
contamination data. Applied GIS, 1(2), 1–10.

Shohda, A. M., Draz, W. M., Ali, F. A., & Yassien, M. A. (2018).
Natural radioactivity levels and evaluation of radiological
hazards in some Egyptian ornamental stones. Journal of
Radiation Research and Applied Sciences, 11, 323–327.

Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., &
Karahan, G. (2009). Radionuclide concentrations in soil and
lifetime cancer risk due to gamma radioactivity in Kirklareli,
Turkey. Journal of environmental radioactivity, 100(1), 49–
53.

Taşkın, H., Yeşilkanat, C. M., Kobya, Y., & Çevik, U. (2018).
Evaluation and mapping of radionuclides in the terrestrial
environment and health hazard due to soil radioactivity in
Artvin, Turkey. Arabian Journal of Geosciences, 11(23),
729. https://doi.org/10.1007/s12517-018-4063-8.

Team, R. D. C. (2005). R: A language and environment for
statistical computing, reference index version 2.9. 2.
Vienna, Austria: R Foundation for Statistical Computing
ISBN 3–900051-07-0, URL http://www. rproject. org.

Tsai, T.-L., Lin, C.-C., Wang, T.-W., & Chu, T.-C. (2008).
Radioactivity concentrations and dose assessment for soil
samples around nuclear power plant IV in Taiwan. Journal
of radiological protection, 28(3), 347.

Warnery, E., Ielsch, G., Lajaunie, C., Cale, E., Wackernagel, H.,
Debayle, C., & Guillevic, J. (2015). Indoor terrestrial gamma
dose rate mapping in France: a case study using two different
geostatistical models. Journal of environmental radioactivity,
139, 140–148.

Webster, R., & Oliver, M. A. (2001). Geostatistics for environ-
mental scientists (Statistics in Practice).

Yeşilkanat, C. M., Kobya, Y., Taşkin, H., & Çevik, U. (2015).
Dose rate estimates and spatial interpolation maps of outdoor
gamma dose rate with geostatistical methods: A case study
from Artvin, Turkey. Journal of environmental radioactivity,
150, 132–144.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

Environ Monit Assess (2019) 191: 660660 Page 14 of 14

https://doi.org/10.1007/s12517-018-4063-8

	A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method
	Abstract
	Introduction
	Materials and methods
	Study area and sampling
	Radioactivity measurements
	Geostatistic analysis and interpolated mapping

	Results and discussion
	226Ra, 232Th, 40K and 137Cs activity concentrations
	Radiological risk levels
	Interpolated mapping of radionuclide activities

	Conclusions
	References


