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Abstract Benefiting from current unmanned air vehicle
(UAV) and remote sensing techniques, the present study
aims to estimate tree count (TC), tree height (TH), and
tree crown cover area (TCCA) in a young Calabrian
pine stand via canopy height model (CHM). Overlay
images obtained using Quadcopter were used to gener-
ate two spatial three-dimensional (3D) cloud points in
two different qualities. Point clouds were processed
using R program in order to produce tree data using
CHM. The sensitivity of CHM-based tree data was
revealed using 318 tree measurements in 32 different
sampling units. Estimation and measurement values
were classified based on their structure from motion
(SfM) quality and cover classes, and the statistical rela-
tionships among them were analyzed. Without any clas-
sification, R2 was calculated for TC, THMean, and
TCCATotal estimations and field measurements. R2

values were calculated as 0.865, 0.778, and 0.869, re-
spectively, for SfMHighest CHM, while they were calcu-
lated as 0.863, 0.736, and 0.843, respectively, for
SfMMedium CHM. In addition, sensitivity and perfor-
mance ranking in different groups were determined
based on root mean square error (RMSE) and mean
absolute percentage error (MAPE) values. A significant
difference was observed among groups in terms of
quality and cover for TH, while no significant

differences were observed for TCCA. Therefore, it is
possible to estimate the properties of SfM CHM–based
young coniferous stand. It was understood that tree
density, crown shape, and branching influenced the
accuracy of the present study. The developed UAV
(Drone)-SfM is a promising technique for further
small-scale forestry studies.

Keywords Measurement and evaluation . Precision
forestry . UAV. Spatial 3D point cloud . CHM . Local
maxima

Introduction

Since ancient times, aerial photogrammetry has been
used for natural resources management and planning as
well as in the field of forestry. Unmanned air vehicle
(UAV) platforms and systems, which have been widely
used in almost all engineering operations and have of-
fered a cost-efficient and time-saving solution to cartog-
raphy operations in recent years, now benefit from pho-
togrammetry with the advent of various technological
developments. The variety of data obtained from the
studies using UAV photogrammetry (observation, cartog-
raphy, and three-dimensional (3D) modeling, and etc.)
(Nex and Remondino 2014) gained different functional
dimensions due to several technological innovations in
different fields (Pajares 2015). A newly developing UAV
sector offers a number of sensors (such as laser detection
and ranging = LiDAR, multispectral, hyperspectral, and
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thermal sensors), and aerial platforms carrying these sen-
sors are commercially offered in the market.

The increasing use of UAV and its systems in both
military and civil applications (such as search and res-
cue, cartography, and 3D modeling) can be attributed to
a number of factors. The leading factor is the ability of
the systems to offer spatial and temporal flexibility for
data production as well as their low cost. As for scien-
tific studies, UAVs can be used along with different
sensors depending on the objective of the study, making
it possible for researchers to use them as a versatile tool
of functional data production (Anderson and Gaston
2013; Pajares 2015). There are various aerial carrying
platforms such as UAV, Drone, Delta wing, Multicopter,
Hexacopter, and Quadcopter that be adapted to different
studies in the existing literature. In addition, these de-
vices can be divided into different categories depending
on their technical structure, equipment, and flying prop-
erties (Watts et al. 2012). Rather than fully automatic
high-altitude UAV types, scientific researches often pre-
fer semi-automatic controlled vehicles (low altitude
UAV) for their simple and basic needs in order to
capture photogrammetric images based on structure
frommotion (SfM) approach (Akgül et al. 2016; Buğday
2018; Grenzdörffer et al. 2008; Gülci et al. 2017; Pérez
et al. 2013).

Widely used in forestry studies, photogrammetry
involves mathematical calculations based on 3D images
produced by two-dimensional overlay photograph pairs
(Yilmaz 2010). Recently developed technologies and
image processing algorithms have remarkably increased
the number of photogrammetry studies in various disci-
plines. Nowadays, it is much easier to produce 3D
models such as LiDAR via consumer-grade digital cam-
eras thanks to the development of SfM technique
(Colomina and Molina 2014; Wallace et al. 2016). The
difference between LiDAR- and SfM-based models is
the ability of LiDAR to generate 3D points for under-
story surface, while SfM cannot penetrate into spaces on
the canopy cover (Wallace et al. 2016). However, SfM
technique usually attracts many researchers and practi-
tioners in the field as it can produce acceptable, accurate,
low-cost, and quick surface models (Micheletti et al.
2015; Smith et al. 2016). Yielding considerably success-
ful and effective results in complex surface structures,
SfM technique displays a more optimal level of accura-
cy compared with LiDAR (Akgul et al. 2018; Westoby
et al. 2012). As a result, similar to other scientific
disciplines, UAV platforms carrying various sensors

are also used in the field of forestry because it is a data
production tool/device with an acceptable level of
accuracy.

UAV offers a more cost-effective solution to image
capturing and processing operations in medium- and
small-scale areas compared with other widely used con-
ventional platforms (aircraft and satellites). Low-
altitude UAVs can provide higher resolution images
compared with conventional aerial and satellite photo-
grammetry (Zhang et al. 2016). It cannot be denied that
UAV brings an evident advantage in terms of low cost
particularly in small-scale field study (20 ha and less)
(Matese et al. 2015). Cost is an important restrictive
factor in forestry studies when it comes to field mea-
surement (Goodbody et al. 2017). Therefore, UAV sys-
tems are often preferred in various forestry studies not
only for their time-saving and cost-effective features but
also their spatial flexibility. It is not surprising that UAV
photogrammetry, which is used to analyze stand struc-
ture, has become a less costly measurement technique in
terms of canopy height and cover measurements com-
pared with Airborne LiDAR System (Siebert and Teizer
2014). It can be thus argued that digital data obtained
from UAV-based photogrammetry studies have also
paved the way for sensitive forestry studies (Zhao
et al. 2005). As a result, the use of UAV and related
systems enables researchers to take a different approach
towards various common problems in the field of for-
estry, and provide them with a number of new methods,
applications, research, and strategies (Pajares 2015).

Dense point clouds obtained from UAV photo-
grammetry can be spatially and temporally used in
sustainable forestry in order to produce data for dif-
ferent studies. In recent years, the use of UAV in
various forestry studies in Europe and Asia is sum-
marized under six categories by Torresan et al. (2017)
as (1) the estimation of dendrometric information, (2)
classification of tree species, (3) the determination of
forest spaces, (4) post-fire observation and measure-
ments, (5) forest protection and health cartography,
and (6) post-harvest stand damages. Being a new
field of study in forestry, UAV-Drone SfM photo-
grammetry studies have so far been used in various
studies in Europe and Asia. In addition to their eco-
nomical features and temporal flexibility for research
purposes, drones are now commonly used for data
production due to their acceptable accuracy (Tang
and Shao 2015) since the estimation of tree height
and crown width using drone-based images is now a

495 Page 2 of 17 Environ Monit Assess (2019) 191: 495



more cost-effective and popular research topic and
technique in the field of forestry (Goodbody et al.
2017; Mlambo et al. 2017).

There are numerous commercial and open-source
software which can be used to easily obtain and analyze
low-cost overlay UAV images for data production in the
stand measurement (i.e., Pix4D, Agisoft, and
VisualSfM). In today’s technology, SfM technique can
generate 3D point clouds without any spatial and posi-
tional camera information to create 3D models
(Baltsavias et al. 2008; Westoby et al. 2012). Canopy
height models (CHMs) are produced using 3D point
clouds obtained from consumer-grade digital cameras,
and used to estimate tree height (Birdal et al. 2017),
crown width (Panagiotidis et al. 2017), tree diameter
(Fritz et al. 2013), tree location, and count (Mohan et al.
2017). In short, it can be effectively used to identify
spatial changes which play an important role in the
determination of forest variables in the stand size (e.g.,
density, canopy cover, stand volume, stand biomass)
and estimation of differences between tree growth and
efficiency (Guerra-Hernández et al. 2016; Puliti et al.
2015).

In the present study, medium- and high-density
points were generated using SfM technique based on
the images obtained from a low-cost quadcopter in order
to analyze the estimation of stand properties (tree count,
average tree height, and tree crown area). These high-
density point clouds were analyzed through processing
new-generation image processing algorithms in R pro-
gramming language. The method and parametric values
used in order to increase the estimation performance of
tree parameters obtained using CHM algorithms were
selected through trial and error and based on the existing
studies in the literature. As a result, the present study
aims to discuss the feasibility of UAV in forestry studies
within the framework of precision forestry studies in
young Calabrian pine stands. The term UAV is used to
refer to drone as an aerial carrying platform in the
following sections.

Material and method

Study area

The present study was conducted in the province of
Kahramanmaras located in Eastern Mediterranean Re-
gion of Turkey. A plantation area with an altitude of 559

m in the main campus of Kahramanmaras Sutcu Imam
University was selected as the main study area, which is
located at 37° 35′ 06″N and 36° 48′ 21″ E. Although the
study area, which is a young plantation forest area, is
largely covered by Calabrian pine trees. Calabrian pines
in this study are aged around 15 and 16. The research
was carried out in a relatively flat and straight terrain in
order to minimize the impact of ground slope on the
precision of method used for the estimation of tree data.

Equipment and software

DJI Phantom 4 Drone UAV platform was used for
photogrammetric capturing. Its standard camera and
other equipment were not modified, and its flight con-
trollers can fulfill fully automatic flight missions thanks
to third-party programs. The digital camera (with a
1/2.3″ CMOS sensor) mounted to the carrying platform
with a gimbal had a resolution of 12.4 megapixels and a
shutter speed of 1:8000 (DJI 2016). UcGS Pro was used
as a third-party program in order to plan flights and
define flight missions (Universel Ground Control
System 2019). Photoscan software based on SfM tech-
nique was preferred for spatial 3D point cloud genera-
tion (Agisoft 2016). SPSS was used in order to statisti-
cally compare tree data and field measurements obtain-
ed via SfM CHM (IBM 2012). A UNI-T UT363 ane-
mometer was used for temperature and wind speed
measurement. Tree height was determined using a
Blume-Leiss, a device which measures ground slope
and tree height on a trigonometric basis. It can directly
measure tree height at a fixed distance of 15, 20, 30, and
40 m. A Leica Disto D3, steel tape measure, and rope
were also used. Land investigation forms were used to
record data such as tree diameter (TD) (dbh), tree height,
and crown width. SMARTKGNSS was used in order to
obtain geographical location data belonging to ground
control points (GCPs) and sampling units. A laptop with
an Intel Core i7 and 8 GB RAM and a 2-GB graphic
card was also used for image processing and storage.

Method

When existing studies on the estimation of canopy
height using UAV photogrammetry are analyzed, it
can be observed that similar image capturing, process-
ing, and evaluation steps are taken. In the last few years,
tree height and crown width measurements are per-
formed using SfM-based spatial point processing
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algorithms or through the comparison of digital surface
models obtained from 3D point clouds with digital
terrain models (Birdal et al. 2017; Mlambo et al. 2017;
Mohan et al. 2017; Panagiotidis et al. 2017). In the
present study, images obtained from UAV were proc-
essed using SfM technique in order to estimate tree data,
and spectral data were not used (Lie 2016). The images
obtained using consumer-grade camera mounted UAV
were converted to point clouds thanks to SfM algo-
rithms. Point clouds of a young stand produced in two
different quality levels were used to compare, measure,
and analyze CHM-based tree data estimations.

In the present study, data production using UAV
photogrammetry in forest studies consists of 9 basic
steps as follows: (1) data collection on the area where
forestry operations are to be conducted, (2) preliminary
land investigation, (3) planning UAV flight plans in the
office environment, (4) controlling land feasibility for
flight plan and automatic flight for photogrammetric
capture, (5) transferring overlay images to the computer
following the flight, (6) the determination and measure-
ment of ground control points, (7) generation of point
clouds using SfM technique, (8) statistical analysis of
estimation data obtained using canopy height model,
and (9) accuracy analysis using the data obtained from
the study area and parametric comparisons.

Planning prior to flight

Necessary updated software for UAV was accessed on
the official website of producing company. IMU, GPS,
gimbal, obstacle sensor, and digital camera calibrations
were performed for UAV prior to the flight mission. In
addition to legal procedures for flight, necessary precau-
tions were taken for flight safety in the given area. In the
flight planning, a Windows-based UcGS, which is a
user-friendly ground control station (ver. 3.1.871), and
anAndroid-based UgCS, which is a third-party software
ensuring connection with UAV via telemetry, were used.

Recommended flight heights (Dandois et al. 2015) and
sensor values for UAV-SfM photogrammetry were taken
into account, and optimal flight altitude was determined as
78 m. The flight route of carrying platform and capturing
altitude of digital camera were determined in parallel with
above mean sea level (AMSL) in order to increase the
performance of 3D surface model (Universel Ground
Control System 2019). In addition, overlaying ratios were
set to higher values for a highly sensitive CHM estimation.
Gimbal was adjusted in parallel with ground at an angel of

90° in order to capture rare images. WGS84 UTM Zone
37N projection system was used in order to identify and
control spatial data. A flight mission of 8.24 min was
planned for photogrammetric capturing in an area of 2.63
ha. Flight data for photogrammetric capturing mission are
summarized in Table 1.

Prior to the flight, temperature (°C), average wind
speed (m/s), and direction were determined using an
anemometer. Flight route was planned based on the wind
direction, and the whole flight route was (single grid) 2.2
km. Flight mission was planned in the office environment
based on the weather conditions. Spatial data were logged
in UAV (departure and landing positions and flight route)
after they had been determined in the study area. When
the image processing was completed, 13 GCPs measured
via NRTK (network real-time kinematic) global naviga-
tion satellite system (GNSS) (± 2 cm accuracy) were used
following to the connection to Turkey CORS (Continu-
ously Operating Reference Station) in order to measure
spatial sensitivity of the obtained data.

Photogrammetric flight information

UcGS Pro used in the flight planning has turned low-
cost aerial platforms into devices which can capture
photogrammetric images. UAVused in the present study
successfully completed its planned flight mission. Dur-
ing the flight, air temperature was measured as 14–15
°C, while minimum and maximum average wind speed
were measured as 2 and 4 m/s, respectively. The flight
route followed a north-west direction, which was also
the wind direction. The duration of image capturing via
UAV lasted nearly 2 min longer than the actual planned
duration. In addition, flight altitude was estimated as
72.5 m by Photoscan even though the planned flight
altitude was 78 m. The smart battery, which had been

Table 1 Predefined parameters of flight mission for UAV (DJI
Phantom 4)

Flight parameters

Flight altitude (m) 78

Flight speed (m/s) 5

Ground resolution (cm) 3.33

Forward overlap (%) 80

Side overlap (%) 70

Photo Shot Interval (sec) 3

Camera attitude (0) 90
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used for 6 different flights before, spent nearly 45% of
its energy for this flight. The estimated error for X, Y,
and Z coordinates based on digital camera stations of
images processed in two different qualities were calcu-
lated as 2.30 m, 1.17 m, and 0.27 m, respectively.

Based on the dense point cloud generated using
SfMHighest, RMSEx, RMSEy, and RMSExy values of
orthomosaic data were calculated as 30 cm, 83 cm,
and 88.5 cm, respectively. On the other hand, based on
the dense point cloud generated using SfMMedium,
RMSEx, RMSEy, and RMSExy values of orthomosaic
data were calculated as 29 cm, 81 cm, and 85.5, respec-
tively. In order to minimize spatial errors, the sensitivity
of tree parameter estimation in forestry areas can be
enhanced if high-accuracy GPS modules (such as D-
GPS or RTK) are mounted on low-cost UAV platforms
(DJI 2018). However, despite its reasonable advantages,
the use of UAV-SfM in small-scale forestry operations
may disturb the balance between research costs and data
quality (Puliti et al. 2015). In addition, capturing healthy
ground control point images on mountainside areas will
contribute to the sensitivity and cost of the study. There
are no RTK modules on the aerial carrying platform
used for image capturing in the present study. This is
because the use of UAV models with RTK modules in
the market will bring an additional cost of 6200 US
dollars for forestry studies and operations.

Spatial 3D point cloud generation

Following the flight, dense point clouds in two different
qualities were generated from images captured via UAV.
EXIF (Exchangeable image file format) data were used
instead of GCPs in order to create photograph routes and
test spatial XY axis sensitivity of the model produced
using UAV-SfM. Spatial sensitivity of individually esti-
mated tree was not evaluated. The following steps are
taken in this process: (1) The identification of common
points and creation of photo plane for block (alignment
of photo), (2) point cloud generation, (3) manual remov-
al of unstable point clouds, (4) point cloud export as
*.las extension (Agisoft 2016). Parametric and preferred
sensitivity values for this process are summarized in
Table 2.

CHM generation using point clouds

rLidar (0.1.1) (Silva et al. 2017) and Fusion/LDV 3.80
(release date August 6, 2018) (McGaughey 2018)

modules, which are compatible with R statistical comput-
ing and graphics software (Microsoft R Open 3.5.2) (R
Core Team 2019), were used for dense point cloud (*.las
extension) reading, processing, and visualization process-
es. GroundFilter, GridSurfaceCreate, and CanopyModel
functions in Fusion/LDV were applied, respectively. The
distinction between soil ground and canopy cover was
made during the point cloud filtering. Taking topographic
structure of the study area into account (Kraus and Pfeifer
1998), the shift value, aboveground offset, and iteration
parameters of the model adapted from Kraus and Pfeifer
(1998) were defined as 0, 0.5, and 10, respectively
(McGaughey 2018). A 0.5-m resolution DTM was gener-
ated using GridSurfaceCreate without any filtering. In
addition, a CHM at a 0.5-m spatial resolution was gener-
ated using CanopyModel. Later, Gaussian filtering func-
tion (sigma = 0.6) was applied in order to increase the
performance of the generated CHM for the estimation of
individual tree parameters.

Tree data estimation

SfM-based CHM, which was generated using Fusion/
LDV, was used to estimate tree count and spatial tree
data. CHMsmoothing in open-source rLidar package
and local maximum algorithm-based FindTreesCHM
and ForestCAS were used for tree definition (Silva
et al. 2017). Smoothing was performed for CHM using
Gaussian function with a 3 × 3 window in order to
optimize the results of tree parameter estimation
(Mohan et al. 2017). Given tree count and canopy cover
in the study area, maximum crown width in the model
was determined as 10 m. Additionally, the limit value of
exclusion parameter was set as 0.3 in order to identify
neighboring pixels which exceed the maximum height
of an individual tree by 30%.

Table 2 Preferred image processing parameters

Photo alignment

Accuracy Highest

Pair pre-selection Generic

Key point limit 40000

Tie point limit 4000

Dense point cloud

Reconstruction quality Highesta Mediumb

Depth filtering Moderatea,b

a SfMHighest,
b SfMMedium
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Sampling unit design and measurements

In the present study, coniferous species count (Calabrian
pine) (TC), tree height (TH), and tree cover crown area
(TCCA) were estimated. The study area was divided
into sampling units in order to control the estimated TC,
TH, and TCCA values. The dimensions of each sam-
pling unit were determined as 20 × 20 m (400 m2),
which yielded a total number of 21 sampling units.
Canopy cover values were determined beforehand
thanks to the ratio of tree crown area to the area of a
single sampling unit (Eq. 1). Cover types were divided
into 4 categories as very sparse (covered by few trees or
without trees by < 10%), sparse (covered by trees by 10–
40%), medium (covered by trees by 41–70%), and full
cover (covered by trees by > 70%) (Fig. 1).

Canopy cover ratio %ð Þ

¼ Detected tree cover area m2ð Þ
Total area of sampling unit 400 m2ð Þ � 100 ð1Þ

Sampling units were randomly selected by taking
canopy ratios into consideration for accuracy analysis
and statistical data. Twenty percent area of all sampling
units belonging to each cover category was selected
randomly. Thus, TC, TH, and TCCA measurements
were performed for the area in the randomly selected
sampling units. Given the cover ratios of sampling units
(Fig. 1), 4 different groups (4 cover categories and 3
different methods) were created for SfM CHM and field
measurements. For instance, group I was defined as
SfMHighest-very sparse (P1), SfMMedium-very sparse
(P5), and Field-very sparse (P9) (Table 3). The correla-
tion among groups was analyzed for the measured and
estimated TH and TCCA values in sampling units.

The following hypotheses will be analyzed in detail
in order to limit the findings in the study area and clarify
the objective of the present study:

Ha: There are significant differences among tree
parameters (TC, THMean, TCCATotal) in different
cover categories and estimated using point clouds
in different qualities.
Hb: There are no significant differences among tree
parameters (TC, THMean, TCCATotal) in different
cover categories and estimated using point clouds
in different qualities.

It was later analyzed whether the categorized TH and
TCCA data displayed a normal distribution based on
normality test (Shapiro-Wilk). Kruskal-Wallis, a non-
parametric test, was used to analyze whether there was
a significant difference between the estimated TH and
TCCA in each group among the sampling units (IBM
2012). In addition, tree data (tree height and crown
width) belonging to the models created using CHM
were statistically analyzed (Pearson’s r correlation anal-
ysis). Topography was not taken into account because
the ground slope in the study area was nearly flat.

Root mean square error (RMSE) and mean absolute
percentage error (MAPE) were used in order to indicate
the accuracy of fieldmeasurements in the sampling units
and tree data produced using SfM-based 3D point
clouds (Eqs. 2 and 3). R2 values were calculated using
linear goodness of fit curve for TC, THMean, and
TCAATotal obtained using SfMCHM and field measure-
ments. In addition, X, Y, and XY spatial errors were
revealed using RMSE for orthophoto produced via SfM.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi

MSE
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

ei2

n

s

ð2Þ

MAPE ¼ 1

n
∑
n

i

AEi

ADi
� 100 ð3Þ

where AEi is absolute error and AD is actual
observation.

Measurements in the sampling units

The central point of randomly selected square sampling
units was determined using GNNS-CORS. A stake was
erected on these central points, and edges were found
using a rope. Thus, measurements were performed for
trees whichwere located in the area of the sampling unit.
After tree measurement values were recorded in the
investigation forms, they were transferred to a personal
computer. A Blume-Leiss was used to measure the
length between root crown and terminal bud at a fixed
distance of 15 m. Crown width of an individual tree was
calculated based on the mean values of branch measure-
ments on both sides.Measured crown width values were
used to calculate TCCA (pi value 3.1415926) (Fig. 2).
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Results and discussion

The analysis of spatial point cloud generated
by UAV-SfM

A total of 126 images were captured during the flight,
and all of them were processed using Photoscan soft-
ware. These images were included in spatial 3D point
cloud generation, and RMS re-projection error was cal-
culated as 0.78 pixels. It took nearly 32 min to create a

Fig. 1 The distribution of each sampling unit on orthophoto and the numbers assigned to them. Sampling units with very sparse (57), sparse
(31), medium (92), and full (86) cover

Table 3 The determination of tree data estimation and measure-
ment groups used for statistical comparisons

Technique Cover

Very sparse (0) Sparse (1) Medium (2) Full (3)

SfMHighest P1 P2 P3 P4

SfMMedium P5 P6 P7 P8

Field P9 P10 P11 P12

Group I Group II Group III Group IV
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route for the images. Nearly 47.874 million and 12.573
million spatial 3D points were generated (Fig. 3) in the
highest (images downscaled twice by each side) and
medium (images downscaled four times by each side)
quality (Table 2), respectively. Image matching and the
determination of image capturing stations took 32 min.
Additionally, point cloud generation using SfMHighest

took 42 min, while the same process took 7.05 min
using SfMMedium.

The analysis of data estimation using SfMHighest

and SfMMedium CHM

Tree count obtained from point clouds generated using
SfMHighest is 1428, and average tree height is 5.53 m.
Total tree crown cover area was estimated as 8600.25
m2. On the other hand, tree count obtained from point
clouds generated using SfMMedium is 1383, and average
tree height is 4.73 m. Total tree crown cover area was
estimated as 10887.75 m2. Thus, the difference between
SfMHighest and SfMMedium in terms of the highest esti-
mated tree heights was 1.81 m (Fig. 4). The cover ratio
of the study area was calculated as 17% (sparse) using

SfMHighest, while it was estimated as 22.5% (sparse)
using SfMMedium (Eq. 1).

The differences between spatial data of trees estimat-
ed using CHM and point clouds generated in two dif-
ferent qualities are shown in Fig. 5. Even defoliated
trees, withered plants, and bushes were visibly captured
in sparse areas thanks to the parameters used in the
estimation of tree parameters (see the calculation of tree
parameters). It was also observed that the parameters of
totally defoliated acacia trees (height and crown area)
located in sampling unit 121, which is categorized as
very sparse, were partially estimated (Fig. 5). Therefore,
tree estimations and data were restricted to coniferous
tree types (Calabrian pine).

The statistical differences between tree data generat-
ed in different qualities and in the same area (TH and
TCCA) are shown below. In both quality categories
(SfMHighest CHM and SfMMedium CHM), the parameters
of 407 trees were estimated. The difference between tree
locations in different sampling units varies between 0.5
and 1 m (Fig. 5).

While a low correlation was found between crown
areas of single trees in the same sampling unit, a very
high correlation was observed between estimated tree

Fig. 2 The method used for tree height and diameter measurement (the height of the range pole next to the tree is 2 m)
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heights (Table 4). When the difference among tree
heights obtained from field measurements is low,
SfMMedium spatial 3D point cloud generation can be
preferred instead of SfMHighest. Thus, it may be possible
to minimize times losses in image processing and
analysis.

It can be understood from Table 5 that there are no
significant differences between two quality categories
when TH and TCCA values estimated in two different
qualities are taken into account. RMSE and MAPE
values for tree heights (THHighest–THMedium) were cal-
culated as 1.26 and 24.61%, respectively. Tree crown
area (TCCAHighest–TCCAMedium) was calculated as 3.84
and 69.45%, respectively (Eqs. 2 and 3).

Based on Shapiro-Wilk (SW, p < 0.05), it was found
out that TH and TCCA values of trees in the same area
did not display a normal distribution for SfM quality
categories. As for normality correlations among defined
groups for TH values, while P1–P5 (SW 0.178, p >
0.05) and P2–P6 (SW 0.141, p > 0.05) displayed a
normal distribution, P3–P7 (SW 0.031, p < 0.05) and
P4–P8 (SW 0.000, p < 0.05) did not display a normal
distribution. On the other hand, when it comes to TCCA

values, P1–P5 (SW 0.424, p > 0.05) displayed a normal
distribution, P2–P6 (SW 0.024, p < 0.05) and P3–P7
and P4–P8 (SW 0.000, p < 0.05) did not display a
normal distribution. Given these normality test results,
it can be stated that the differences between estimated
TH and TCCA values are directly proportional to cover
ratios.

The comparison of SfM CHM–based tree data and field
measurements

It was indicated in the study area that 29 sampling units
were very sparse, 29 of them were sparse, 29 of them
had medium cover, and 19 of them had full cover (Fig.
1). Three hundred eighteen different trees in 32 different
sampling units were used as a reference for TC, THMean,
and TCCATotal values. The measurements were per-
formed in very sparse (sampling unit 15, 16, 25, 46,
51, 52, 57, 67, 87, 98, 107, 112, 114, 117, 121), sparse
(sampling unit 21, 50, 71, 77, 89, 93, 102), medium
(sampling unit 11, 18, 37, 63, 69, 70, 96), and full cover
(sampling unit 38, 44, 84) sampling units (Fig. 1). The
mean values of tree data measured in the study area are

Fig. 3 The comparison of point cloud generation in high quality
(a) and medium quality (b). The comparison of high-quality sec-
tions (a′ and a″) and medium-quality (b′ and b″) point clouds. The

demonstration of differences between spatial 3D point cloud den-
sities of tree (Calabrian pine) groups through sections
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given in terms of their cover categories in Table 6.
Calabrian pines in the study area are pole-stage trees.
As the tree density in the study area decreases,
branching forms, tree height, tree diameter, and crown

area often vary. In addition, overgrown trees can also be
observed in very sparse and sparse areas.

The differences between the estimated values and
field measurements (TH and TCCA) in the sampling

Fig. 4 3D and 2D images of SfM CHM in high (a) and medium (b) qualities. The illustration of spatial tree crown boundaries and height
obtained from “rLidar.” The study area highlighted by thick reddish lines in 2Dmaps was used for tree data estimations and field measurements
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units were analyzed based on their respective groups
(classified from P1 to P12) (Table 3). The Shapiro-Wilk
normality test demonstrated that all four groups (group
I, group II, group III, group IV) displayed a not normal
distribution in terms of TH and TCCA (p < 0.05). On the
other hand, it is clear from Kruskal-Wallis test findings
that there was a significant difference among groups in
terms of TH (χ2 8.088, p = 0.044; p < 0.05), whereas no

significant differences were found among groups in
terms of TCCA (χ2 0.358, p = 0.949; p > 0.05).

Similar to Lie (2016) and Panagiotidis et al. (2017),
the present study found out strong direct correlations
between the data estimated using SfM CHM and field
measurement data. R2 values for tree count, mean tree
height (TCMean), and total tree crown area (TCCATotal)
estimated using SfMMedium-based CHMwere calculated

Fig. 5 The comparison of spatial data of trees estimated using
SfM-based point clouds in different qualities 11 (2 = medium), 44
(3 = full), 77 (1 = sparse), and 121 (0 = very sparse) (sampling

units are shown at a frame of 20 × 20 m). Red triangles and blue
dots on these images show trees which can be estimated using
SfMMedium and SfMHighest CHM, respectively
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as 0.863, 0.736, and 0.843, respectively. On the other
hand, R2 values for TC, TCMean, and TCCATotal values
estimated using SfMHighest CHM were calculated as
0.865, 0.778, and 0.869, respectively. These findings
in the present study overlap R2 values for the estimated
tree height and field measurement in other similar stud-
ies (Guerra-Hernández et al. 2016; Mlambo et al. 2017).
It must also be noted that the correlation between tree
height estimation and measurement values using

different SfM-based CHM can be revealed more accu-
rately (R2 0.94) (Birdal et al. 2017).

Thanks to SfM CHM, TC was estimated with an
individual tree sensitivity of RMSE ± 9 and 10 in full
cover areas, while it was estimated with a sensitivity of ±
1 and ± 6 in sparse and medium cover areas, respective-
ly. The sensitivity of TC estimated using SfMHighest and
SfMMedium was inversely proportional to cover ratio.
The lowest error rate in TH estimation using SfMHighest

Table 5 The statistical tree height (m) and tree crown area (m2) of 407 trees obtained using SfMHighest and SfMMedium CHM

CCR* N Mean Std. deviation Std. error 95% confidence interval for mean Min. Max.

Lower bound Upper bound

THHighest 0 10 5.0839 1.6363 0.5174 3.9134 6.2544 2.95 7.31

1 114 5.9740 1.6990 0.1591 5.6588 6.2893 1.80 9.59

2 158 6.1391 1.7068 0.1358 5.8709 6.4073 1.64 9.45

3 125 5.2315 1.9549 0.1749 4.8854 5.5775 1.52 13.35

Total 407 5.7882 1.8226 0.0903 5.6106 5.9658 1.52 13.35

THMedium 0 10 4.5249 1.6496 0.5217 3.3448 5.7050 2.18 6.50

1 114 5.2558 1.7839 0.1671 4.9248 5.5869 1.52 9.57

2 158 5.3329 1.7822 0.1418 5.0529 5.6130 0.87 9.54

3 125 4.2442 1.7874 0.1599 3.9277 4.5606 0.91 8.45

Total 407 4.9571 1.8415 0.0913 4.7777 5.1365 0.87 9.57

TCCAHighest 0 10 4.8000 1.7192 0.5437 3.5702 6.0298 2.25 7.50

1 114 5.6733 2.0275 0.1899 5.2970 6.0495 1.25 11.50

2 158 5.6551 2.4385 0.1940 5.2719 6.0383 1.25 14.75

3 125 6.5360 2.3608 0.2112 6.1181 6.9539 2.00 16.75

Total 407 5.9097 2.3245 0.1152 5.6832 6.1362 1.25 16.75

TCCAMedium 0 10 8.9750 2.6860 0.8494 7.0536 10.8965 5.75 14.75

1 114 7.7215 2.4674 0.2311 7.2637 8.1793 2.50 14.50

2 158 7.8165 2.7588 0.2195 7.3829 8.2500 3.00 15.25

3 125 8.0280 2.5123 0.2247 7.5832 8.4728 3.50 15.25

Total 407 7.8833 2.6020 0.1290 7.6298 8.1368 2.50 15.25

*CCR crown cover ratio

Table 4 Pearson’s r correlation analysis for tree height (m) and tree crown area (m2) based on SfM quality (THHighest and TCCAHighest are
estimated using SfMHighest, and THMedium and TCCAMedium are estimated using SfMMedium)

THHighest × THMedium TCCAHighest × TCCAMedium

Pearson’s correlation 0.868** 0.109*

Sig. (2-tailed) 0.000 0.028

N 407 407

*Correlation is significant at the 0.05 level (2-tailed)

**Correlation is significant at the 0.01 level (2-tailed)
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CHM and SfM
Medium

CHM was obtained in very sparse
and medium cover areas (Table 7). RMSE value of
THMean was calculated as 1.6 m in very sparse cover,
while it reached to a maximum value of 4.95 m in full
cover (Table 7). Clark et al. (2004) report in their related
study that even RMSE values of sensitive surface
models generated using LiDAR in forestry areas with
different stand structures (slope, crown cover, closure,
etc.) varied between 2.41 and 4.15 m, respectively.
Therefore, it can be argued the present study, which
benefits from SfM CHM estimations, offers a great
potential for further studies on this topic.

Mean MAPE values of SfMHighest CHM and
SfMMedium CHM for crown cover area estimation per-
formance in the whole study area were calculated as
29.40% and 30.07%, respectively (Table 7). The perfor-
mance of total tree crown cover area estimated using
SfM CHM relatively decreased due to cover ratios and
entangled branches of dense individual trees
(Vauhkonen et al. 2012). Furthermore, it was also ob-
served that younger trees under tall and wide trees were
another decisive factor. Therefore, lower parts of tree
crowns could not be captured, resulting in 3D point
cloud generation from crown surfaces. This indicates
the difference between the sensitivities of LiDAR- and
SfM-based studies (Wallace et al. 2016).

Branching formations and crown deformation of
trees were among main reasons for the decreasing sen-
sitivity of TC and TCCA estimation using SfM CHM in
the study area (Guerra-Hernández et al. 2016). It was
found out that there were some individual trees under
large trees particularly in some areas with a higher cover
ratio (Vauhkonen et al. 2012). In addition, some over-
grown trees in very sparse areas may have resulted in the
estimation of a single tree as two different individual
trees due to the fact that UAV platform evaluated it as
more than one tree crown.

RMSE and MAPE were used to indicate the perfor-
mance of TC, TH, and TCCA values estimated using
CHM in terms of point cloud generation quality and
cover category (Table 8). For instance, RMSE findings
demonstrated that the estimated TC, TH, and TCCA
values of P1 (high quality–very sparse) were more sen-
sitive compared with tree data of P5 (medium quality–
very sparse).

Area and stand parameters obtained using LiDAR
offer a feasible level of sensitivity for the determination
of production technology and system to be used in
forestry production (Akay et al. 2009; Becker et al.
2018). However, many researchers prefer UAV-SfM in
their modeling studies to the high cost of LiDAR sys-
tems (Siebert and Teizer 2014). Stand parameter

Table 6 Descriptive statistical data of tree data (TH, TCCA, TD (dbh)) obtained from measurements in the sampling units in terms of their
cover categories

CCR N Mean Std. deviation Std. error 95% confidence interval for mean Min. Max.

Lower bound Upper bound

THField 0 21 7.5786 2.2403 0.4889 6.5588 8.5984 4.5 11

1 62 8.2226 2.1958 0.2789 7.6650 8.7802 2.0 12

2 133 7.8481 1.7208 0.1492 7.5530 8.1433 1.4 11.5

3 102 9.9716 1.5600 0.1545 9.6652 10.2780 6.0 12.5

Total 318 8.5844 2.0475 0.1148 8.3585 8.8103 1.4 12.5

TCCAField 0 21 8.7148 5.5476 1.2106 6.1895 11.2400 0.5 22.06

1 62 7.7765 5.5194 0.7010 6.3748 9.1781 0.2 32.17

2 133 6.4854 4.1546 0.3603 5.7728 7.1980 0.6 19.63

3 102 6.9760 5.4718 0.5418 5.9012 8.0507 1.1 30.19

Total 318 7.0417 4.9953 0.2801 6.4906 7.5928 0.2 32.17

TDField 0 21 16.1905 5.1246 1.1183 13.8578 18.5232 8.0 24

1 62 16.1613 6.1941 0.7867 14.5883 17.7343 4.0 34

2 133 15.4737 4.0836 0.3541 14.7733 16.1741 5.0 24

3 102 17.6176 5.0933 0.5043 16.6172 18.6181 8.0 28

Total 318 16.3428 5.0097 0.2809 15.7900 16.8955 4.0 34
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estimation using UAV-SfMwill offer effective solutions
to the problems in the field of production and planning
for forestry researchers (Pajares 2015) and bring a new
perspective to sensitive forestry studies (Zhao et al.
2005). There is no doubt that photogrammetric flight
planning is as important as algorithms in order to in-
crease the stand parameter estimation performance in
forestry areas. However, the problems encountered in
the estimation of stand parameters using UAV (drone)-
based SfM technique in forestry areas should also be
solved: These problems are as follows: (1) technical
problems such as the lack of qualified staff, high capac-
ity computer hardware, data loss during the modeling
process, the role of GCPs in the minimization of spatial
errors, and short flight durations due to poor energy
supply; (2) political problems such as legislations and
strict procedures in the flight area; and (3) social prob-
lems such as local people’s negative reactions to flight
process.

The data of understory in the stand cannot be obtain-
ed due to the vegetation covering the land in the present
study. Therefore, it seems difficult to estimate stand
parameters of high closure forest areas and multi-
stratum using the method developed in the present
study. The precision of the parametrical values (TC,
TH, and TCCA) in the present study is low in dense,
very dense, and clustered young Calabrian pine stands.
On the other hand, individual tree parameters yielded a
higher precision in areas with less canopy cover ratio
(10–70%) and clustering (Table 7). Therefore, GCPs
should be used in order to increase the precision of
measurement values obtained using UAV-SfM tech-
nique. In addition to weather conditions, it can be stated
various factors such as stand cover, light exposure, and
tree density heavily influence tree parameter estimation
performance using UAV-assisted SfM CHM (Dandois
et al. 2015; Gong et al. 2002; Vauhkonen et al. 2012). In
particular, the UAV-SfM method should be integrated

Table 7 RMSE and MAPE values of stand parameters estimated using SfM CHM in different qualities in terms of their crown cover
categories

CCR SfMMedium SfMHighest

RMSE MAPE (%) RMSE MAPE (%)

TCa THb TCCAc TCa THb TCCAc TCa THb TCCAc TCa THb TCCAc

0 1 2.04 10.77 34 13.64 22.07 1 1.69 6.37 33 10.92 30.72

1 3 3.27 21.47 22 37.18 28.73 2 2.57 22.10 19 26.28 30.53

2 6 2.56 38.61 28 29.11 39.70 5 2.52 57.54 25 25.30 44.91

3 9 4.07 77.69 19 58.97 27.10 10 4.95 63.98 21 48.63 14.11

Mean 4.75 2.99 37.14 25.8 34.73 29.40 4.50 2.93 37.50 24.5 27.78 30.07

CCR, crown cover ratio; a tree counts; bmean tree height in the study area (m); c total crown cover area (m2 )

Table 8 RMSE and MAPE (%) values for the performance ranking of tree data estimated using point cloud SfM quality and crown cover
categories (between P1 and P8) (Table 3)

RMSE MAPE (%)

TC THMean TCCATotal TC THMean TCCATotal

P1 P1 P1 High P2 P1 P4

P5 P5 P5 Sensitivity P8 P5 P5

P2 P3 P6 P4 P3 P8

P6 P7 P2 P6 P2 P6

P3 P2 P7 P3 P7 P2

P7 P6 P3 P7 P6 P1

P8 P8 P4 P1 P4 P7

P4 P4 P8 Low P5 P8 P3
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into other photogrammetric techniques for stand closure
and crown cover estimations (Yurtseven et al. 2019).
Thus, it can be concluded that when the forest has low
canopy cover and tree density is low, UAV-based SfM
technique yields low-cost and comparable results for the
determination of forestry production techniques and
systems compared with LiDAR-based stand parameters
(Becker et al. 2018; Fritz et al. 2013; Goodbody et al.
2017; Tang and Shao 2015; Torresan et al. 2017).

The sensitivity of tree data obtained in the present
study can be increased. However, such an attempt will
also lead to higher economic costs and longer durations
of research in today’s conditions in order to increase
data quality. It can be observed that the sensitivities of
data produced using algorithms for the determination of
individual tree parameters in many previous studies do
not significantly differ. This is because canopy cover
ratio in a forest and tree density should be analyzed in
detail in order to reveal the sensitivity of a model used
for tree data production (Vauhkonen et al. 2012). High-
resolution image capturing yields better results thanks to
the capacity of their sensors in photogrammetric image
capturing. It is advised to set flight altitude at 40 m or
less and plan image overlaying rate over 90% for higher
resolution in photogrammetric image capturing
(Dandois and Ellis 2013).

Conclusion and suggestions

Within the scope of sustainable forestry studies, stand
parameters (tree count, tree height, the estimation of tree
crown diameter, and canopy cover) are obtained using
low-cost multicopters as a basis of small-scale forestry
studies. Tree attributes of young Calabrian pines were
estimated using SfM-based CHM. The sensitivity of
estimations using SfMHighest was slightly higher com-
pared with SfMMedium. In other words, it can be said that
Ha was approved, whereas Hb was disproved. However,
there are also some insignificant differences among the
accuracy of tree data which were estimated by taking
SfM quality and cover ratios into account. Dense point
cloud generation using SfMHighest required a longer
duration of processing by 53% compared with
SfMMedium. Cover ratio and tree growing formation
(density, crown cover form, and branching) were deci-
sive factors in the performance of the present study
focusing on coniferous young Calabrian pine. There is
a number of UAV platforms and image processing

qualities which can be used as a solution to the research
problem in question. It can be argued that UAV-SfM-
based 3D point cloud system can be offered as an
alternative to LiDAR systems for forestry management
and planning due to its sensitivity of tree count, tree
height, estimation of tree crown diameter, and canopy
cover in terms of stand characteristics. Nevertheless,
UAV-SfM-based tree parameter estimation still requires
newly developed 3D point cloud processing algorithms
and techniques to achieve more reliable results. The
sensitivity of SfM CHM is influenced by various envi-
ronment variables (light exposure, wind, species, ter-
rain, etc.). Therefore, it is necessary to conduct further
studies on stand types in different slope categories in the
future. It is evident that the estimation of stand param-
eters using UAV-SfM technique will provide forest
practitioners with valuable information regarding the
estimation and effective planning of production costs
in forestry operations. As a result, SfM CHM–based
aboveground biomass estimation models can be created
as a basis for several studies such as sensitive ecological
observation.
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