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Abstract Coastal soils are particularly sensitive to non-
native species invasion. In this context, spatially explicit
soil information is essential for improving the knowl-
edge of the role of soil in changing environments,
supporting coastal sustainable management. Synthetic-
aperture radar (SAR) data provides an attractive oppor-
tunity to monitor soil because the acquisition of images
is independent of weather and daylight. However, SAR
has not been commonly used for soil prediction. In this
study, we firstly investigated the temporal variation of
vegetation canopy and the soil-vegetation relationship
using Sentinel-1 data in an invaded coastal wetland.
And then we built 3D models to predict soil properties
at multiple depths. A total of 16 Sentinel-1 images were
acquired in a growing season. A series of soil physico-
chemical properties were examined including soil bulk
density, texture, organic/inorganic carbon, pH, salinity,
total nitrogen, and C/N ratio, relating to three depth
layers in the top 1-m depth. Our results showed that
time-series Sentinel-1 data can capture temporal charac-
teristics of vegetation, and VH/VV was more sensitive
to the vegetation growth than VH and VV. The soil-

vegetation relationship captured by time-series SAR
data was beneficial to predict soil properties, especially
for soil chemical properties. The models provided per-
missible prediction accuracy, with an average RPD of
0.99. We concluded that the prior understanding of the
temporal variation of SAR data is essential for develop-
ing practical soil prediction strategy. Our results high-
light that SAR has the potential to predict a diverse set of
soil properties in coastal wetlands with dense vegetation
cover.

Keywords Soil monitoring . Time-series Sentinel-1 im-
agery . 3Dmodel . Coastal restoration . Soil-vegetation
relationship

Introduction

Coastal wetlands are important regions that provide
important ecosystem services including carbon seques-
tration and flooding resistance. However, they are
threatened by nonnative species invasion that is altering
the structure and service of ecosystems worldwide. The
soils of coastal wetlands, for instance, are particularly
sensitive to the invasion, where soil physicochemical
properties could be substantially altered regarding the
expansion of nonnative species into areas that lack
native species (Yang and Guo 2018). Invasion-induced
soil changes are important indicators for global warming
potential, due to the role the nonnative species plays in
regulating the interaction between soil and climate
change (Yuan et al. 2015). Thus, a better understanding
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of soil patterns is of great importance for coping with the
invasive impact and maintaining sustainable manage-
ment of coastal wetlands.

The use of remote sensing as a primary data source is
an exciting area for soil quantification research because
they can provide timely spatial-temporal information on
soil status economically (Mulder et al. 2011). Further-
more, improvements in newly released and forthcoming
imagers (i.e., Sentinel 1-2-3, Landsat 8 OLI, EnMAP,
and HyspIRI) are attracting scientists to employ remote
sensing techniques in estimating soil properties, while
these new sensors may pose significant challenges in
relating remotely sensed information to soils. Given this
background, it is necessary to achieve an understanding
of remote sensing data in indicating the spatial variation
of soil properties.

In the past few years, a variety of remote sensing
data, including optical data and synthetic-aperture radar
(SAR) data, have been heavily tested to explore the
relationships between image signals and soil compo-
nents (e.g., Metternicht and Zinck 2003; Vaudour et al.
2013; Araya et al. 2016; Demattê et al. 2017; Han et al.
2017). The applications of optical images in soil predic-
tion have been widely reported, but the presence of
clouds affects the quality of these data, and it is fre-
quently a problem for the analysis. Compared to optical
data, SAR ensures the acquisition of images indepen-
dent of weather and daylight, offering the opportunity to
monitor variations of soil consistently. The use of SAR
in the quantitative estimation of soil properties depends
on the sensitivity of backscatter coefficients to changes
in soil moisture and land surface conditions (Kasischke
et al. 1997). For this reason, SAR data are primarily used
for quantitative estimation of soil moisture (e.g., Dubois
et al. 1995; Schuler et al. 2002; Han et al. 2017), and it
has not been commonly used for predicting broader sets
of soil properties such as soil carbon, nitrogen, texture,
and pH.

The applications of SAR data relating to soil
properties have been conducted for bare soil as well
as vegetation-covered soil. Penetration capability of
SAR backscatter from long wavelengths, such as P-
band and L-band SAR datasets, has been demon-
strated in the case of vegetation-covered soil
(Freeman and Durden 1998; Srivastava et al.
2006). However, the penetration capability of short
wavelengths concerning the vegetation cover is re-
stricted to the top layers, such as Sentinel-1 that is a
new C-band SAR satellite launched in April 2014.

There are still some issues about the application of
SAR data in soil prediction in areas with dense
vegetation such as salt marsh. We noted that recent
studies (e.g., Solon et al. 2012; Anne et al. 2014;
Yang et al. 2015; Demattê et al. 2017) had explored
the possible relationship between soil and plant-life
through remote sensing techniques, suggesting that
there is a close relationship between soil and vege-
tation. In our case study, the introduction of Sparti-
na alterniflora Loisel. (S. alterniflora) substantially
influenced plant characteristics such as plant com-
munity and structure (Li et al. 2009). As a result,
some soil chemical properties were significantly
changed in response to S. alterniflora invasion such
as carbon storage, soil pH, and salinity (Yang and
Guo 2018). In addition, they found that some phys-
ical properties may also be altered following
S. alterniflora invasion. For example, developed a
rooting system of S. alterniflora may loosen the soil
through influencing soil physical structure such as
bulk density and porosity. Some studies, such as
Sarti et al. (2017) and Veloso et al. (2017), have
exploited the sensitivity of SAR data to vegetation,
implying that vegetation characteristics can be de-
tected from time-series SAR imagery. These studies
indicate that soil chemical and physical properties
might be indirectly related to SAR data by identify-
ing vegetation. Nevertheless, there is less concern
about the soil-vegetation relationship based on SAR
backscatter data.

Most of previous soil mapping studies focused on the
surface with the soil depth up to 10–30 cm (Minasny
et al. 2013). However, a large amount of uncertainty
exists within soil properties at deeper layers (Batjes
1996; Jobbagy and Jackson 2000). In coastal wetlands,
Yang and Guo (2018) found that S. alterniflora invasion
led to the substantial decline in soil salinity throughout
the 1 m depth soil. Following the short-term invasion of
S. alterniflora, soil properties may be significantly dif-
ferent between different depth layers such as water
content, bulk density, pH, and organic carbon (Feng
et al. 2017). Therefore, detailed soil information in depth
is vital for evaluating the effects of S. alterniflora inva-
sion on soils. It is also useful for accessing ecosystem
services and wetland management because coastal wet-
land soils play an important role on regulating the bio-
geochemical and physical processes such as filtering of
pollutants, water inflow, plant succession, and microbial
function (Berkowitz et al. 2018). Therefore, the
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variability of soil properties in depth should be given
great consideration.

To model the realistic distribution of soil prop-
erties in both vertical and lateral dimensions, some
attempts have been made (e.g., Meersmans et al.
2009; Mishra et al. 2009; Adhikari et al. 2014;
Veronesi et al. 2014; Poggio and Gimona 2014).
These studies combined a variety of spatial predic-
tion models such as geostatistical models, fuzzy
logical models, Cubist, and neural network models.
These models usually have a complex structure
and hard to interpret. Instead, linear models have
lower complexity and higher interpretability and
thus they are still useful in soil prediction. How-
ever, linear models with a large number of vari-
ables (i.e., time-series Sentinel-1 variables used in
this study) may be overfitted and lead to low
prediction accuracy. The least absolute shrinkage
and selection operator (lasso) penalized-regression
model provides an optimal solution to resist
overfitting (Tibshirani 1996). Lasso is a regulari-
zation regression method that estimates linear
model parameters by penalizing model complexity
and setting coefficients of irrelevant to be zero,
which can produce interpretable models with accu-
rate predictions. Recently, lasso has been success-
fully used for soil predictions (e.g., Liddicoat et al.
2015; Nussbaum et al. 2018; Pejović et al. 2018).

In this study, we aimed to evaluate the capacity of
time-series SAR data in indicating spatial patterns of
soil physicochemical properties related to depths in
an invaded ecosystem in the east-central China
coast. In this way, two specific objectives were set
to investigate (1) the correlation between SAR indi-
ces and diverse set of soil properties and (2) SAR-
based 3D models of soil properties for spatial pre-
diction using lasso. We hypothesized that time-series
SAR data could reflect the dynamics of vegetation
canopies that were assumed to indicate soil varia-
tions. In terms of correlations observed between the
deeper soil and SAR data, they should rely on the
interconnection between the upper layer and the
lower layer because of the direct effect of the plant
on soils dominated at the surface layer. This study
was expected to not only expand the existing knowl-
edge about the relationship between SAR data and a
limited set of soil properties but also provide evi-
dence to improve soil monitoring strategy for coastal
wetland conservation.

Materials and methods

Study area

The study site is located on the coastline of east-central
China, covering an area of approximately 17 km2

(Fig. 1). The area is part of the buffer region of the
Jiangsu YanchengWetlandNatural Reserve, Rare Birds,
which is one of the first coastal wetland nature reserves
in China. The climate in the region is characterized by
hot and wet summers and cold winters. Mean annual
temperatures range from 13.7–14.6 °C and mean annual
precipitation is about 1000 mm, and most of the rain
falls from June through September. Plants are quite
homogeneous and are dominated by S. alterniflora,
which is an exotic species introduced into this intertidal
zone since 1980s. S. alterniflora is a rhizomatous pe-
rennial grass with a dense root system and has a rapid
reproduction (Li et al. 2009). Before introducing
S. alterniflora, this was a mudflat region. Soils are
poorly drained and dominantly by Gleyic Solochaks
(IUSS Working Group WRB 2015).

Soil sampling and analysis

To present the soil-vegetation relationship, a soil
sampling strategy was designed based on a space-
for-time substitution method, which has been prov-
en to be an efficient method to represent the
temporal variation of soils in response to
S. alterniflora invasion (Gao et al. 2016; Feng
et al. 2017). Detailed information about the sam-
pling has been documented by Yang and Guo
(2018). Briefly, a stratification of plant settlement
stages was conducted using a time series of
Landsat imagery from the United States Geological
Survey (USGS). Furthermore, a total of 15 sites
were randomly selected along five coastal transects
according to settlement stages. At each location,
soil samples were collected from the three soil
layers 0–30 cm, 30–60 cm, and 60–100 cm. The
sampling method was expected to guarantee corre-
lations between soil and vegetation because a
space-for-time method ensures us to fill gaps in
temporal records using spatial data. Therefore,
samples collected using this method can capture
temporal relationships between soil and vegetation.

Soil properties examined in the study include
bulk density, texture, salinity, pH, organic carbon,
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inorganic carbon, total nitrogen, and C/N ratio.
Soil bulk density (BD, g cm−3) was the dry weight
of soil divided by the total soil volume from a
core sample with a 5-cm diameter and 5-cm depth.
Particle-size fractions were determined by a laser
diffraction particle-size analyzer (LS230, Beckman
Coulter, Fullerton, CA, USA). Soil salt content
(salinity, g kg−1) was measured by the electric
conductivity and the dry evaporation method
(Rhoades and Ingvalson 1971). Soil pH was mea-
sured using a 1:2.5 soil-solution ratio. Soil organic
carbon concentration (SOC, g kg−1) was deter-
mined using the Walkley-Black wet combustion
method (Nelson and Sommers 1982). Soil inorgan-
ic carbon concentration (SIC, g kg−1) was deter-
mined using a modified pressure transducer meth-
od (Sherrod et al. 2002). Soil total nitrogen (TN,
g kg−1) was measured using an automatic Kjeldahl
digestion apparatus (Kjeltec 8400, Foss, Denmark).

Finally, the carbon-to-nitrogen ratio (C/N) was
calculated.

Sentinel-1 imagery and ancillary data

The Sentinel-1 mission is the part of the Global Moni-
toring for Environment and Security (GMES) program
of the European Union (EU) and the European Space
Agency (ESA). They have provided continuous C-band
SAR data to support environmental monitoring applica-
tions, such as land surface change and marine research
(Attema et al. 2007). Sentinel-1 offers global coverage
of the earth surface every 12 days with Sentinel-1A and
6 days combined with Sentinel-1B. A total of 16
Sentinel-1A images from vegetation growing season
(Apr to Oct in 2017) have been acquired from ESA
(freely available from https://scihub.copernicus.eu/),
while Sentinel-1B data was not available across the area.
These ascending images were pre-defined using the

Fig. 1 Location of the study area of a coastal wetland in east-central China. The red points indicate the locations of soil sampling sites
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interferometric wide swath (IW) mode with two polar-
ization channels (VVand VH). The Sentinel-1A scenes
were acquired as Level-1 Ground Range Detected
(GRD) products that consist of focused SAR data that
has been detected, multi-looked, and projected to the
ground range using an Earth ellipsoid model.

SAR data was processed in the Sentinel Toolbox
SNAP (ESA 2017). Calibration was firstly performed
for each image to reduce radiometric errors and to
transfer DN values to backscatter coefficients in dB.
Then, multi-looking with a 3 × 3 window size was ap-
plied to diminish the effect of speckle noise, creating a
spatial resolution of 20-m data. Additionally, the geo-
metric correction was used to correct SAR image geo-
metric distortions using the digital elevation model from
the Shuttle Radar Topography Mission. For additional
information on the land surface, the ratio VH/VV and
VH and VV were used in time-series analysis of vege-
tation for soil estimation. The ratio VH/VV probably
reduces system and environmental errors and might be a
more stable indicator in temporal analysis than VH and
VV (Veloso et al. 2017). Furthermore, multi-temporal
features were extracted from time-series data at three
polarizations, including gradient (grad), maximum
(max), maximum decrement (maxd), maximum incre-
ment (maxi), maximum ratio (maxr), mean (mea), me-
dian (med), minimum (min), minimum ratio (minr),
span difference (spand), span ratio (spanr), and standard
deviation (std).

The time series of SAR backscatters were analyzed
with the support of normalized difference vegetation
index (NDVI) and soil moisture content, which were
obtained from the Google Earth Engine (GEE) platform.
For this study, a product of a Moderate Resolution
Imaging Spectroradiometer (MODIS) combined 8-day
NDVI was used. Surface 10-cm moisture data (kg m−2)
was derived from Global Land Data Assimilation Sys-
tem (GLDAS) datasets at a time scale of 3 h. The
temporal resolution of NDVI and soil moisture were
rescaled by Sentinel-1A data.

Correlation analysis

The logarithmic form of SAR indices and soil properties
were used for statistical analysis. Pearson correlation
analysis was used to analyze the relationships between
soil properties and SAR backscatters and temporal fea-
tures. A significant correlation coefficient (r) was con-
sidered at the P < 0.05 level.

3D modeling of soil properties

For prediction purposes, we used the least absolute
shrinkage and selection operator (lasso) penalized-
regression model to build 3D models that use SAR
indices and depth as covariates. The interactions be-
tween SAR indices and depth were also included in
3D models, assuming that the effect of predictors varies
with depth. Lasso has the capacity to select the optimal
set of predictors from a large number of variables and
improve prediction accuracy through shrinking coeffi-
cient values. Non-important variables with coefficients
shrunken to zero would be excluded from the model.
The strength of penalty in lasso is controlled by a
regularization parameter λ. We used the R package
glmnet (R Core Team 2017; Friedman et al. 2010) to
perform lasso prediction models. For each soil property,
the optimal λ value was determined by performing a
built-in cross-validation option. The optimal regression
coefficients corresponded to the least complex model
with error within one standard error of the minimum
cross-validated mean squared error (Hastie et al. 2009).

The model performance was evaluated by leave-one-
out cross-validation (LOOCV) where one sample in
each depth layer was randomly selected for each
LOOCV. RPD (a ratio of performance to deviation)
was used to evaluate the model fit. Here, a RPD value
larger than one was used to imply that there is a model
improvement.

Results and discussion

Soil physicochemical characteristics

The mean and coefficient of variation (CV) values of
BD, clay, sand, silt, C/N, pH, salinity, SIC, SOC, and
TN are presented in Table 1. The results show that soil
bulk density did not change much with years under the
invasion of S. alterniflora with small CV values. The
variability of BD in the three soil layers was slight. Bulk
density in the coastal region was mainly determined by
increasing seaward rates of mineral sedimentation and
organic matter accumulation from vegetation (Wang
et al. 2016a, b). S. alterniflora had a more significant
influence on sand contents than clay and silt contents
with CV value of 51.89% at 0–100 cm. Most of the soil
textures were silt loams in the top 1-m depth.
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The mean soil pH ranged from 8.55 to 8.66 for the
three layers, and the spatial variation was very minimal
(CV, 1.73–3.51%). Due to the plant succession in re-
ducing tidal flooding, soil salt content decreased as the
growth of salt marsh (Gedan et al. 2009). Soil salinity
contents were similar for the three layers (Table 1), but
the spatial variation was moderate with CV values fell
within the 36.01–48.78% range. Soils in the entire area
had low SOC and TN concentration levels. The mean
SOC and TN concentrations decreased as depth in-
creased as expected. Concentrations of SOC and TN
were most variable in 60–100 cm, CV values in the top
100 cm increased with soil depth to about 37.59% for
SOC and 33.33% for TN. The variability of SOC and
TN was a result of the enhanced ability of C and N
accumulation by S. alterniflora invasion (Yang et al.
2017). The C/N and SIC presented a low degree of
spatial variability in lateral and vertical directions.

Time-series characteristics of SAR backscatter

The time series of SAR backscatters (VH, VV, and
VH/VV) were presented in Fig. 2. It can be ob-
served that some correlations exist between SAR
backscatters and the corresponding time series of
NDVI and soil moisture at a glance, although the
profiles of VH, VV, and VH/VV showed complex
variations. It seems that VH/VV was more sensitiv-
ity to S. alterniflora than VH and VV because there
is a good agreement between VH/VV and NDVI

after the vegetation returns to green (from 27 Jun
to 28 Aug).

At the beginning stage of the growing season
(from 04 Apr to 27 Jun), although VH/VV presented
complex variations, the profile of VH/VV can be
correlated to the variation of NDVI. For example, a
slight increase of NDVI was observed from 16 Apr to
28 Apr, which was followed by the increasing VH/
VV backscatter. Then, a small variation of NDVI was
presented in the profile of VH/VV until the beginning
of June. The observed pattern variations of VH and
VV backscatters and their poor relationships to
NDVI can be explained by the effects of soil mois-
ture. A stable correlation between NDVI and VH/VV
backscatters was observed from the end of June to the
end of August. As a result of the increasing chloro-
phyll, the observed relationship was related to the
sensitivity of VH/VV to fresh biomass (Veloso et al.
2017). At this stage, a decrease of VH and VV
backscatters was observed until the beginning of
August. It is probably because VH and VV backscat-
ters were attenuated by the increasing volume frac-
tion of vegetation (Brown et al. 2003; Jia et al. 2013).
These findings illustrated that there was a potential of
Sentinel-1A data to capture the temporal behavior of
coastal vegetation. However, the temporal profiles of
VH/VV, VH, and VV were not similar, and the ability
to indicate vegetation variations of three polariza-
tions was influenced by the contribution from the
canopy and ground, such as soil moisture content
and vertical structure of the plant.

Table 1 Mean and coefficient of variation (CV) of soil properties

Soil attributes 0–30 cm 30–60 cm 60–100 cm 0–100 cm

Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)

BD (g cm−3) 1.25 8.80 1.25 17.60 1.28 13.28 1.26 13.49

Clay (%) 12.53 25.78 14.19 22.41 12.33 26.76 13.02 25.12

Sand (%) 19.72 50.15 15.22 46.58 21.32 53.05 18.75 51.89

Silt (%) 67.75 10.94 70.59 6.26 66.35 12.84 68.23 10.36

C/N 12.26 14.19 13.44 17.11 11.07 13.73 12.26 16.97

pH 8.55 3.51 8.55 2.22 8.66 1.73 8.57 2.57

Salinity (g kg−1) 10.24 48.24 10.66 48.78 9.22 36.01 10.04 44.82

SIC (g kg−1) 11.40 15.96 11.96 12.88 11.36 10.92 11.57 13.31

SOC (g kg−1) 7.37 18.72 6.38 26.02 4.39 37.59 6.05 32.73

TN (g kg−1) 0.61 18.03 0.48 25.00 0.39 33.33 0.49 30.61
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Spatial-temporal correlations between soil properties
and SAR indices

Some significant (P < 0.05) relationships between soil
properties and SAR backscatters (VH/VV, VH, and VV)
and multi-temporal features were observed (Figs. 3 and
4). The r values related to SAR backscatters presented
considerably large variations during a growing season,
indicating the unstable relationships between soil and
SAR backscatters. Most of their differences can be

explained by fluctuations in SAR backscatters. As
discussed before, VH/VV, VH, and VV were mostly
affected by variations in the soil and vegetation. For
example, the dynamics of soil moisture content driven
by rainfall and tidal movements may cause the increase
of VH and VV backscatters (Fig. 2). Although statistical
relationships between soil properties and SAR backscat-
ters changed with time, there was a significant correla-
tion at the 0.05 level for all soil properties, except SOC
in 60–100 cm. There were significant correlations
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betweenVH/VV backscatter and all soil properties in 0–
30 and 30–60 cm, and BD, sand, silt, clay, SIC, and
salinity in 60–100 cm, whereas there were fewer signif-
icant correlations relating VH and VV backscatters with
soil properties. It indicates that VH/VV had a more

powerful capability in indicating the spatial variation
of soil than VH and VV, due to more sensitivity to
vegetation. We observed that NDVI and VH/VV pro-
files in good agreement from 27 Jun to 28 Aug. This
finding highlights the potential of VH/VV for plant
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biomass detection. In general, VH/VV is likely to be
linked to fresh biomass. Note that VH/VV could be used
for estimating biophysical parameters and biomass as-
similation due to the good agreement between NDVI
and VH/VV, as found in Veloso et al. (2017).

During the growing season, characteristics of signif-
icant correlations between SAR backscatters and soil
properties were observed, for similar soil properties:
SOC and TN (VH/VV on 28 Apr and 01 Oct SOC for
the top 30 cm, VH/VVand VH on 10 May and 22 May
for 30–60 cm); also, pH and salinity (VH/VVon 01 Oct
for 0–30 cm, VH on 28Apr for 30–100 cm, and VH/VV
on 14Aug for 30–60 cm); lastly, soil texture (VH/VVon
16 Apr for the top 30 cm, VH on 15 Jun for 30–60 cm,
andVH/VVon 27 Jun and VVon 09 Jul for 60–100 cm).
These findings indicate that SAR backscatters can be
associated with soil physicochemical properties related
to soil depth. Because soil properties are indicators of
soil functions and because a given soil function can be
represented by different soil properties, some soil prop-
erties may share similar features captured by SAR data.
For example, SOC and TN indicate functions of nutrient
cycling and storage, and soil particles are the primary
mineral forming blocks of soil. Soil pH and salinity are
indicators representing functions of filtering and buffer-
ing. These results bring to light the valuable contribution
of SAR indices for assessing soil functions.

Similar to the relationships between SAR backscat-
ters and soil properties, variations of r values relating
temporal features with soil properties were observed.
However, there were less significant correlations be-
tween soil properties and temporal features than back-
scatters, indicating temporal features had a weaker ca-
pability in explaining spatial variations of soil than the
backscatter measurements. For example, no significant
correlations were observed for clay, sand, silt, salinity,
and SIC in the top 30 cm. Temporal features, which
were derived from VH/VV backscatters, were more
sensitive to spatial variations of soil than that of VH
and VV backscatters, confirming that VH/VV in this
context was more useful comparing to VH and VV.

Modeling soil properties

Figure 5 presents the important predictors identified by
3D lasso models. A large number of variables were not
used at all, indicating that the size of the predictors was
efficiently reduced by lasso models. The regularization
effect of lasso is able to not only improve prediction

accuracy but also improve the model interpretability
(Tibshirani et al. 2015). For this study, the important
covariates applied in the models were different for
predicting soil properties. For example, the most impor-
tant associations with BD prediction were found with
BVHmaxr,^ BVVmaxi,^ BVH16,^ BVH/VV05,^ and the
interaction between BVH/VV13^ and depth, while SOC
was predicted from four predictors including BVVminr,^
BVVmed,^ BVHmea,^ and the interaction between
BVV04^ and depth. The diversity set of predictors can
be attributed to the sensitivity of soil properties to SAR
indices, which was indicated by the varying correlations
between soil properties and SAR indices (as discussed
above). Therefore, it is expected to examine temporal
characteristics of SAR data, since more powerful indica-
tions of soil properties can be provided by time-series
images other than a single phase.

Figure 6 presents RPD values of LOOCV results.
The results showed that the overall prediction accuracy
in the upper 1-m depth is permissible, with an average
RPD value of 0.99. This finding demonstrated that in
coastal wetlands, soil physicochemical properties can be
successfully modeled using time-series SAR informa-
tion, although there were temporal variations of the
remote sensing signal. However, these models varied
substantially in regarding RPD values, indicating the
predictive capacity of SAR imagery differed among soil
attributes. The observed indicative capacity of SAR data
for soil physical properties had been found in previous
studies (e.g., Ulaby et al. 1978; Santanello et al. 2007;
Han et al. 2017). So far, few studies have been conduct-
ed for predicting soil chemical properties using SAR
data, primarily using time-series characteristics of veg-
etation from SAR data. The successful applications of
SAR data in relating soil chemical properties illustrate
the potential of time-series SAR data for the retrieval of
soil chemical properties.

Compared with SAR data, more effects have been
made to predict soil properties using imaging spectros-
copy data. In addition, previous studies mainly focused
on a limited number of soil properties such as soil
salinity, water content, and organic matter. For
example, Zhang et al. (2011) found that soil salinity
can be indirectly predicted using vegetation indices
derived from hyperspectral data. Our study demonstrat-
ed that a variety set of soil properties can be indirectly
predicted in a salt marsh environment using time-series
Sentinel-1 imagery. Typically, soil properties could be
associated with vegetation canopy detected from
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satellite remote sensing data in coastal wetlands envi-
ronments, because soils are strongly influenced by plant
species that can be captured from remote sensing data
(Anne et al. 2014). Zhang et al. (2019) indirectly quan-
tified tidal marsh soil properties linked to plant patterns
using imaging spectroscopy with acceptable prediction
accuracy.

Our results also highlighted that models vary with the
difference in predictive accuracy. As expected, higher
accuracy can be achieved for soil properties related to
nutrient and organic carbon storage. These soil proper-
ties were observed to be substantially influenced by
S. alterniflora invasion. In other words, predictive ac-
curacy may somewhat depend on the temporal variabil-
ity of soil properties. Compared with soil chemical
properties, physical properties may change slowly in
response to S. alterniflora invasion (Yang and Guo
2018). In coastal wetlands of the East China Sea,
S. alterniflora invasion substantially influenced vegeta-
tion characteristics such as the density, community, and
structure (Li et al. 2009). In response, soil properties are
thought to change due to the altered biogeochemical and
physical processes induced by S. alterniflora invasion.
For example, increasing above- and below-ground bio-
mass affected the quantity and quality of C input in soils
which is likely to have significant impacts on nutrient
and carbon storage (Gao et al. 2016). Yang and Guo
(2018) investigated the impacts of S. alterniflora on a
set of soil physicochemical properties related to soil
depth within 17-year invasion. They found that SOC
storage, soil pH, and soil salinity were significantly
correlated with the age of S. alterniflora, while soil
physical properties were not significantly altered (i.e.,
soil texture, bulk density). Recent studies indicated that
S. alterniflora invasion presents greater influence on soil
biogeochemical services such as nutrient cycling and C
sequestration (Wang et al. 2016a). As a result, soil
changes in chemical properties are likely to be predicted
with higher accuracy than soil physical properties.

Implications

In this study, we have focused on the question of BDoes
time-series Sentinel-1 data can indicate spatial variation
of soil physicochemical properties in relation to depths
through accounting variation of vegetation canopy?^
Base on statistical analyses of relationships between
Sentinel-1 data and soil properties, we can pose pro-
spective attitudes toward soil prediction through SAR

data in coastal wetlands with natural vegetation. Vege-
tation is an important factor that influences soil-forming
processes, and thus it is theorized to regulate spatial
variability of soil properties (Jenny 1941). Especially
in invaded coastal ecosystems, invasion-related impacts
to soil, for instance, carbon sequestration and saliniza-
tion, are significant due to the critical influence nonna-
tive species have on soil functions (Yang and Guo
2018). For a variety of reasons, including coastal sus-
tainable management and soil protection, new strategies
to investigate soil spatial variations are quite necessary.
The findings of this study showed considerable correla-
tions between SAR indices and a varied set of soil
properties during a growing season, although there were
weak and fluctuant correlations. Furthermore, the per-
missible prediction accuracy derived from 3D lasso
models showed that time-series Sentinel-1 data has the
capacity to indicate the variation of soil properties in
lateral and vertical dimensions. The achievement of this
study provided an important insight into the potential
utility of SAR data for predicting a diverse set of soil
properties from vegetation-covered soils. Due to the
increasing availability of remote sensing data in high
spatial-temporal resolution, soil prediction may become
more readily accessible. Further studies are needed to
focus on improving prediction accuracy using SAR
data.

Conclusions

This study presents an assessment of temporal
features of vegetation for estimating soil physico-
chemical properties using Sentinel-1 data in coastal
wetlands. Our analysis showed that soil physico-
chemical properties can be modeled successfully
with time-series SAR information. The analysis
of time-series characteristics of three polarization
channels presented that time-series Sentinel-1 data
can capture temporal characteristics of vegetation,
and VH/VV is more sensitivity to the vegetation
growth than VH and VV. The understanding of
temporal behaviors of SAR backscatters allows
relating SAR information with soil properties. Sig-
nificant correlations between SAR indices and soil
properties related to soil depth can be observed
during the growing season. The soil-vegetation
relationship captured by time-series SAR data
was beneficial to predict soil properties, especially
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for soil chemical properties. Results also show that
the application of the Sentinel-1 time-series data
provides a practical solution for soil monitoring in
coastal wetlands. We recommended using Sentinel-
1-like data to predict soil physicochemical proper-
ties, regarding the advantage of the dense temporal
information.
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