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Abstract The aim of the study is to create a suitable
map for wind energy projects in a rural area. The pri-
mary goal here is to show a methodology using auto-
matic object extraction of the target classes of buildings,
vegetation, and ground. The secondary goal is to iden-
tify the potential effects for wind turbine sites based on
four criteria: Wind speed, Slope, Building, and Vegeta-
tion using the fuzzy analytical hierarchy process
(FAHP). This paper discusses two important situations
for wind energy projects. The first strategy is to just
determine the best suitable site locations of wind tur-
bines, while the second strategy determines the locations
of wind turbines with minimal negative effects on the
rural area. The proposed approach is tested using the
data obtained from a multi-sensor system in Evrencik,
Turkey. In preliminary phases of renewable energy pro-
jects, successful results are dependent on evaluating the
potential site’s suitability with criteria such as social,
environmental, physical, and economic conditions. Fur-
thermore, an accuracy analysis is performed on the
automatically extracted target classes for the study area,
yielding a value of 89% in the remote sensing section of
the study. Moreover, for the GIS section of the study,

suitable and unsuitable areas are identified, and the
suitability levels of the remaining areas are determined
for the two strategies. According to the results, 11% of
the areas are found to have high, moderate, and low
suitability levels, and 89% are unsuitable for the first
strategy, whereas these rates are, respectively, 2% and
98% for the second strategy.
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Introduction

Energy is the main building block of all activities that
are indispensable parts of modern life, especially for
industry, technology, and communication. In meeting
energy needs, it is highly important to preserve the
livability of the planet, achieve sustainability, and
find and improve energy resources that provide re-
newability. Nevertheless, the constantly increasing
need for energy, limited, and exhaustible resources
have led to searching and developing alternative en-
ergy resources that are sustainable and have high
energy efficiency and low environmental impact.
Wind-based energy production is among the newer
and fast-developing types of renewable energy. Wind
is an energy resource that is clean, does not lead to
global warming, is renewable, and does not harm the
environment or humans (Aydin et al. 2009). Easy
installation, technological improvability and practi-
cality, decreasing cost, and its natural occurrence in
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the atmosphere are among the reasons for this fast
development and predomination of wind energy.

Scientists have conducted studies of wind energy
usage, wind tribune site selection (Cicek 2015;
Arcidiacono 2012), and suitability maps (Al-
Shabeeb et al. 2016; Al-Ruzouq et al. 2018). Eval-
uations of economic, social, environmental, and
physical criteria with certain weights and determin-
ing suitable and unsuitable areas based on this with
multiple criteria have gained importance. There are
two important steps in forming suitability maps.
The first step is accurate collection of data by
remote sensing and forming the right classes for
the analysis of criteria. Especially regarding criteria
for determining social and environmental effects, it
is highly important to derive residential areas,
buildings, and green areas. For this reason, the
geographic information system (GIS) stage, which
is the second step of forming suitability maps, is
put in action at this point. Analyses and evaluations
that are achieved by accurate and reliable data in
the GIS environment are transformed into informa-
tion, and successful results are ensured (Issa and
Saleous 2018).

With the rapid growth of the world’s population,
unregulated urbanization, land use conflicts, and re-
source exploitation, the need of local and national gov-
ernments for data related to man-made and non-man-
made objects is increasing day-by-day. In particular,
extraction of objects such as buildings, vegetation, and
ground is important in making critical decisions on
planning and development in the governance of urban
and rural regions within the shortest time and in the most
accurate way. In recent years, the data obtained from a
single sensor system such as from aerial photos using
the photogrammetric method, RADAR, SAR, and sat-
ellite images, point clouds, and intensity data provided
by light detection and ranging (LiDAR) scanning have
been widely used in object extraction studies (Mao et al.
2009; García et al. 2011; Matikainen et al. 2017). The
fusion method has begun to be used to eliminate the
errors caused by the use of such data. A review of the
studies by Haala and Brenner (1999), Sohn and
Dowman (2007), Lee et al. (2008), Demir et al.
(2009), Awrangjeb et al. (2010), Beger et al. (2011),
Nex and Rinaudo (2011), and Moussa and El-Sheimy
(2012) showed that they performed object extraction by
the use of fusion of the datasets. Yet, object extraction
by the use of the fusion method carries forward time-

and resolution-related errors. Such errors negatively
affect the accuracy of analyses in extracting objects such
as buildings, vegetation, and ground.

With the advancement of technology, multi-sensor
systems that are called LiDAR systems consisting of a
LiDAR, digital camera, and Global Positioning System/
Inertial Measurement Unit (GPS/IMU), where all of
these are placed on the same platform, have emerged.
A LiDAR system can eliminate the disadvantages of
other, single sensor systems, particularly in terms of
object extraction, playing a significant role in correcting
errors related to data integration (time and different
resolution). Besides, the data collected by the use of a
LiDAR system have made the development of automat-
ic and semi-automatic object capturing methods neces-
sary (Baltsavias 1999; Rottensteiner et al. 2005; Lafarge
et al. 2008). A review of the literature showed that
automatic object extraction (Mao et al. 2009; Haala
and Brenner 1999; Wegner et al. 2011; Benz et al.
2004; Du et al. 2017; Song et al. 2015; Ramiya et al.
2017) is a common topic of research. Gruen (2008),
Kwak et al. (2012), and Gerke and Xiao (2014) pro-
posed LiDAR systems to solve the current problems,
emphasizing the advantages of working with multi-
sensor system data. The data collected by this method
are used for the purpose of solving the problems expe-
rienced in automatic object extraction and in the im-
provement of the accuracy of the target classes
(Rottensteiner et al. 2005).

The object-oriented, rule-based classification method
is preferred to eliminate the problem of class confusion
in object extraction. In this method, target classes are
first developed by establishing rules, and then accuracy
values close to the reference values are produced with a
class improvement process. The segmentation and clas-
sification steps of the object-based classification method
are intended for easier identification of the differences
among objects. Shirowzhan and Trinder (2017) com-
pared the object-based classification method to support
vector machine algorithms and established that classifi-
cation by the use of support vector machines results in
confusion of road and building classes, while a success-
ful classification is achievable by using an object-based
classification. Mongus et al. (2014) used a multi-scale
data decomposition method to extract planar areas from
LiDAR data. Awrangjeb et al. (2013) used a region
growing method to eliminate class confusion in planar
areas using LiDAR data. Awrangjeb et al. (2014) devel-
oped a rule-based object extraction approach based on
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the long border line of the building to eliminate the
classes confused with the building’s borders.

In wind energy projects, the second important step
in making the correct suitable place selection,
forming the suitability map and minimizing negative
effects on the environment is GIS usage. Determining
the locations for energy projects is dependent on
different technical, economic, and environmental
criteria. In the analysis of these criteria by GIS,
various multi-criteria decision-making (MCDM)
techniques have been used so far. In analyses that
are carried out with decision support systems, the
methods of analytic hierarchy process (AHP) and
fuzzy analytic hierarchy process (FAHP) are the most
frequently preferred ones. AHP is a method based on
pairwise comparisons that is used for prioritizing
criteria in cases where there are multiple criteria
(Saaty and Vargas 2012). In cases where there is no
certainty, AHP falls short. As the superiority of
criteria over each other does not pose certainty, it is
possible to reach the correct results by using a FAHP.
The criteria are weighed by Saaty’s 9-point relative
importance weighting scale (Noorollahi et al. 2016).

Scientists have conducted GIS-supported studies
in terms of topics such as suitable location analysis
and suitability maps in wind energy projects.
Ramirez-Rosado et al. (2008) designed a GIS-based
decision support system for selection of locations for
wind farms. While forming this system, people in
different groups who had different preferences were
considered. Accordingly, criterion maps were formed
by the criterion values that were determined for each
group of people. Tolerance maps that showed the
most preferred locations for each group were created.
With the decision support system, the most suitable
location that may be accepted or tolerated by each
group was determined. Yue and Yang (2009) assessed
wind energy resources in Taiwan with the help of
GIS. Their findings showed that open-air wind ener-
gy resources, which may form 94 to 98% of the total
of wind resources in Taiwan, had an important role.
Noorollahi et al. (2016) firstly extracted a map of
unsuitable regions. Then, to identify the suitability
of different regions, they defined criteria. They also
determined the relative weights of the defined criteria
and sub-criteria applied by the FAHP technique.

This paper used 3D point clouds and digital images
that were collected through a multi-sensor system
formed by a LiDAR, digital camera, and GPS/IMU

placed on the same platform instead of a single sensor
system. A different approach was utilized with these
data sets by developing a rule set, using an object-
oriented, rule-based classification method for automatic
object extraction for the first step of the determination of
a suitable map for wind energy. After the data were
made usable for GIS, the FAHP method was used, and
analyses were carried out by determining 4 criteria as
Distance from building, Distance from vegetation,
Slope, and Wind speed. These criteria were selected
based on the most prevalent usage in the literature (Al-
Shabeeb et al. 2016; Noorollahi et al. 2016; Effat 2017;
Ayodele et al. 2018). These criteria were weighed by
using two different strategies. Firstly, the weights were
assigned by considering only the most suitable locations
for wind turbines. In the second strategy, the weights
were assigned by considering the aim to minimize the
negative effects of wind turbines on the environment,
especially residential areas. The suitability maps that
were obtained as a result of different weights were for
these two different purposes.

The remainder of this paper is organized as follows.
A discussion of the methodology is presented in Sec. 2,
followed by the characteristics of the study area and the
dataset obtained by the multi-sensor system in Sec. 3.
The results of the experiment are reported along with an
accuracy assessment of the object extraction results and
suitable map analyses in the BResults and discussion^
section. The conclusions are stated in the BConclusion^
section.

Methodology

This study used remote sensing data and GIS analysis
for a suitability map for wind energy projects. Data
collection and creation of input layers from target clas-
ses are included in the first section of this study. Deter-
mination of the evaluation criteria and weights, analysis,
and decision-making with a GIS model is presented in
the second section of the study.

In the remote sensing section of the study, an object-
based image analysis method was used. This method
provides a system to capture objects such as buildings
and vegetation by exploiting the distinctive properties of
the images that are used, including shape, color, and
texture. The segmentation method in object-based clas-
sification makes it possible to group target image classes
in the same segments, while classification, which is the

Environ Monit Assess (2019) 191: 459 Page 3 of 17 459



second step, allows organization of objects into classes.
In this approach, segments representing objects are an-
alyzed by the use of certain values, including those for
shape, texture, adjacency, morphological relationships,
surface area, height, distance, geometric figure, standard
deviation, and density. After the segmentation process,
objects are assigned to target classes. The classes that are
generated are named as Building, Vegetation (forest area
and green area defined as vegetation), Ground and Oth-
er, which also included undesired objects.

In the remote sensing section of the proposed meth-
od, automatic extraction of target classes is implemented
in 3 steps (Fig. 1). In the first step, the ortho-image and
LiDAR point cloud are processed, ready for use. In the
second step, a rule set is developed with the analysis of
segmentation, classification, and accuracy. In order to
prevent misclassification, rule sets are developed for

automatic object extraction. The multiple properties of
each data point, including shape, texture, adjacency,
morphological relationships, surface area, height, dis-
tance, geometric figure, standard deviation, and density
are analyzed, and this process continues until proper
values are obtained. The results providing proper values
are placed as a separate rule in the rule set. Thus,
whether or not the optimal rules that are produced may
be applied in the study area could be tested. In this part,
3 different analyses are performed to develop a rule set.
Firstly, the segmentation types of Bmultiresolution,^
Bcontrast filter,^ and Bcontrast split,^which are the most
widely used segmentation analyses, are analyzed to
determine the optimum parameters and best segmenta-
tion type. In the second part, the optimum parameters
and classification types are determined using the fuzzy
logic-based classification analyses of Blarger than

Building  Vegetation Other

Objects

Ground 

 Rule Set Analysis 

Ortho-image

Larger than Membership Function 

Approximate Gaussian Membership 

Function 

Smaller than Membership Function 

Multiresolution Segmentation 

Contrast Filter Segmentation 

Contrast Split Segmentation 

LiDAR 

Initial 

Final 

LiDAR System Data

Segmentation 
Analyses 

Classification 
Analyses 

Accuracy Analyses 

Target Classes 

Fig. 1 Remote sensing step:
automatic object extraction using
LiDAR system data
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membership function,^ Bapproximate Gaussian mem-
bership function,^ and smaller than membership
function^, which are the most widely used methods in
segmentation analyses. The fuzzy logic method is an
important decision-making tool in remote sensing appli-
cations that offers the ability to define uncertainties with
a mathematical expression. In fuzzy classification, ob-
jects may be defined to have fuzzy memberships to
separate the two classes with high accuracy. In the last
part of the rule set development, an accuracy analysis is
performed. Accuracy analysis, accompanied by sample
area selection and Kappa analysis (Congalton and Green
2009), is among the best-known methods in the litera-
ture. Therefore, sample area selection (error matrix
based on test and training area (TTA) mask) and Kappa
analysis are performed for accuracy analyses. Addition-
ally, the analyses of buildings before improvement with
the rule set are compared with those after improvement
with the rule set to determine the effects of the rule set on
accuracy. In the last step, target classes are extracted
using an original rule set.

In the GIS section of the proposedmethod, an AHP is
utilized with fuzzy for creating a WES (wind energy
system) suitability map. As shown in Fig. 2, the pro-
posed methods are as follows: determine criteria, create
AHP matrix fuzzification, determine criterion weights
with FAHP, analysis, and decisions. The fuzzy analytic
hierarchy process is used for spatial Multi-criteria eval-
uation (SMC). The analytic hierarchy process is based
upon the construction of a series of pairwise comparison

matrices (PCMs) that are utilized by comparing all the
criteria with one another. This method was proposed for
the first time by Saaty (1980). The priority ranking of
the PCMs is determined as seen in Table 1.

The fuzzy analytic hierarchy process emerged as a
result of the integration of fuzzy theory into the
analytic hierarchy process. As AHP does not cover
uncertainties for personal decisions, this method was
developed by utilizing the fuzzy logic approach. In
order to use fuzzy theory, first, pairwise comparisons
are expressed with linguistic terms as indicated in
Table 2. Afterwards, the linguistic variables are trans-
formed into triangular fuzzy numbers (TFN)
(Noorollahi et al. 2016).

The pairwise contribution matrix for the fuzzy ap-

proach is shown in Eq. (1). Hereby, fdki j, kth decision-

maker’s preference through jth criterion-ith criterion
indicates fuzzy triangular numbers.

fAk ¼

gdk1 1
gdk1 2 … gdk1 n

gdk2 1 … … gdk2 n
… … … …
gdkn 1

gdkn 2 … gdkn n

2

6

6

6

4

3

7

7

7

5

ð1Þ

If there are multiple decision-makers, each decision-

maker’s preferences (fdki jÞ are averaged and fdi j calcu-

lated as in Eq. (2).

fdi j ¼
∑K

k¼1
fdki j

K
ð2Þ

Based on the averaged preferences, the pairwise con-
tribution matrix is updated as in Eq. (3).

~A ¼
gd1 1 …
⋮
gdn 1

⋱
…

gd1 n
⋮
gdn n

2

4

3

5 ð3Þ

According to Buckley (1985), the geometric mean
fuzzy comparison values for each criterion are calculat-
ed as in Eq. (4). Here, eri represents the triangular values.

eri ¼ ∏n
j¼1

fdi j

� �1=n
; i ¼ 1; 2;…; n ð4Þ

Avector is found by calculating all eri values. The 1st
power of the total vector is found. For incrementation,
FTN is changed. To find the fuzzy weight of a criterion
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Fig. 2 GIS Step: WES suitability map workflow
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ewið Þ, all eri values are multiplied by this inverse vector.
The fuzzy weights of each criterion are calculated as in
Eq. (5).

ewi ¼ eri⊗ er1⨁er1⨁⋯⨁ern
� �−1

¼ lwi;mwi; uwið Þ
ð5Þ

As ewiis still FTN, there is a need for de-fuzzification
by using Eq. (6) with the center of area method proposed
by Chou and Chang (2008).

Mi ¼ lwi þ mwi þ uwi

3
ð6Þ

Mi is not a fuzzy number. So, it must be normalized
as in Eq. (7).

Ni ¼ Mi

∑n
i¼1Mi

ð7Þ

After finding the normalized weights of each criteri-
on and its alternatives, scores are calculated for each
alternative by multiplying each alternative weight with
the relevant criteria (Akay et al. 2018). Accordingly, the
option with the highest score is recommended to the
decision-maker (Ayhan 2013).

Study area and data set

The data set used for testing the automatic extraction
approach was obtained simultaneously using the multi-
sensor system. The data set was captured by an Optech
ALTM Gemini and Rollei P45 digital camera on a
Cessna-type, fixed-wing plane over the region of
Evrencik, Kırklareli, Turkey (Fig. 3). Study area is
located on 41° 39′ 6″N latitude, 27° 42′ 47″E longitude.
Selection of the Evrencik rural area as the study area was
due to the fact that the area of the province is a part of the
Evrencik Wind Power Plant Project. For this reason,
evaluating the potential sites before the project is impor-
tant. The test data consisted of LiDAR data and an
ortho-image. The LiDAR data point clouds (X, Y, Z)
with 5.6 points per m2 and the ortho-image with a
GSD of 0.1 m were produced using the data set from
the multi-sensor system (Fig. 4). GPS/IMU technology
was integrated into the LiDAR for dataset pre-process-
ing. GPS provided the coordinates of the LiDAR, while
IMU provided the direction of the pulse. Detailed infor-
mation about the multi-sensor system and the collected
data is given in Table 3.

Results and discussion

Analysis of target classes for the study area

In this study, different data layers were utilized to deter-
mine the target classes (Table 4). Firstly, Vegetation
class analyses were conducted in the study area. To
determine the Vegetation class, the ortho-image was
used by assigning a band weight of 1 to it. Contrast

Table 2 Linguistic
terms and the corre-
sponding triangular
fuzzy numbers

TFN Definition

1,1,1 Equal importance

1,3,5 Moderate importance

3.5.7 Strong importance

5,7,9 Very strong importance

7,9,11 Extreme importance

Table 1 Determination of priority of PCMs (Saaty 1980)

Priority Definition Explanation

1 Equal importance Two criteria equally important for the decision-making

3 Moderate importance One criterion slightly more important than other

5 Strong importance One criterion strongly more important than other

7 Very Strong importance One criterion very strongly more important than other

9 Extreme importance One criterion has highest possible importance in a pair
comparison

2,4,6,8 Intermediate values When compromise is needed

Reciprocals Values for inverse conversion If activity i has one of the above numbers assigned to
it when compared with activity j, then j has the
reciprocal value when compared with i
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difference and multi-resolution segmentation analyses
were used to determine which segmentationmethodwas
suitable for use on the ortho-image. In the first step,
contrast difference segmentation analyses were per-
formed for the Vegetation class. In the second step,
multi-resolution segmentation analyses were conducted
from the segmentation methods. As a result of the

analyses, it was found that the segmentation method
and parameters optimal for designation of a Vegetation
class were those given by the multi-resolution segmen-
tation method (scale 100; shape 0.5; compactness 0.5).
These analyses showed that the objects representing
vegetation, particularly trees and plants, could be cap-
tured with these parameters properly and in detail.

Fig. 3 Study area

Fig. 4 Study area datasets. a
Ortho-image. b DSM

Environ Monit Assess (2019) 191: 459 Page 7 of 17 459



For classification, fuzzy logic with a normal distribu-
tion was chosen as the classification method as the
reflectance values of the objects related to buildings,
vegetation, ground, etc. were approximate values. This
was aimed to distinguish the objects that were very close
to each other but belonged to different classes. Here,
threshold value analyses were carried out for the param-
eters to be used for classification analysis and performed
by normal distributions using the fuzzy logic method.
LiDAR reflectance properties were used to identify the
Vegetation class. The ratio of the total of all pulse returns
to the last pulse returns was used. The threshold analy-
ses (all returns/last returns > 1.05, all returns/last returns
> 1.1, all returns/last returns > 1.15, all returns/last
returns > 1.2) revealed that a threshold parameter of >
1.15 was the optimal value for the classification analysis
to be performed by normal distribution using the fuzzy
logic method.

Within the scope of this project, the ground surface
and the objects that were non-ground surfaces were
discriminated to generate the Ground class. As LiDAR
included the heights of objects, slope was used as an
analytical parameter to discriminate the Ground class
and buildings. For this reason, the slope image was
obtained from the study carried out by Zevenbergen
and Thorne (1987). This analysis method was based
on the slope differences of objects. For slope analysis,
contrast split segmentation was applied using the slope
image. The analyses revealed class overlap as the reflec-
tance values of the objects of the Ground and Building
classes were very close. In order to solve this problem, it
was considered appropriate to perform the segmentation
in two stages. This made it possible to have more

homogenous segments and more accurately capture
the objects of the Ground and Building classes. For the
first segmentation stage, slope threshold analyses (25 <
threshold < 100, 10 < threshold < 50, 0 < threshold < 70)
were performed using the slope image. Afterwards, the
slope image was also used to perform analyses to deter-
mine the values for the second stage of segmentation (25
< threshold < 100, 10 < threshold < 50, 12 ≤ threshold ≤
24). Avalue of 0 < threshold < 70 was determined to be
optimal for the first stage of the contrast split segmen-
tation, while a value of 12 ≤ threshold ≤ 24 was found
optimal for the second stage.

Following the segmentation, analyses were per-
formed to decide on the classification method for the
Building and Ground classes. Fuzzy logic with a normal
distribution was chosen as the classification method as
the reflectance values of the objects of the Building and
Ground classes were quite close. Thus, the objects be-
longing to the Building and Ground classes could be
discriminated. Following the determination of the clas-
sificationmethod, slope analyses were conducted for the
parameters to be used for classification (slope < = 2.5,
2.5 < slope < 5, 2.6 < slope < 12). The slope image for
the Ground class showed that a threshold value of 2.6 <
slope < 12 was optimal for identification of the objects
of the Ground class. A sub-class of BBuilding Border^
was defined using the slope image to avoid the overlap
of the Ground class and Building Borders. In the anal-
yses performed for the parameters in the Building Bor-
der sub-class (slope ≥ 50, slope ≥ 42, slope ≥ 40), the
optimal slope was calculated as slope ≥ 42.

In the analyses of the target classes, the rule set was
further developed for the analyses of the Building class
following the Ground class. The LiDAR multi-signal
properties were used to identify the objects of the Build-
ing class. The ratio of the total of all returns to the last
returns was used to identify the Building class. The
analyses were performed to determine the optimal pa-
rameter for this ratio for the Building class (all returns/
last returns ≥ 1.1, all returns/last returns ≥ 1.05, all
returns/last returns = 1). In these analyses, the objects

Table 3 Properties of study area datasets

Multi-sensor system Dataset Date Resolution

Digital Camera-Rollei P45 Ortho-image March 2013 0.1 m

LiDAR-Optech ALTM Gemini Point Cloud March 2013 5.6 point/m2

Table 4 Data layers used for the classification

Class Data layer

Building Point cloud

Ground Point cloud

Vegetation Ortho-image, point cloud
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of the Ground class instead of those of the Building class
were identified when the ratio of all returns/last returns
(≥ 1.1) was examined. In another analysis (all returns/
last returns ≥ 1.05), the Building class and the Ground
class were overlapped. Additionally, an examination of
the analysis resulting from the ratio of all returns/last
returns (= 1) showed that most of the buildings were
captured, except for buildings with concrete roofs. The
analyses revealed that the optimal ratio for the Building
class was all returns/last returns = 1.

Considering the results of these analyses performed
for determination of the target classes, rule sets and
parameters were defined for the proposed approach.
The rules and parameters that were defined are present-
ed in detail in the BThe rule set^ section.

The rule set

An analysis of the structure of the buildings existing in
the study area revealed that non-flat roof types with

Fig. 5 Classification. a Vegetation class. b Vegetation and Ground classes. c Building, Vegetation, and Ground classes

Table 5 Accuracy analysis before improvements

Accuracy analysis according to error matrix based on TTA mask

User/reference Building Vegetation Ground Sum

Building 1,008,855 209,698 690,458 1,909,011

Vegetation 302,713 308,794 112,430 3,503,047

Ground 571,705 843,697 6,432,576 7,847,978

Unclassified 731,955 810,622 331,801 1,874,378

Sum 2,615,228 4,951,921 7,567,265

Accuracy (%)

Producer 0.3858 0.6236 0.8500

User 0.5285 0.8815 0.8196

KIA 0.2971 0.5102 0.6886

Overall accuracy = 0.6957

Kappa = 0.5270

Table 6 Accuracy analysis after improvements

Accuracy analysis according to error matrix based on TTA mask

User/reference Building Vegetation Ground Sum

Building 1,113,153 0 47,578 1,160,731

Vegetation 172,717 1,870,408 408,282 2,451,407

Ground 169,179 549,303 9,389,631 10,108,113

Unclassified 55,618 92,236 73,965 221,819

Sum 1,510,667 2,511,947 9,919,456

Accuracy (%)

Producer 0.7369 0.7446 0.9466

User 0.9590 0.7630 0.9290

KIA 0.7130 0.6901 0.8058

Overall accuracy = 0.8875

Kappa = 0.7463
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different structures, concrete roofs, barns, console bal-
conies, small storerooms, wooden houses, adobe hous-
es, etc. were present due to the rural nature of the area.
This caused certain problems in generating the Building
class properly. These misclassification problems were
solved using the slope analysis, morphological filters,
relational class property, find enclosed by class (related
border to class), and region growing methods. Further-
more, the ortho-image was used only in the segmenta-
tion mode for identification of the Vegetation class as
the reflectance values for the Vegetation, Building, and
Ground classes were very close in the ortho-image of the
study area.

In this study, the Vegetation class was generated as
the first stage of developing the data set. At the segmen-
tation stage of the process of generating the Vegetation
class, multi-resolution segmentation parameters were
used. At this stage of classification, the ratio of all
returns/last returns (≥ 1.15), which was found by the
result of the analyses performed using the LiDAR prop-
erties, was determined to be optimal and preferred for

use. Additionally, efforts were made to improve the
Vegetation class. The classification of objects
representing vegetation in the elevated area was made
using the value of the digital surface model (DSM) ≥
403 m, as there were no man-made objects above a
DSM of 403 m. Finally, the improvement process of
the Vegetation class was completed using the method of
the Visible-Band Difference Vegetation Index (VDVI)
(VDVI ≥ 0.335). VDVI is defined by and derived from
the formula byWang et al. (2015). The VDVI formula is
shown in Eq. (8) where G, R, and B denote the pixel
values of ortho-image green, red, and blue bands, re-
spectively.

VDVI ¼ 2� Gð Þ−R−B
2� Gð Þ þ Rþ B

ð8Þ

As the second step of developing the rule set, the
Ground class was targeted. Contrast split segmentation
(12 ≤ slope ≤ 24) was applied to the slope image to
identify the objects belonging to the Ground class. After

Fig. 6 Wind speed

Table 7 Suitability table of criteria

Criteria/suitability Unsuitable (m) Low (m) Medium (m) High (m)

Distance from building < 100 100–200 200–300 > 300

Distance from vegetation < 60 60–120 120–180 > 180

Slope > 45 30–45 15–30 < 15

Wind speed < 6 6–6.5 6.5–7 > 7
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this, objects were assigned to the Ground class using the
parameter of 2.6 < Slope < 12. Furthermore, at this
stage, the sub-class of Building Border was defined.
The sub-class of Building Border was defined to avoid
confusion of the objects belonging to the Ground class
and those belonging to the Building Border class. Ob-
jects were assigned to the sub-class of Building Border
by use of the analysis value of Slope ≥ 42.

An examination of the study area performed at this
stage showed that certain objects that belonged to the
Ground class were not being captured. To solve this
problem, area and merge region operations were used
with optimal parameters. In improving the Ground class,
firstly, the unclassified image was used, and objects
were assigned to the Ground class with a value of area
≤ 410. Secondly, the Ground class was improved by
using the Building border sub-class through the merge
area operation. In addition to the aforementioned proce-
dures, objects were assigned to the Ground class using
the value of area ≤ 3000 for the Building border and
Unclassified class objects. Finally, the objects of the
Ground class were merged. The resulting image for the
Ground class is shown in Fig. 5b. The last stage of the
development of the rule set was constructing the Build-
ing class. The slope image and LiDAR point cloud were
used to identify the objects belonging to the Building
class. Object assignment to the Building class was
followed by a merge operation which was used to merge

the segments that were close to but independent from
each other. After the objects were assigned from the
target classes to the Building class, modifications were
made in the rule set to improve the Building class.
Firstly, the objects representing the Building border
sub-class but being confused with the Building class
were identified. For this purpose, the objects of the
Building border sub-class with the LiDAR properties
of all returns/last returns (1) and area (> 2200) were
identified and assigned to the Building class. Finally, the
process of improving the Building class was completed
by using the method of find enclosed by class (related
border to class) and the area parameter (> 500). The
resulting image for the Building class is shown in Fig. 5c.

Accuracy analysis for the study area

Sample area selection (error matrix based on TTAmask)
and Kappa analysis were performed to test the accuracy
of the proposed approach. Error matrix is a square array
of numbers set out in rows and columns that expresses
the number of sample units assigned to a particular
category in one classification relative to the number of
sample units assigned to a particular category in another
classification (Congalton and Green 2009). TTA can be
imported into software either by manually selecting
them or by means of the so-called TTA mask. Image
objects which function as samples for a nearest neighbor
are referred to as samples or sample objects. (eCognition
Elements User Guide 2004). For this reason, the same
dataset was used for all classes in the accuracy analysis
process. These analyses were conducted before and after
class improvement to detect the improvements made on
the target classes. The pre-improvement overall accura-
cy and Kappa coefficients for the study area were found
to be 0.69 and 0.53, respectively (Table 5). The post-
improvement overall accuracy and Kappa coefficients
were found to be 0.88 and 0.74, respectively (Table 6).

Table 8 Fuzzy pairwise comparison matrix for the first strategy

Criterion Distance from buildings Distance from vegetation Slope Wind Speed

Distance from buildings (1,1,1) (1/2,1/3,1/4) (1/4,1/5,1/6) (1/4,1/5,1/6)

Distance from vegetation (2,3,4) (1,1,1) (1/2,1/3,1/4) (1/4,1/5,1/6)

Slope (4,5,6) (2,3,4) (1,1,1) (1/4,1/5,1/6)

Wind speed (4,5,6) (4,5,6) (4,5,6) (1,1,1)

Table 9 Fuzzy geometric mean values of criteria for the first
strategy

Criterion Fuzzy geometric mean value

Distance from buildings 0.420 0.340 0.289

Distance from vegetation 0.707 0.669 0.639

Slope 1.189 1.316 1.414

Wind speed 2.828 3.344 3.834
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As a result of the improvement, the overall accuracy for
the study area was increased by 19%.

Determination of the criteria for the GIS model

Preparing the suitability map of target classes plays a
crucial role in decision-making for future studies when
socio-cultural and economic strategies are considered.
The most prominent point that distinguishes this study
from others is the positive contribution of building and
vegetation criteria which are used for GIS analysis for
the accuracy of suitability maps. Other important point
is assessment of the data obtained from new technology
multi-sensor systems using object-oriented image anal-
ysis methods. This way, using 3D LiDAR data and
ortho-image, which is obtained from the same platform,
enables conduction of high-accuracy data analyses. As a
result, automatic target classes are extracted by using
these data with the suggested method, and they are
ready to use for the decision support system. In this
study, the aim of the first strategy was to determine
the best suitable site locations for wind turbines,
while the aim of the second strategy was to determine
the wind turbines’ places with the minimum negative
effects for the rural area while considering social and
environmental effects. The same criteria were utilized
for the two strategies. These criteria were as follows
(Al-Shabeeb et al. 2016):

Distance from building: Land uses and residential
areas are important for environmental and socio-
economic reasons.
Distance from vegetation: It is also important not to
damage the environment, mainly the wild life (flora
and fauna).
Slope: Areas with high slope will generate more
runoff. Additionally, high slopes cause technical
difficulties while installing wind turbines.
Wind speed: Wind turbines depend on having
enough wind speed to rotate wind turbine blades
to generate electricity. The speed limit that is suit-
able for wind turbines is 6.5 m/s. For the data of the
studied area, this speed was over 7 m/s (Fig. 6).

Table 7 shows the parameters about these
criteria in detail. It was seen in the literature that
the criterion of noise has been prevalently used in
research. Due to the fact that noise is effective
around a radius of 30 to 50 m in the case of wind
turbines developed by modern technology, the cri-
terion of noise was considered in this study while
assigning weight to the criterion of Distance from
building.

GIS analysis and decisions

GIS models were established based on the two dif-
ferent strategies for the study area. Firstly, a fuzzy

Table 10 Fuzzy weights of criteria for the first strategy

Criterion Fuzzy weight Weight Weight (%)

Distance from buildings 0.082 0.060 0.047 0.063 6.28

Distance from vegetation 0.137 0.118 0.103 0.120 11.96

Slope 0.231 0.232 0.229 0.231 23.08

Wind speed 0.550 0.590 0.621 0.587 58.68

Total 1.000 100.00

Table 11 Fuzzy pairwise comparison matrix for the second strategy

Criterion Distance from buildings Distance from vegetation Slope Wind speed

Distance from Buildings (1,1,1) (2,3,4) (4,5,6) (1/4,1/5,1/6)

Distance from Vegetation (1/2,1/3,1/4) (1,1,1) (1/2,1/3,1/4) (1/4,1/5,1/6)

Slope (1/4,1/5,1/6) (2,3,4) (1,1,1) (1/4,1/5,1/6)

Wind speed (4,5,6) (4,5,6) (4,5,6) (1,1,1)
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pairwise comparison matrix was formed based on
degrees of priority. In the second step, the fuzzy
geometric mean values of the criteria were calculated
with the help of this matrix. Then, the weights of the
criteria were determined with the help of these mean
values. Using the determined suitability values, suit-
ability maps were formed for each criterion. In the
last step, separate suitability maps were created for
the two different strategies by combining the indi-
vidual maps based on the obtained weights. For the
first strategy, distance and slope analyses were car-
ried out based on the values in Table 7. Additionally,
the degrees of priority for the criteria in the fuzzy
pairwise comparison matrix given in Table 8 against
each other were determined. Accordingly, for deter-
mining the optimal wind turbine location, the rank of
priority was taken as Wind speed, Slope, Distance
from vegetation, and Distance from buildings. While
Table 9 shows the geometric mean values calculated
for the first strategy, Table 10 presents the weights
that were determined. For the second strategy, the
degrees of priority for the criteria in the fuzzy
pairwise comparison matrix given in Table 11
against each other were determined. Accordingly,
for determining the wind turbine locations with the
minimum negative effects for the rural area, the rank
of priority was taken as Wind speed, Distance from

vegetation, Distance from buildings, and Slope.
While Table 12 shows the geometric mean values
calculated for the second strategy, Table 13 presents
the weights that were determined. In the case that the
total weight of a criterion is not equal to 1 because of
rounding errors, the weights must be normalized so
that the sum of these becomes 1. No normalization
was made in this study as the sums of all weights
were equal to 1 for both strategies.

The map of Distance from buildings is given in Fig.
7a, the map of Distance from vegetation is given in Fig.
7b, and the map for slope is given in Fig. 7c. Figure 8
shows the suitability maps that were created as a result
of the analyses. While the areas that are marked with a
red color represent unsuitable areas in these maps, green
ones represent suitable areas. According to the results,
11% of these areas was found to have high, moderate, or
low suitability levels, while 89% was unsuitable for the
first strategy. For the second strategy, in the study area,
2% of the areas was found to have high, moderate, or
low suitability levels, while 98% was unsuitable. Ac-
cordingly, it was determined that suitability in our study
area decreased by approximately 9% when social and
environmental factors were considered.

Conclusions

In this study, a unique approach was developed for
creating a suitability map for wind energy projects using
LiDAR system data and GIS. First of all, this approach
included automatic extraction of the target classes of
building, vegetation, and ground through an object-ori-
ented, rule-based classification method using the data
generated by a multi-sensor system consisting of a Li-
DAR, digital camera, and GPS/IMU placed on the same
platform. In developing this part of the approach, auto-
matic object extraction was performed using multi-

Table 12 Fuzzy geometric mean values of criteria for the second
strategy

Criterion Fuzzy geometric mean value

Distance from buildings 1.189 1.316 1.414

Distance from vegetation 0.500 0.386 0.319

Slope 0.595 0.589 0.577

Wind speed 2.828 3.344 3.834

Table 13 Fuzzy weights of criteria for the second strategy

Criterion Fuzzy weight Weight Weight (%)

Distance from buildings 0.233 0.234 0.230 0.232 23.21

Distance from vegetation 0.098 0.069 0.052 0.073 7.28

Slope 0.116 0.104 0.094 0.105 10.49

Wind speed 0.553 0.593 0.624 0.590 59.02

Total 1.000 100.00
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sensor system data and different classification methods,
and the results were analyzed for accuracy. The second
part of this approach involved determining the evalua-
tion criteria and weights, analysis, and decision-making
with GIS models. Using the method of FAHP, suitability
analyses were carried out by considering the criteria of

Slope, Distance to buildings, Distance to vegetation, and
Wind speed. Two different strategies were used to weigh
these criteria. Firstly, the weights were assigned by only
considering the most suitable placement of wind tur-
bines. In the second strategy, the weights were deter-
mined by aiming to minimize the effects of wind

Fig. 7 Analyses. a Distance to Building. b Vegetation. c Slope

Fig. 8 Suitability map. a First
strategy. b Second strategy
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turbines on the environment, especially residential
areas. As a result of using different weights for these
two different objectives, the suitability maps were
evaluated.

A LiDAR data set from a flight over the study area in
Kırklareli, Turkey, was used for the study. From this
data set, the Vegetation class was successfully generated
using the pulse returns, which is an advantage of LiDAR
data. Additionally, DSM data were used as elevation
data for the study area. DSM data were used in success-
fully generating the Vegetation class based on the ratio
of the pulse returns, which is an advantage of the Li-
DAR sensor. The different types of houses in rural areas
(typical pitched roof houses, concrete roof houses,
wooden houses, adobe houses, barns, etc.) made it dif-
ficult to extract buildings. For this reason, some of the
buildings could not be extracted. Other buildings were
assigned to the Building class by use of different digital
image processing algorithms and a fuzzy logic classifi-
cation method while improving the Buildings class.
Analyses and evaluations were performed for the seg-
mentation and classification with this data set, problems
encountered in object extraction were identified, solu-
tions for such problems were proposed and implement-
ed, and the rule set was developed using an object-
oriented, rule-based classification method. TTA mask
and Kappa analysis were performed to test the accuracy
of the proposed approach. These analyses were per-
formed before and after class improvement to detect
the improvements made to the target classes. We found
that, as a result of the improvement, the overall accuracy
for the study area was increased by 19%.

At the GIS stage, a fuzzy analytical hierarchy process
was utilized to identify the potential effects of the wind
turbine sites based on four criteria: Wind speed, Slope,
Building, and Vegetation. Two important situations for
the wind energy project were analyzed. The first strategy
was to determine only the best suitable site locations for
wind turbines, and the second strategy was to determine
the wind turbines’ places with minimal negative effects
for the rural area. At this point, different weights were
assigned to the layers based on importance. As a result
of the analysis of the suitability maps that were obtained,
it was determined that suitability in our study area
decreased by approximately 9% when social and envi-
ronmental factors were considered.

As a result of this study, while determining the suit-
ability of wind maps with the proposed methodology, it
is believed to be important to use modern LiDAR

system data, automatically extract building and vegeta-
tion layers using the developed rule set and utilize these
layers in forming a GIS model. Additionally, it was
observed that social and environmental effects showed
significant variety in the criteria that were formed by
considering these layers. Accordingly, by using the
FAHP method especially for the evaluated criteria and
their weights, more accurate results were obtained from
the suitability maps that were the end products.
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