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Abstract Non-point source (NPS) pollution, including
fertilizer and manure application, sediment erosion, and
haphazard discharge of wastewater, has led to a wide
range of water pollution problems in the Miyun Reser-
voir, the most important drinking water source in Bei-
jing. In this study, the Soil and Water Assessment Tool
(SWAT) model was used to evaluate NPS pollution
loads and the effectiveness of best management prac-
tices (BMPs) in the two subwatersheds within the
Miyun Reservoir Watershed (MRW). Spatial distribu-
tions of soil types and land uses, and changes in precip-
itation and fertilizer application, were analysed to eluci-
date the distribution of pollution in this watershed from
1990 to 2010. The results demonstrated that the nutrient
losses were significantly affected by soil properties and
higher in both agricultural land and barren land. The
temporal distribution of pollutant loads was consistent
with that of precipitation. Soil erosion and nutrient
losses would increase risks of water eutrophication and
ecosystem degradation in the Miyun Reservoir. The
well-calibrated SWAT model was used to assess the
effects of several Best Management Practices (BMPs),
including filter strips, grassed waterways, constructed
wetlands, detention basins, converting farmland to for-
est, soil nutrient management, conservation tillage, con-
tour farming, and strip cropping. The removal rates of
those BMPs ranged from 1.03 to 38.40% and from 1.36

to 39.34% for total nitrogen (TN) and total phosphorus
(TP) loads, respectively. The efficiency of BMPs was
dependent on design parameters and local factors and
varied in different sub-basins. This study revealed that
no single BMP could achieve the water quality improve-
ment targets and highlighted the importance of optimal
configuration of BMP combinations at sub-basin scale.
The findings presented here provide valuable informa-
tion for developing the sustainable watershed manage-
ment strategies.
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Introduction

Agricultural non-point source (NPS) pollution has been
a significant threat to water quality and ecosystem of the
Miyun Reservoir in recent decades. Runoff leaching
from fertilizers and livestock litter contribute to high
nutrient levels in some rivers in the agricultural areas,
which lead to a wide range of risks associated with
eutrophication and toxicity of water bodies and inade-
quate water supply quality for Beijing (Li et al. 2016;
Meissner et al. 2016). Implementation of sustainable
land-management practices or conservation practices is
becoming an important concern to control NPS pollu-
tion in the Miyun Reservoir Watershed (MRW). How-
ever, before the selection and placement of suitable
management practices in this watershed, it requires a
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detailed investigation of the extent, distributions and
causes of the pollution, and the effectiveness of alterna-
tive practices.

The complexity and uncertainties related to the
sources, generation, and transport of NPS pollution lead
to numerous difficulties in quantifying pollution charac-
teristics and efficiency of best management practices
(BMPs) (Arnold et al. 2012b; Qiu et al. 2018b). A mass
of research has relied on watershed models or water
quality models, such as the Soil and Water Assessment
Tool (SWAT) model (Arnold et al. 1998), the Storm
Water Management Model (SWMM) (Huber et al.
1975), and the annualized Agricultural Non-Point
Source Pollution Model (AnnAGNPS) (Cronshey and
Theurer 1998), to thoroughly study NPS pollution char-
acteristics and the impacts of management practices on
sediment and nutrient loss at watershed scale. The
SWAT model has been applied in numerous studies
because of its open code source, its high accuracy
(Arnold et al. 1998), and its strengths in performing
calibration and validation, and analyzing parameter sen-
sitivity and uncertainty (Abbaspour et al. 2015). Reli-
able representation of BMPs in models is critical for
credible simulation of BMP efficiency. Multiple efforts
have proven SWAT’s capability of simulating BMP
effects on hydrology and water quality in the watershed
processes (Abbaspour et al. 2015; Liu et al. 2018; Volk
et al. 2016; Yen et al. 2016). Xie et al. (2015) stated that
the SWAT model could simulate more types of BMPs
than other models such as HSPF, AGNPS, and
AnnAGNPS, including grazing management, grade sta-
bilization structure, and stream channel stabilization.
The SWAT model simulates the efficiency of conserva-
tion practices by changing the input data or parameters
and by operating specific modules. The SWAT-CUP
program enables sensitivity analysis, calibration, and
uncertainty analysis of SWAT model by linking five
optimization procedures, including SUFI2, ParaSol,
PSO, GLUE, and MCMC (Abbaspour et al. 2007). In
this study, the SUFI2 program was used for parameter
sensitivity analysis and model calibration, considering
its high effectiveness in calibration and uncertainty anal-
ysis (Akhavan et al. 2010; Faramarzi et al. 2009).

BMPs for agricultural NPS pollution have primarily
focused on the control of soil erosion and fertilizer
amount in China. Traditional practices, including con-
servation tillage, crop rotation, contour farming, and
nutrient management, have been widely implemented
in recent years (Jia et al. 2019; Liu and Huang 2013;

Smith and Siciliano 2015; Sun et al. 2018). They protect
the land surface by limiting soil-disturbing activities,
reduce erosion by improving soil structure, and control
the source of pollutants by managing the amount of
fertilizes (Logan 1993; Prosdocimi et al. 2016; Zhu
et al. 2015). Because of the increasing attention on
NPS pollution, structural practices including the ter-
races, constructed wetlands, grassed waterways, and
filter strips are widely implemented, especially for
stormwater management (Fonseca et al. 2018; Small
et al. 2018). These practices are constructed to reduce
runoff through increased infiltration (Logan 1993), to
absorb nutrients or other pollutants by specific perennial
plants and to reduce soil erosion through decreasing the
slope. Multiple watershed models are extensively used
to evaluate the performance of BMPs. The SWATmodel
has been demonstrated to be an effective tool to evaluate
the effects of alternative management practices on water
resources across watershed and regional scales.

The Miyun Reservoir is stressed by an increasing
drinking water supply for a large population of 21.75
million in Beijing. Unpredictable changes related cli-
mate, land cover, agricultural activities, and pollution
sources pose a challenge for freshwater supplies, in view
of the high concentration of nitrogen that is near the
eutrophication standards (Li et al. 2016; Qiu et al. 2019;
Xia et al. 2015; Zheng et al. 2016). The development of
integrated water management strategies is necessary to
avoid the risk of inadequate water quantity and quality,
which thus can ensure freshwater provisioning and im-
prove ecosystem services (Abbaspour et al. 2015;
Ferreira et al. 2019; Halbe et al. 2018). The goal of this
study was to use SWAT to simulate the hydrological and
water quality processes and to assess the efficiencies of
several conservation practices at the sub-basin level and
monthly time intervals in a large-scale watershed. The
objective of this study can be achieved by the following
tasks: (1) analyze the parameter sensitivities in the dif-
ferent subwatersheds; (2) identify the spatial-temporal
distributions and priority control areas of different pol-
lutants; (3) analyze the causal factors for the spatial-
temporal distributions of nutrient loads; (4) assess the
effects of conservation practices or BMPs on agricultur-
al NPS pollution. In particular, variations in the efficien-
cy of different practices were analyzed based on surface
conditions, pollution characteristics, climate features,
and BMP design parameters. The results of this study
provide consistent information on the temporal and
spatial distributions of the quantity and quality of water
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resources, highlight the sources of contamination, de-
scribe the impact of climate and land use change on
water resources, identify the applicability of conserva-
tion practices, and eventually provide valuable informa-
tion for the development of integrated watershed man-
agement strategies.

Materials and methods

Watershed description

The Miyun Reservoir is the most important surface
drinking water source in China’s capital, Beijing. The
MRW (40° 19′~41° 36′ N, 115° 27′~117° 35′ E) is a
drained watershed of theMiyun Reservoir, covering two
tributaries: the Chao River and the Bai River. This
watershed encompasses forests, agricultural areas, pas-
tureland, streams, and industrial and residential sites,
with a total area of approximately 14,923.95 km2. The
Chao River subwatershed covers an area of 5892.97
km2, and the Bai River subwatershed covers an area of
9030.98 km2 (see Fig. 1). The average annual tempera-
ture observed in the period of 1960–2014 is approxi-
mately 8.5–12 °C, with extreme low temperatures below
− 30 °C and extremely high temperatures 39 °C. The
average annual precipitation is 660 mm, and about 80%
of the precipitation occurs from June to September.
Agriculture and economic forest planting are the main
economic activities in the region. The massive applica-
tion of fertilizers and manures has caused a great release
of nitrogen (N) and phosphorus (P) into the streams,
aggravating the risk of eutrophication in the Miyun
Reservoir. Therefore, it is important to implement ap-
propriate conservation practices to control nutrient
losses for ensuring drinking water security in this area.

Model description

The SWAT model was developed to evaluate water
quality, NPS pollution, and the impacts of management
practices on water resources at watershed scale. It is a
conceptual, semi-distributed, continuous time model at
daily, monthly, or annual time intervals developed by
USDAAgricultural Research Service (USDA-ARS) and
Texas A&M AgriLife Research (Arnold et al. 1998;
Srinivasan et al. 1998). The input data for the SWAT
simulation is shown in Table 1. Digital Elevation Model
(DEM) data with a 90-m grid were used to divide the

watershed into multiple sub-basins and to extract the
information of channel length and average slope in each
sub-basin. Sub-basins were then further subdivided into
hydrologic response units (HRUs), which are the
smallest unique computational units that combine topo-
graphical, land covers, crop types, management opera-
tions, and soil characteristics with homogeneous hydro-
logic response for the simulation of flow and pollutant
loads (Ahmadzadeh et al. 2016; Molina-Navarro et al.
2016). In this study, land use data (1:100,000) were
provided by the Institute of Geographical and Natural
Resources Research, China, and were categorized in the
map that consisted of forest-mixed land (49.24%), agri-
cultural land (21.54%), grassland (27.33%), open water
(1.18%), industrial and residential land (0.55%), and
barren land (0.16%). FAO soil (http://www.fao.
o rg / so i l s -por ta l / so i l - su rvey / so i l -maps-and-
databases/en/) was categorized into 14 types, which is
shown in Fig. S2 in the Supplementary Material. Local
weather data were obtained from weather stations
available in this watershed, including daily rainfall,
re la t ive humidi ty, maximum and minimum
temperatures, solar radiation, and wind speed. Monthly
flow and water quality data (sediment, N and P loads)
were provided by local environmental monitoring
stations. The calibration and validation of the flows and
nutrient loads were performed for 1990–1998 and 1999–
2010, respectively, whereas the periods for sediment
calibration and validation were 2006–2008 and 2009–
2010, respectively, due to limitations of the data. Other
input data for the SWAT model, including livestock
amounts, crop types, tillage patterns, the types, amount
and timing of fertilizer, manure and pesticide application,
social economics, and population were collected by field
investigations and from statistical yearbooks that were
published by the National Bureau of Statistics. Based on
the results of on-site questionnaire survey, corn is the
main crop usually grown in this area, and 325 kg/ha of
fertilizer is applied in cropping land per year, mainly in
May and October when approximately 200 kg/ha of
fertilizer or manure are applied in the walnut and chest-
nut forests. Tillage type for corn is ploughing before
sowing without mulching film.We assume that irrigation
is only available in combination with fertilization, with
unlimited volume up to the maximum annual value of
500 mm. Corn, chestnuts, and walnuts are harvested in
September. Taking into account the independence and
the differences in surface characteristics and water qual-
ity between the two subwatersheds, this study calibrated
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the model in the Chao River subwatershed and the Bai
River subwatershed separately.

The model performance indicators were used to as-
sess the agreement between the observed and simulated
data, including Nash-Sutcliffe efficiency coefficient
(ENS) (Nash and Sutcliffe 1970) and coefficient of de-
termination (R2) (Legates and McCabe Jr 1999). The
value of ENS varying from −∞ to 1 is defined in Eq. (1).
The value of R2 varying from 0 to 1 is defined in Eq. (2).

ENS ¼ 1−
∑
n

i¼1
Pi−Oið Þ2

∑
n

i¼1
Oi−O
� �2 ð1Þ

R2 ¼ ∑
n

i¼1
Oi−O
� �

Pi−P
� �� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Oi−O
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
Pi−P
� �2s !" #2

ð2Þ
whereOi is the observed data,O is the mean value of the
observed data, Pi is the simulated value, and P is the
mean value of the simulated data.

BMP scenarios

The assessment of BMP performance is to calcu-
late the changes in water quantity and quality with
or without BMP in multi-spatial and multi-
temporal scales by changing the model inputs or
parameter values in special modules according to a
modeling guide for conservation practices (Waidler
et al. 2011; Xie et al. 2015). Several conservation
practices were evaluated by the well-calibrated
model, including converting farmland to forestland
(over 15° slope and over 25° slope, CFF15 and
CFF25); nutrient management practices such as
20% and 30% fertilizer reduction; no-till (conser-
vation tillage); residue management practice; strip
cropping; contour farming; filter strips with 5 m,
10 m, and 15 m (FS5m, FS10m, and FS15m);
detention basins; constructed wetlands; and grassed
waterways. For land-management practices, such
as converting cropland to forestland, we changed
the land use input of SWAT model by reforesting

Fig. 1 The location of the Miyun Reservoir Watershed
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the cropping land with slope over 15° and over
25°. The simulation of no-till was conducted by
adjusting the mixing efficiency (EFFMIX) and the
mixing depth (DEPTIL) in tillage management file
(till.dat). In addition, the SCS runoff curve number
for soil moisture condition II (CNOP) was changed
and the Manning’s roughness coefficient for over-
land flow (OV_N) was increased, which help to
decrease runoff and peak flow rate (Waidler et al.
2011). Contour farming and strip cropping prac-
tices were simulated by decreasing CN2 value and
USLE practice factor (USLE_P) in the schedule
management operation file (.ops). Furthermore,
the Manning’s n and USLE cropping factor
(USLE_C) values in the .ops file were adjusted
for strip cropping operation. For nutrient manage-
ment practices, the amount of fertilizer applied in
cropland was reduced by 20% and 30% in the
management file (.mgt). For residue management
practice, the CN2 and USLE_C in the .ops file
were adjusted to slow surface runoff.

In the SWAT model, FS was evaluated in the VFS
routine, where the field area to VFS area ratio
(FILTER_RATIO), the fraction of total runoff from
a field entering the most concentrated 10% of a VFS
(FILTER_CON), and the fraction of flow through
the most concentrated 10% of fully channelized
VFS (FILTER_CH) were adjusted (Arnold et al.

2012a). The width of filter strip represented by
FILTERW was set to 5 m, 10 m, or 15 m to calculate
interception efficiency. For grassed waterways, the
depth of channel (GWATD), the average width
(GWATW), the linear parameter for calculating sed-
iment re-entrained in channel sediment routing
(GWATSPCON), and Manning’s n value for over-
land flow (GWATN) were adjusted to reduce the
amount of sediment and nutrients entering rivers.
Detention basins was represented by respectively
setting the erodibility factor (CH_EROD), the Man-
ning’s roughness (CH_N2), the surface area of
ponds when filled to principal spillway (PND_PSA),
the fraction of sub-basin area that drains to ponds
(PND_FR), and the hydraulic conductivity through
bottom of ponds (PND_K) in the pond management
file (.pnd). Constructed wetland was simulated by
adjusting several wetland parameters in the .pnd file
such as the fraction of sub-basin area that drains into
the wetland (WET_FR), the initial volume of water
in wetlands (WET_VOL), the surface area of the
wetland at maximum water level (WET_MXSA),
the volume of water stored in wetlands at maximum
water level (WET_MXVOL), and the hydraulic con-
ductivity through the bottom of the wetland
(WET_K). The description of BMP simulation sce-
narios is shown in Table 2. More details of BMP
scenarios are given in the Supplementary Material.

Table 1 Description of data used in the SWAT model

Data type Scale Data description Source

Digital Elevation
Model

1:250,000 Elevation, channel slopes,
and lengths

Institute of Geographical and Natural Resources Research,
Chinese Academy of Sciences; National Geomatics
Center of China

Land use data 1:100,000 Land use types Institute of Geographical and Natural Resources Research,
Chinese Academy of Sciences

Soil properties 1:1,000,000 Soil physical and chemical
properties

FAO Harmonized World Soil Database (http://www.fao.
org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/)

Weather data Daily data Relative humidity, solar radiation
precipitation, maximum and
minimum air temperatures,
wind speed

Local weather stations

Hydrology and
water quality

Monthly data Flow discharge, concentrations
of sediment, and nutrients at
catchment outlet

Local environmental monitoring station

Social economical
data

Population, economic income,
livestock rearing, crop types,
tillage patterns, fertilizer
application

Field investigation; statistics yearbook
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In this study, efficiency of each BMP was simulated
separately, which was represented as the removal rate
(negative value of percent change) of TN and TP loads
that was calculated as:

E ¼ −
LoadBMP−Loadbase

Loadbase
� 100

where Loadbase is the load with no BMPs, and LoadBMP

is the load with a BMP implementation.

Results and discussions

Model calibration and validation

To enhance the accuracy and validity of the model, a
parameter sensitivity analysis is required to select the
key parameters that have a dominant effect on the hy-
drological and water quality processes both in the
streams and on the sub-basins. In this study, the

SWAT-CUP program was used to analyze the sensitivity
of the parameters associated with runoff, N and P, which
employed the global sensitivity analysis method that
regresses the Latin hypercube generated parameters
against the objective function values (Abbaspour 2007;
Abbaspour et al. 2007). The results are shown in Ta-
bles 3 and 4 for the Chao River subwatershed and Bai
River subwatershed, respectively. According to the re-
sults in Table 3, the ranking of sensitivity of parameters
for the runoff simulation is as follows: GWQMN >
SOL_BD > REVAPMN > ESCO > ALPHA_BNK >
CN2 > SOL_Z. Different from that of other studies
(Baker and Miller 2013; Chen et al. 2015; Jang et al.
2017; Leta et al. 2015), the results in this study showed
that CN2 was less sensitive. Similar results were report-
ed by other studies (Bai et al. 2017; Zhu et al. 2011). In
the SWAT model, a modified Soil Conservation Service
curve number method (SCS-CN) is used to predict
runoff volume from a rainstorm, and the CN2 value
indicates the soil moisture conditions in pervious areas,
which has substantial effects on the generation of

Table 2 The description of BMP simulation scenarios

Individual BMP
scenarios

Parameters Scenario description

Baseline Existing condition Simulations using existing crop management schedules

Contour farming CN2, USLE_P Simulations using contour farming, but without any other
conservation practices

Strip cropping CN2, n, USLE_P, USLE_C Simulations using strip cropping, but without any other
conservation practices

Residue management CN2, USLE_C, SO_RES Simulations using residue management, but without any other
conservation practices

No-till CN2, EFFMIX, DEPTIL, CNOP Simulations with no conservation practices, except cropping with
no-till

CFF15/CFF25 Percentage and distribution of forestland and
farmland

Simulations by reforesting cropland over slope of 15° or 25°, but
without any other conservation practices

FR20%/FR30% Fertilizer amount Simulations with no conservation practices, except fertilizer
application was reduced 20% or 30%

FS5m, FS10m, and
FS15m

VFS routine (FILTER_RATIO,
TILTER_CON, FILTER_CH) or FILTERW

Simulations with no conservation practices, except with filter strips

Constructed wetland WET_NSA, WET_NVOL, WET_MXSA,
WET_MXVOL, WET_VOL, WET_SED,
WET_NSED, WET_K, PSETLW1,
PSETLW2, NSETLW1 and NSETLW2,
et al.

Simulations with no conservation practices, except constructed
wetlands were added

Grassed waterway GWATD, GWATW, GWATSPCON, GWATN Simulations with no conservation practices, except grassed
waterways were added to secondary channels

Detention basin CH_EROD, CH_N2
PND_FR, PND_PSA and PND_K

Simulations with no conservation practices, except detention basins
were added
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surface runoff and water balance (SCS 1993). The de-
creasing precipitation and the low available water ca-
pacity of soil layer led to low sensitivity of CN2 in this
watershed. In addition, parameters related to groundwa-
ter processes (GWQMN and REVAPMN) were sensi-
tive because the water balance system in this watershed
is characterized by large contributions of groundwater to
streamflow in non-flood season due to the decreasing
annual precipitation (Li et al. 2016). SOL_NO3 and
SOL_SOLP were identified as the most sensitive pa-
rameter for N and P simulations. The initial concentra-
tions of nitrate and soluble P in the soil were in the high
degree of sensitivity; these results are consistent with

previous studies (Shen et al. 2014; Shrestha et al. 2012).
Watershed characteristics and local factors determined
the specific parameter sensitivity results that were inap-
plicable to other watersheds. The sensitive parameters
identified in Bai River subwatershed were similar to
those in Chao River subwatershed owing to the similar
surface characteristics and meteorological conditions
within the MRW (see Table 4). The most sensitive
parameters were selected for model calibration and val-
idation in the SWAT-CUP program.

The R2 values and ENS values were used to evaluate
the acceptability of the model performance, which are
shown in Table 5. According to the results, the R2 and

Table 3 The sensitivity rank of parameters in the Chao River Watershed

Variable Parameter Description Lower
limit

Upper
limit

Conversion Rank

FLOW GWQMN Threshold water level in the shallow aquifer for the base flow 0 5000 v 1

SOL_BD Moist bulk density 0.9 2.5 v 2

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur
(mm)

0 500 v 3

ESCO Soil evaporation compensation coefficient 0 1 v 4

ALPHA_BNK Baseflow alpha factor for bank storage 0 1 r 5

CN2 SCS moisture condition II curve number for pervious areas 35 98 v 6

SOL_Z Depth from soil surface to the bottom of the layer -1 1 r 7

CANMX Maximum canopy storage 0 100 v 8

SOL_AWC Available water capacity of the soil layer 0 1 v 9

SOL_K Saturated hydraulic conductivity of the first layer -0.8 0.8 r 10

CH_K2 Effective hydraulic conductivity in main channel alluvium -0.01 500 v 11

EPCO Plant uptake compensation factor 0 1 v 12

Sediment USLE_P USLE equation support practice factor 0 1 v 1

USLE_K USLE equation soil erodibility (K) factor 0 0.65 v 2

SPEXP Exponent parameter for calculating sediment re-entrained in channel
sediment routing

1 1.5 v 3

USLE_C Min value of USLE C factor applicable to the land cover/plant 0.001 0.5 v 4

SPCON Linear parameter for calculating the maximum amount of sediment that
can be re-entrained during channel sediment routing

0.0001 0.01 v 5

TP SOL_SOLP Initial labile (soluble) P concentration in surface soil layer 0 100 v 1

BC4 Rate constant for decay of organic phosphorus to dissolved phosphorus
(1/day)

0.01 0.7 v 2

PSP Phosphorus sorption coefficient 0.01 0.7 v 3

K_P Michaelis-Menton half-saturation constant for phosphorus 0.001 0.05 v 4

PPERCO Phosphorus percolation coefficient 10 17.5 v 5

TN SOL_NO3 Initial NO3 concentration in the soil layer 0 100 v 1

BC2 Rate constant for biological oxidation NO2 to NO3 (1/day) 0.2 2 v 2

BC3 Rate constant for hydrolysis of organic nitrogen to ammonia (1/day) 0.02 0.4 v 3

ERORGN Organic N enrichment ratio 0 5 v 4

SOL_ORGN Initial humic organic nitrogen in the soil layer 0 100 v 3
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ENS values were consistent with other application in the
literature reports (Ahmadzadeh et al. 2016; Chen et al.
2016; Qiu et al. 2018a; Radcliffe and Mukundan 2017;
Shrestha et al. 2016), with a range of 0.53–0.88 and
0.44–0.84, respectively, which indicates that the perfor-
mance of the SWAT model was satisfactory and appli-
cable to the simulation of flow and NPS pollution in
these two subwatersheds. The disagreement between the
simulated and observed data may result from the unpre-
dictable agricultural activities and management, the lim-
itation in precipitation representation, the impacts of the
regular water withdrawals from the upstream reservoirs,

and uncertainties from the model structure and input
data (Abbaspour et al. 2015; Leta et al. 2015). This
study did not ensure the accuracy of the predicted water
storage, and inflow and outflow of these small reservoirs
in the simulation process due to the lack of observed
data. There are more reservoirs and fewer weather sta-
tions in the Bai River subwatershed; this is the important
reason that the values of model performance indicators
(R2 and ENS) in the Bai River subwatershed were lower
than those in the Chao River subwatershed. Additional-
ly, the transferred amount of flow and pollutant from
channel to the base flow and groundwater system could

Table 4 The sensitivity rank of parameters in the Bai River Watershed

Variable Parameter Description Lower
limit

Upper
limit

Conversion Rank

FLOW SOL_Z Depth from soil surface to the bottom of the layer − 1 1 r 1

CH_K2 Effective hydraulic conductivity in main channel alluvium − 0.01 500 v 2

SLSUBBSN Average slope length 10 150 v 3

CN2 SCS moisture condition II curve number for pervious areas 35 98 v 4

SOL_K Saturated hydraulic conductivity of the first layer − 0.8 0.8 r 5

GWQMN Threshold water level in the shallow aquifer for the base flow 0 5000 v 6

TRNSRCH Fraction of transmission losses from main channel that enter deep aquifer 0 1 v 7

EPCO Plant uptake compensation factor 0 1 v 8

CANMX Maximum canopy storage 0 100 v 9

SOL_AWC Available water capacity of the soil layer 0 1 v 10

GW_DELAY Groundwater delay (days) 0 500 v 11

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur (mm) 0 500 v 12

RCHRG_DP Deep aquifer percolation fraction 0 1 v 13

Sediment USLE_P USLE equation support practice factor 0 1 v 1

USLE_K USLE equation soil erodibility (K) factor 0 0.65 v 2

SPEXP Exponent parameter for calculating sediment re-entrained in channel
sediment routing

1 1.5 v 3

SPCON Linear parameter for calculating the maximum amount of sediment that
can be re-entrained during channel sediment routing

0.0001 0.01 v 5

USLE_C Min value of USLE C factor applicable to the land cover/plant 0.001 0.5 v 4

TP SOL_SOLP Initial labile (soluble) P concentration in surface soil layer 0 100 v 1

ERORGP Organic P enrichment ratio 0 5 v 2

BC4 Rate constant for decay of organic phosphorus to dissolved phosphorus
(1/day)

0.01 0.7 v 3

AI2 Fraction of algal biomass that is phosphorus 0.01 0.02 v 4

SOL_ORGP Initial humic organic phosphorus in the soil layer 0 100 v 5

TN SOL_NO3 Initial NO3 concentration in the soil layer 0 100 v 1

RS4 Rate coefficient for organic N settling in the reach at 20 °C (1/day) 0.001 0.1 v 2

AI6 Rate of oxygen uptake per unit NO2-N oxidation 1 1.14 V 3

CH_N2 Michaelis-Menton half-saturation constant for nitrogen 0.01 0.3 V 4

NPERCO Nitrogen percolation coefficient 0 1 v 3
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not be monitored and validated in the time series. The
model accuracy in the flow simulation directly affected
the simulation of nutrients and pollutants.

The parameter values differ greatly between these
two watersheds. The CN2, SOL_BD, and SOL_K
values in the Bai River subwatershed are higher than
those in the Chao River subwatershed, which is related
to larger surface runoff in the Bai River. However, the
GW_DELAY, SOL_AWC, CWQMN, CANMX,
REVAPMN, and ESCO values are smaller in the Bai
River subwatershed. The proportion of farmland in the
Bai River subwatershed is slightly higher than that in the
Chao River subwatershed, which resulted in more run-
off given its larger CN2. In the Chao River
subwatershed, the land use types are dominated by
forestland (including economic forest) (50.29%) where
the vegetation has important ecological function on
water and soil conservation. However, the larger area
of barren land with soil erosion contributed to large
nutrient loads in this subwatershed. The differences in
parameter values account for the discrepancy in the
effects of the same conservation practice between these
two subwatersheds.

Influencing factors analysis

The relationship between precipitation and temporal
distribution of pollutant loads

The temporal distribution of annual and monthly pollut-
ant loads could be used to identify the relationship
between precipitation and nutrient losses (see Fig. 2).
Precipitation is the driving force for NPS pollution.
During rainstorm events, substantial nutrient and sedi-
ment losses are caused by surface runoff and leaching,
especially in the agricultural areas with extensive use of

fertilizers and frequent cultivation (Abbaspour et al.
2015; Li et al. 2017; Prosdocimi et al. 2016). As shown
in Fig. 2 a, b, and c, there is a good linear relationship
between annual precipitation and runoff (R2 = 0.929,
statistical significance identified by p < 0.05) and both
TN and TP loads were increasing along with the in-
crease of annual precipitation, which approached a lin-
ear relationship (R2 = 0.630 and R2 = 0.636, respective-
ly), e.g., high values of runoff and nutrient loads were
observed in typical wet years due to the large precipita-
tion volume (1990 and 1998), whereas the values were
low in typical dry years (2002–2005). However, the
findings shown in Fig. 2 also imply that precipitation
is not the exclusive influencing factor on the nutrient
loss from the surface, and other factors, such as fertilizer
types, amount and duration of exposure, and even
changes in land covers and tillage patterns, have signif-
icant impacts on the temporal distribution of nutrient
loads (Adimassu et al. 2017; Jakrawatana et al. 2017).
This can be explained by the uneven distribution of
mean monthly nutrient loads. Figure 2 e and f show that
the monthly nutrient loads are not linearly correlated
with precipitation, although runoff had a linear correla-
tion with precipitation (Fig. 2d, R2 = 0.756, p < 0.05).

As shown in Fig. 3 a, the rainfall was concentrated in
the period fromMay to September, which contributed to
the heavy runoff and nutrient loads for the year. The
inter-annual distributions of pollution loads indicated a
seasonal variation of a low level in the dry period and a
sharp increase from the normal-flow period to the flood
period; this result was consistent with previous studies
(Du et al. 2014; Ylöstalo et al. 2016). As shown in Fig. 3
b, the high nutrient loads in March revealed that after a
dry period there was a “first flush effect,”which refers to
rapid changes in water quality after early-season rains
(Gupta and Saul 1996). Within one year, the periods for

Table 5 The calibration and validation results at the subwatershed outlets

Variable Index Chao River Bai River

Calibration Validation Calibration Validation

Flow (m3/s) R2 0.876 0.722 0.635 0.541

Ens 0.836 0.503 0.591 0.486

TN (kg) R2 0.731 0.628 0.592 0.620

Ens 0.531 0.487 0.525 0.441

TP (kg) R2 0.812 0.773 0.634 0.528

Ens 0.788 0.528 0.528 0.497
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frequent cultivation, fertilization, and harvesting were
distributed in different months (from April to October),
which were the critical periods for soil erosion and

nutrient losses along with increasing precipitation. In
the MRW, with the application of base fertilizer, corn
was planted in May and harvested in September or

Fig. 2 The relationship between precipitation and variables: annual runoff (a), annual TN (b), and annual TP (c); monthly runoff (d),
monthly TN (e), and monthly TP (f)

Fig. 3 Temporal distributions of pollutant loads: annual TN and TP loads (a), monthly TN and TP loads (b)
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October; thus, the high nutrient losses in May were
caused by the timing of planting, fertilizer application,
and soil disturbance.

The spatial distribution of pollutant loads
and influencing factors related to land uses

The spatial distributions of the mean annual runoff and
NPS pollution loads from 1990 to 2010 are shown in
Fig. 4, which demonstrated that NPS pollution had
apparent spatial heterogeneity. The spatial distributions
of runoff and different pollutants were in agreement
with the spatial distributions of land uses. The runoff
and nutrient losses were higher in the sub-basins where
agricultural land accounted for a large area. These re-
sults were consistent with the results of other studies
(Cerdà et al. 2016; Ockenden et al. 2017). The land use
map is shown in Fig. S1 in the Supplementary Material.

Land use has significant effects on water quality
through NPS pollutants within a watershed (Cerdà
et al. 2016; Wu et al. 2012). Figure 5 illustrates the
nutrient load intensities from different land uses. The
nutrient losses were most serious in agricultural land,
due to conventional ploughing in sloping terrain, lower
vegetation coverage, soil disturbance, the application of
pesticides, nitrate and phosphate fertilizers and manures,
and soil compaction and sealing on cropping land. Ad-
ditionally, barren lands were also associated with high
load intensities of nutrients, where soil erosion and
nutrient loss is prone to occur owing to low vegetation
cover and intensive disturbances by composting activi-
ties and garbage disposals in this watershed. These
results are consistent with previous studies (Bu et al.
2014; Shen et al. 2013). Additionally, forestland and
pastureland released relatively high amounts of nutri-
ents, whichmight result from the use of manure (200 kg/
ha set in the SWAT model) in economic forests to
enhance the production of dry fruit, such as walnuts
and chestnuts, and the high-intensive soil disturbance
caused by grazing within pastureland.

The spatial distribution of pollutant loads
and influencing factors related to soil types

As stated in previous studies, the soil characteristics and
properties are critical factors that affect when and where
runoff and diffuse pollution occurs (Fuka et al. 2016).
The spatial variation of soil properties directly deter-
mines the spatial distributions of nutrient loss, thereby

providing significant information for land-management
decisions. The nutrient load intensities on different soils
is shown in Fig. 6. The nutrient losses from several types
of soil were high, including calcaric Cambisols (CMc),
eutric Cambisols (CMe), haplic Greyzems (GRh), and
luvic Kastanozems (KSl). This is associated with their
properties implicated by hydrologic groups C or D that
indicate weak ability of water conservation, and fertility
preservation due to small soil porosity, slow infiltration
rate, strong penetration, and high potential to runoff
generation. These soil types are dominated by
Cambisols and Regosols, which are intensively used
for agricultural production and grazing land in northern
China. Cambisols concentrated in temperate regions are
the most productive soils distributed in mountainous
terrain along with active erosion association with other
mature tropical soils (FAO 2016). Farmers apply large
amounts of fertilizers to make the soils fertile in order to
produce large crop yields. The Regosols are distributed
mainly in eroding lands of mountainous regions with
steep slope, particularly in the dry tropics, where the soil
erosion is combined with wind erosion and water ero-
sion (FAO 2016). In this regard, a large amount of
nutrient leaches into water bodies when Regosols are
concentrated in the high-intensive irrigated areas.

Efficiencies of BMPs

The simulation results revealed that nutrient loss in the
MRWwas serious. Average reduction of at least 85.91%
of TN load in the Chao River is necessary to comply
w i t h t h e s u r f a c e -wa t e r q u a l i t y s t a n d a r d
(No. GB38382002) that stipulates the limit of TN con-
centration which is 0.5 mg/L, and reduction of at least
68.53% is necessary in the Bai River, because of the
massive use of fertilizers (high N) and manure and a
poor wastewater treatment system. Although TP does
not exceed the designated water quality standards (0.1
mg/L) at mounts of the Chao River and Bai River, we
included it as an important environmental indicator to
assess the BMP efficiencies in the MRW. Considering
the impacts of land covers and nutrient losses from soil
on water quality, a stricter land use program and other
practice for source control and water quality restoration
should be implemented for integrated watershed man-
agement. The monthly TN and TP loads under different
BMP scenarios were simulated in SWAT. Generally, the
efficiencies of most structural BMPs in the Bai River
subwatershed are slightly lower than those in the Chao
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Fig. 4 Spatial distribution of average annual precipitation (PREC)
(a), runoff (b), sediment (c), nitrate nitrogen (NO3) (d), organic
nitrogen (ORGN) (e), total nitrogen (TN) (f), organic phosphorus

(ORGP) (g), soluble phosphorus (SOLP) (h), and mineral phospho-
rus attached to sediment (SEDP) (i) and total phosphorus (TP) (j)
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River subwatershed. The higher CN2 (higher runoff)
and the slightly lower concentration in the Bai River
are the main reasons. A rapid runoff on slopes leads to
short retention time of runoff flowing over these struc-
tures, which is adverse to their effectiveness. This result
was consistent with other studies (Fonseca et al. 2018;
Jayakody et al. 2014; Liu et al. 2017). However, the land
use management practices for controlling nutrient losses
in the Bai River subwatershed were more effective than
those in the Chao River subwatershed because the pro-
portion of agricultural land that was targeted for re-
planning was higher in Bai River subwatershed

(Table 6), which contributed to greater changes of land
covers and pollution sources. The model also showed
that different BMPs had significantly different impacts
on the reductions of nutrient loads. Generally, the re-
moval efficiencies of structural BMPs such as filter
strips, grassed waterways, and constructed wetlands
were better than those of non-structural BMPs.

Land use management practices

Integrated watershed management requires the coordi-
nation between land uses and water quantity and quality.

Fig. 5 The relationship between land uses and nutrient loads.
AGRL means agricultural land, FRST means mixed forest, PAST
means pasture, BARR means vacant land, UIDUmeans industrial

land, URMD means residential land with medium density, and
URML means residential with med/low density

Fig. 6 The relationship between soil types and nutrient loads.
ARc represents calcaric arenosols, CMc represents calcaric
Cambisols, CMe represents eutric Cambisols, FLc represents
calcaric fluvisols, GRh represents haplic Greyzems, KSl

represents luvic Kastanozems, LVg represents gleyic luvisols,
LVh represents haplic luvisols, LVk represents calcic luvisols,
RGe represents eutric Regosols, and RGc represents calcaric
Regosols
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Implementation of eco-friendly tillage patterns, such as
residue management and no-till, resulted in very slight
improvements in nutrient loss throughout the watershed

(Fig. 7). However, in some sub-basins, they resulted in
small increases or no significant change in TN and TP
losses. This can be explained by the limited surface

Table 6 Land use scenarios of converting farmland to forestland (CFF15 and CFF25)

Subwatershed Land use scenarios Land use types

Cropping land Forestland Pastureland Residential area Water Barren land

Chao River Current land (km2) 1175.70 3057.65 1526.95 36.75 86.16 9.77

CFF15 (km2) 687.67 3545.68 1526.95 36.75 86.16 9.77

Change ratio (%) of CFF15 − 41.51 15.96 0 0 0 0

CFF25 (km2) 996.53 2878.48 1526.95 36.75 86.16 9.77

Change ratio (%) of CFF25 − 15.24 5.86 0 0 0 0

Bai River Current land (km2) 2038.83 4290.85 2551.04 46.38 90.48 13.39

CFF15 (km2) 1054.97 5274.71 2551.04 46.38 90.48 13.39

Change ratio (%) of CFF15 − 48.26 22.93 0 0 0 0

CFF25 (km2) 1600.21 4729.47 2551.04 46.38 90.48 13.39

Change ratio (%) of CFF25 − 21.51 10.22 0 0 0 0

Fig. 7 The monthly efficiency of BMPs for TN load (a) and TP
load (b) among different sub-basins. Point value means the aver-
age monthly removal rate of different sub-basins, bar height means

the differential between the top quartile and the bottom quartile,
and line length means the differential between the highest and the
lowest values
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runoff and soil erosion and the model limitation that
assumes a specific time of tillage for the whole water-
shed, but this assumption contradicts the actual timing
of tillage that varies in different areas within the water-
shed and depends on local climate conditions and farmer
preferences. In addition, the eco-friendly tillage patterns
only have the potential to control the small amount of
nutrients in the surface and subsurface layers that are
available for redistribution by surface runoff. Moreover,
increased residues limit soil-disturbing activities, which
results in limited incorporation of manures or fertilizers
within soils and more nutrient accumulating in topsoil
that further increases the amount of nutrient washed out
by rainfall and runoff. These results were supported by
other studies (Lam et al. 2010; Lam et al. 2011; Taylor
et al. 2016; Wallace et al. 2017). The low efficiency can
also be attributed to a potential increase in soluble
nutrient loads because infiltration and nutrient transport
in subsurface flow are increased with more residue
cover, and solute nutrients are easily leached through
subsurface tiles. It has been found in previous research
that solute nutrients are the main components of nutrient
losses in the MRW (Qiu et al. 2018b).

The land use change scenarios by CFF15 and CFF25
are shown in Table 6. The croplands with slope over 15°
and over 25° slope fields were reforested, respectively.
Figure 7 shows that the percent reductions of TN load
are similar to those of TP load achieved by CFF prac-
tices in this watershed. As previously noted, agricultural
lands are the critical sources of water pollution in this
watershed. The massive application of fertilizers and
manures and frequent activities has caused the release
of a large amount of N and P, resulting in the risk of
eutrophication in theMiyun Reservoir, particularly from
slopping field, where the nutrients are prone to leach
into surface runoff accompanied by soil erosion during
heavy rain events. The conversion of cropland to forest-
land on sloped land is part of a national ecological
recovery program in China, which has lots of significant
ecological impacts, including the minimization of wide-
scale soil erosion and vegetation degradation, increases
in the soil moisture, reductions in runoff, decreases in
the use of fertilizers or manures, and improvements in
water quality through the absorption of nutrients or other
pollutants by vegetation (Huang et al. 2017; Zhang et al.
2000). The reduction efficiencies of CFF15 for TN and
TP loads reached more than 10%, and those of CFF25
were 7–9%. These results are consistent with another
study (Liu et al. 2013). Consequently, the small changes

between the baseline scenario and the CFF scenarios can
be attributed to the low percentage of slopping fields
(22% of the slopping area) that are reforested in this
watershed. In addition, reforestation with economic for-
ests was represented in the model by setting a small
application of fertilizers and manures and specific log-
ging time in the management operation file, which may
increase nutrient losses and soil erosion due to low grass
coverage in this afforested area, although there are sig-
nificant reductions in nutrient losses from cropland.

According to Fig. 7, contour farming and strip
cropping on high slope fields (over 15° slope) have
similar impacts on nutrient loads. Contour farming in-
volves tillage, planting, and other farm operations along
the contour lines to increasewater infiltration and reduce
runoff, soil erosion, and transport of contaminants (Gao
and Yang 2015; Sklenicka et al. 2015; USDA-NRCS
2016). In this study, contour farming reduced mean
monthly TN and TP losses by 24.09% and 21.15%,
respectively. Compared to other studies (Jeon et al.
2018; Liu et al. 2013), the greater reduction of nutrient
loads achieved by contour farming is attributed to the
larger area of slopping field that is dominated by dry
land, which accounts for 45.79% of the total area of
cropland in the MRW. The main crop in sloping fields is
corn that has a weak ability to maintain soil and water.
Moreover, nutrient losses are easier to induce in dry land
than in paddy field, which has been reported in previous
studies (Shen et al. 2013). Consequently, the greater
reductions of nutrient loads were achieved by contour
farming in the sloping fields (dry lands) in the MRW.
Consequently, the local conditions, such as slope, crop
type, tillage pattern, and soil property, have a substantial
effect on the efficiency of contour farming.

Strip cropping, a farming method to conserve soil
structure and prevent soil erosion on a steep slope,
arranges and cultivates a field into equal width strips
with a crop rotation system (USDA-NRCS 2016). In
this study, strip cropping reduced mean monthly TN and
TP losses by 24.04% and 21.10%, respectively. In con-
trary to other studies (Fan et al. 2015; Jakrawatana et al.
2017), strip cropping tended to be the most effective at
reducing TN than TP in the MRW, due to its capability
to reduce surface runoff and erosion and the significant-
ly increased N uptake in plant biomass with the appli-
cation of urea that is the critical source of N loss. In the
MRW, the majority of cultivated land is distributed on
hillsides, and the implementation of contour farming
and strip cropping can help preserve soil fertility by
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minimizing soil erosion as a result of the roots of natural
dams holding the soil on the steep slopes. These results
indicated that nutrient-use efficiency and soil structure
could be improved by strip cropping, which were sup-
ported by other studies (Tauchnitz et al. 2018; Wagena
and Easton 2018); therefore, strip cropping should be
extensively implemented in the MRW.

Nutrient management practices

Based on the on-site questionnaire survey, the current
fertilizer amounts applied in cropping land are 325 kg/
ha for corn, which would be adjusted in the nutrient
management scenarios. The results obtained from the
scenarios showed that small (20%) reductions in fertil-
izer application for arable land resulted in reductions in
nutrient loads at the watershed outlet. The simulated
values of the reductions in the average monthly loads
for TN and TP are 8.22% and 9.74%, respectively.
Similar results were obtained in other studies (Lam
et al. 2011; Liu et al. 2013). When the fertilizer amount
decreased by 30%, the TN and TP loads decreased by
8.73% and 10.20%, respectively. The high content of N
in the soil resulted in milder effects of these scenarios on
TN than on TP. Nutrient management practices have not
covered the fertilizers and manure used in economic
forests; this is the primary reason for the relatively low
efficiencies of nutrient management practices. Because
of the limited data regarding the amount of manure used
in this watershed, the control of the amount of chemical
fertilizers was applied as a suboptimal nutrient manage-
ment practice.

Structural best management practices

As shown in Fig. 7, structural BMPs achieved large
reductions in TN and TP losses in the sub-basins. Filter
strips were added along channels and the edge of fields.
The results indicate that filter strip is an effective option
to control nutrient losses in these two subwatersheds.
Filter strips of 5-m, 10-m, and 15-m width reduced
mean monthly TN losses by 23.89%, 37.23%, and
40.42%, respectively, and reduced mean monthly TP
losses by 37.01%, 39.34%, and 41.69% in the sub-
basins. A reduction in the total area of cropland, a
reduction in the total amount of fertilizer and manure
applied to cropland within the sub-basin, and a great
nutrient transformation/removal by soil microbial pro-
cesses due to hydrologic pathway alterations are most

likely responsible for the reduction in nutrient losses
under buffer strips. These results are consistent with
the pollution removal rates of filter strips noted by the
Conservation Practices Modeling Guide for SWAT and
APEX (Waidler et al. 2011), the values accepted for
loading analyses of vegetated filter strips (NHDES
2011), and the findings in other studies (Taylor et al.
2016; Vought et al. 1995). The effectiveness of field
strips highly depends on the width of the buffer strips
and the extent of the area to which they are applied
(Klatt et al. 2017; Stehle et al. 2016). The reductions
of nutrient loads increased along with the increase of
strip width from 5 to 15 m. As evidenced by our study
and the findings of others (Glavan et al. 2012; Klatt et al.
2017), field strips tended to be most effective at reduc-
ing TP export than TN. This is due to capability of field
strips to reduce surface runoff and surface erosion,
which are the primary drivers for sediment associated
P export that is the main form of TP losses in the MRW
(Qiu et al. 2018b). Furthermore, application of nitroge-
nous fertilizer (urea) in Cambisols and Regosols soils
significantly increases N losses by rainfall-runoff. High
TN concentrations in surface runoff can stimulate plant
growth in the strips, which results in more P uptake by
the plant, and this also partially explains the further
reduction in TP by filter strips. These results were
supported by other studies (Rousseau et al. 2013;
Wagena and Easton 2018).

A constructed wetland is a biological treatment sys-
tem for sediment retention and nutrient removal that is
widely implemented to control streamwater pollution on
the urban and watershed scale (USDA-NRCS 2016). As
shown in Fig. 7, implementing a constructed wetland
within the sub-basin reduced TN and TP losses by
28.03% and 37.83%, respectively. These results have
been well documented by previous studies (Ding et al.
2016; Johari et al. 2016; Kuschk et al. 2003), which
indicated that the mean removal rates for TN load in a
constructed wetland ranged from 10 to 53%, and from
40 to 45% for TP load. The wide ranges of nutrient
removal in wetland systems are mainly influenced by
the biological process, which depends on plant species,
retention times, climatic conditions, soil properties,
landscape impact, wastewater types and amount, and
system configurations, such as capacity, seasonal stor-
age, and height of embankments (USDA-NRCS 2016;
Wu et al. 2015). As previous studies (Ma et al. 2010;
Zheng et al. 2016) proposed, the MRW has seen in-
creased precipitation intensity that causes rapid surface
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runoff, especially on the slope. The residence time is
significantly shortened when water flows across con-
structed wetlands, which is not conducive to the func-
tion of constructed wetlands. The increasing precipita-
tion in winter and decreasing precipitation in summer
may have substantial seasonal effects on the efficiency
of constructed wetlands, which will be further analyzed
in the future.

According to Fig. 7, the removal rate of grassed
waterways for TN and TP are 32.67% and 35.02%,
respectively, which are close to the efficiencies of filter
strips. These results are consistent with the pollution
removal rates of grassed waterways noted by the Con-
servation Practices Modeling Guide for SWAT and
APEX (Waidler et al. 2011). Grassed waterways are
constructed channels with suitable vegetation for the
transport of polluted water and are typically located in
agricultural fields (USDA-NRCS 2016). The vegetation
can effectively reduce surface erosion, trap sediment,
and retain nutrient on the farmlands. As noted in other
studies (Qi et al. 2016; Shipitalo et al. 2012; Smith et al.
2015), the removal rates of grassed waterways for N and
P loads in surface runoff range from 18.7 to 52.2% and
from 19.6 to 52%, respectively. The results of this study
fell within the ranges, due to the average slope of the
MRW is within the slope interval of these studies. Sim-
ilar to filter strips, the efficiency of grassed waterways is
mainly affected by local conditions and design parame-
ters, such as capacity, stability, width, depth, and slide
slopes.

A detention basin is constructed with an
engineered outlet to detain sediment-laden runoff,
waste solids, and other debris at the site or from
other areas (USDA-NRCS 2016). In this study, the
removal rates of detention basin for TN and TP
loads were 38.36% and 32.60% (see Fig. 7). These
results are slightly below the reference values
(55% and 68%) in the Conservation Practice
Modeling Guide (Waidler et al. 2011). The effect
of detention basins on nutrient loads is mainly
through reductions in surface runoff and a result
of sediment trapping. The loads of sediment and
sediment-bound nutrients in surface runoff are rel-
atively lower in the MRW (Fig. 4) than other
watersheds (Forsee and Ahmad 2011; USEPA
2009). Thus, a smaller amount of nutrients was
detained by detention basins in the MRW. As
evidenced by the comparison of our study and
the findings of others, the effectiveness of

detention basins is also dependent on local condi-
tions and watershed characteristics.

Conclusions

Agricultural NPS pollution is the major cause of water
quality problems in theMiyun Reservoir, the only drink-
ing water source for Beijing. This study used the SWAT
model to assess the spatial and temporal distributions of
NPS pollution, the factors that affected NPS pollution,
and the efficiencies of several conservation practices or
BMPs to control nutrient losses. The model determined
that the nutrient losses were higher in agricultural land
and barren land and were significantly affected by soil
properties. The soils with high nutrient losses included
Cambisols and Regosols, which are used intensively for
agricultural production in northern China. The temporal
distribution of pollutant loads was consistent with that of
precipitation. Then, the efficiencies of several conserva-
tion practices were evaluated using the well-calibrated
model, which would help to recommend the appropriate
practices for water quality improvement and ecological
restoration. The removal efficiencies of structural BMPs
such as filter strips, grassed waterways, and constructed
wetlands were found to be better than those of non-
structural BMPs, such as residue management, conser-
vation tillage, and nutrient management. The parameter
values and the BMP efficiencies differed between the
Chao River subwatershed and the Bai River
subwatershed owing to slight variances in the land cov-
er, topographic fea tures , and hydrologica l
characteristics.

The findings of this study would be useful to
identify the priority control areas and critical con-
trol periods of NPS pollution and generate the
possible combinations of BMPs to protect drinking
water quality in Beijing. Further research is needed
to identify the crucial factors that influence the
efficiencies of BMPs and extend the potential ap-
plications of the BMPs or their combinations that
result in the greatest reduction in pollutant loads
and requiring the least cost to achieve targeted
water quality improvement at watershed scale.
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