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Abstract As a main type of urban construction land,
urban-industrial land is used to provide the judging
criteria for construction land scale in the planning period
when urban population, industrial development, invest-
ment scale, and other conditions are uncertain in China;
however, research on expected indicator such as urban-
industrial land in overall land use plan mainly focuses
on qualitative analysis; quantitative analysis research
has not yet been carried out. Using MATLAB R2016a
software modeling tools to establish GM (1, 1) model

and RBF neural network model, respectively, this paper
predicted the demand of urban-industrial land in
Beijing-Tianjin-Hebei Urban Agglomeration. Compar-
ing the predicated results with the actual value of urban-
industrial land in Beijing, Tianjin, and 11 prefecture-
level cities in Hebei Province, we determined the rea-
sonable prediction model for urban-industrial land after
testing the accuracy of the two prediction models. The
results showed that the RBF neural network model was
the more reasonable prediction model for urban-
industrial land. Using the predicted results of the RBF
neural network model, combining expected indicators
of overall land use plan (2006–2020) in Beijing and
Tianjin, as well as 11 prefecture-level cities in Hebei
Province in the planning target year, determined remain-
ing usable time of urban-industrial land. Finally, com-
bined with the actual scale of urban-industrial land in
2015 and the predicated scale of urban-industrial land in
2020, the remaining usable time of each city’s urban-
industrial land was calculated in terms of the average
annual growth rate of urban-industrial land from 2009 to
2015. According to the comparative relationship be-
tween the remaining usable time and the remaining time
of the overall land use plan (5 years), urban-industrial
lands were divided into three kinds of regulation zones:
reasonable reduction zone, optimized adjustment zone,
and core development zone. The policy implications for
urban-industrial land in each regulation zone were also
provided. This paper can provide reference for regula-
tion zoning of urban-industrial land in developing coun-
tries and regions.
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Introduction

Land is a precious resource. Pressures on land use have
inevitably intensified with the land being a fixed re-
source and with a growing population (Maria et al.
2016; Yang et al. 2018a, b, c; He et al. 2019). In order
to adapt to the new norms of economic development,
optimize the land supply structure, and ensure the ratio-
nal and healthy development of urban and rural con-
struction lands, China has successively issued a series of
related policy documents. According to the BGuidance
on Land Conservation and Intensive Use^ released by
the Ministry of Land and Resources, China, in 2014,
transformation and optimization of land use patterns and
structures should promote transformation and optimiza-
tion of economic development. Based on coordination
of urban space, scale, and industry proposed by Chinese
government in 2015, urban land supply structure and
industrial structure evolution should match each other.
According to the BNational Overall Land Use Plan
(2006~2020)^ released by the Ministry of Land and
Resources in 2016, Beijing-Tianjin-Hebei Urban Ag-
glomeration should coordinate industrial land allocation
and control urban-industrial land sprawl.

According to the BCode for Classification of Urban
LandUse and Planning Standards of Development Land
(GB 50137–2011)^ (Ministry of Housing and Urban-
Rural Development of China 2011), urban construction
land can be subdivided into multiple categories. Re-
search on specific urban construction land prediction is
increasing gradually. Nevertheless, a comprehensive
study on the prediction of total urban construction land
and specific urban construction land is yet to be carried
out. Moreover, specific urban construction land predic-
tion not only emerges late but also the research methods
and contents need to be improved. Urban-industrial land
is the main type of urban construction land (Lin 2009;
Xiao 2012; Shu and Xiong 2019) and is also the main
space for urban non-agricultural activities (Zhao 2012;
Xie et al. 2014; Yong et al. 2018). As an expected
indicator in land use planning, urban-industrial land is
used to provide the judging criteria for construction land
scale in the planning period when urban population,
industrial development, investment scale, and other

conditions are uncertain (Qiu et al. 2015). Regulation
zone refers to further arrangements of land use, popula-
tion distribution, public facilities, and urban infrastruc-
ture allocation in local areas based on the overall urban
planning (Panigrahi and Mohanty 2012). After the com-
pletion of the urban master plan, large- and medium-
sized cities can prepare regulation zoning plans accord-
ing to their needs. The regulation zone should be carried
out simultaneously within the urban area. The zone
should be coordinated in time during the preparation
process (Pignatti et al. 2016).

Land demand prediction is a complex decision-
making process with many random and disorderly fac-
tors (Bartoli et al. 2016; Hermanns et al. 2017; Yang
et al. 2018a, b, c). Agricultural land allocation involves
assessing land potential and land demand for various
crops to determine the best land unit for each type. The
current allocation model tends to focus on the perspec-
tive of land demand growth (Pilehforooshha et al. 2014).
In order to achieve the above objectives, scholars used
Markov chain (Aurbacher and Dabbert 2011), GIS ras-
ter analysis (Pilehforooshha et al. 2014), cellular autom-
ata (Kelly et al. 2018; Yang et al. 2019), goal program-
ming (António et al. 2018), fuzzy rule–based system
(Reshmidevi et al. 2009), etc.

The rapid urbanization makes urban construction
land demand increasing, so it is of great significance to
predict urban construction land growth (Kun et al. 2018;
Yang et al. 2018a, b, c). The prediction of urban con-
struction land growth is the basic work of urban overall
land use plan. At present, research on urban construction
land growth forecast can be divided into two types: (1)
simulation of land temporal and spatial sprawl and (2)
prediction of land scale. As early as the 1960s, urban
models were widely used in urban development re-
search, and with the support of new technologies, it
was gradually possible to simulate the future develop-
ment of cities. However, it was not until the CA (cellular
automata) model appeared that the two-dimensional
spatial feature of urban sprawl was realized. The predic-
tion research mainly depends on spatial data and is
constrained by the expansion rules. The scale prediction
of urban construction land growth is based on different
prediction indexes and mathematical models. The main
predictors are population and socioeconomic indicators,
such as non-agricultural population, total fixed assets,
and GDP (Hao et al. 2014). In addition, urban construc-
tion land growth is realized by the occupation of some or
most of the cultivated land, and some scholars predict
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urban construction land growth in respect of conversion
between cultivated land and urban construction land
(Zhai et al. 2015; He et al. 2018). In sum, urban con-
struction land growth is a nonlinear and complex pro-
cess influenced by various factors, and some rules,
indicators, or models are needed in the prediction pro-
cess, although the prediction is uncertain (Yang et al.
2019). Therefore, it provides a scientific reference for
the study of land scale demand in urban development.

Recently, the actual urban-industrial land area of
some cities in Beijing-Tianjin-Hebei Urban Agglom-
eration has exceeded the expected indicators in the
overall land use plan (Li et al. 2019b). The expected
indicators in the overall land use plan are indicators
that should be achieved during the planning period
according to economic and social development fore-
casts, such as total size of construction land (Li et al.
2019a). Research on expected indicator such as
urban-industrial land in overall land use planning
mainly focuses on qualitative analysis; quantitative
analysis research has not yet been carried out. In this
paper, the prediction method of mathematical
models (neural network model and gray model) is
used to predict urban-industrial land demand of cit-
ies in Beijing-Tianjin-Hebei Urban Agglomeration.
Using MATLAB R2016a software modeling tools to
establish GM (1, 1) model and RBF neural network
model, respectively, the demand of urban-industrial
land in Beijing-Tianjin-Hebei Urban Agglomeration
is predicted. After testing the accuracy of the two
prediction models and comparing the predicated re-
sults with the actual value of urban-industrial land in
Beijing, Tianjin, and 11 prefecture-level cities in
Hebei Province, the reasonable prediction model
for urban-industrial land is determined. Based on
the results of prediction, urban-industrial land regu-
lation zones are divided. The policy implications for
urban-industrial land in each regulation zone are
provided.

Study area and methods

Study area

Beijing-Tianjin-Hebei Urban Agglomeration, cover-
ing a surface area of 217,158 km2, is an important
core area of northern China, including two munici-
palities directly under the Central Government of

Beijing and Tianjin, and 11 prefecture-level cities
of Hebei Province (including Shijiazhuang, Tang-
shan, Qinhuangdao, Handan, Xingtai, Baoding,
Zhangjiakou, Chengde, Cangzhou, Langfang, and
Hengshui) (Fig. 1). According to the overall land
use plan of Beijing, Tianjin, and Hebei, there are
significant differences in the total amount of urban-
industrial land of cities in Beijing-Tianjin-Hebei Ur-
ban Agglomeration from 2009 to 2015 (Fig. 2). In
2015, the total area of urban-industrial land in Tian-
jin, Tangshan, and Beijing reached 1974.67 km2,
1747.33 km2, and 1452.01 km2, respectively. Based
on land use survey, problems on scattered layout,
irrational structure, and low utilization efficiency of
urban-industrial land have emerged in many cities of
Beijing-Tianjin-Hebei Urban Agglomeration. Unrea-
sonable use of urban-industrial land has become a
roadblock for the sustainable land use in the Beijing-
Tianjin-Hebei Urban Agglomeration.

Methods

The mathematical method mainly includes the neural
network model and the gray model. Artificial neural
network has become an important way to process infor-
mation. Using the neural network model and the gray
model’s highly nonlinear mapping ability can predict
the construction land demand. Due to the high degree of
nonlinear mapping capability, the artificial neural net-
work can realize the nonlinear mapping of the depen-
dent variable and the independent variable without the
relationship between the dependent variable and the
independent variable (Zhang et al. 2018).

Gray relational analysis

In order to measure the correlation degree of various
related factors and overcome the defects of traditional
multivariate correlation analysis, gray correlation anal-
ysis method was used to select factors for urban-
industrial land demand prediction (Hao et al. 2014; Li
et al. 2018; Fu et al. 2019). This methodmainly includes
3 steps (Yin et al. 2018):

1. Data conversion. Convert raw data into dimension-
less and comparable data. Assumed reference data
were listed as follows:
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x0 ¼ x0 1ð Þ; x0 2ð Þ; x0 3ð Þ;…; x0 nð Þð Þ

Comparative data were listed as follows:

xi ¼ xi 1ð Þ; xi 2ð Þ; xi 3ð Þ;…; xi nð Þð Þ; i ¼ 1; 2;…; nð Þ

2. Calculate correlation coefficient in Eq. (1).

loi tð Þ ¼ Δmin þ ρΔmax

Δoi kð Þ þ ρΔmax
ð1Þ

where loi(k) is the absolute difference between two data
in time t, namely, loi(k) = |x0(t) − xi(t)|(1《i《n); Δmax and
Δmin refers to the maximum and minimum values of the
absolute differences for all data, respectively. Because
comparison data intersects each other, Δmin = 0 and ρ is
the resolution coefficient, it could increase the significance

of difference between the relevant data, ρϵ(0, 1); ρ is used
to prefer 0.5 in the previous research (Yin et al. 2018).

3. Relation testing. Based on loi(k), relation, which is
the average value of correlation coefficients, can be
calculated in Eq. (2):

roi ¼ 1

N
∑N

k¼1loi tð Þ ð2Þ
where roi is the relation between sub-sequence i and

total sequence o. N is the length of the comparative
sequence (number of data).

GM (1, 1) prediction model

Based on gray system theory, GM (1, 1) prediction
model can use insufficient information to build a model
with possible full information by transforming time
series into differential equations through differential

Fig. 1 Location map of the study area

Fig. 2 The area of industrial and
mining land of cities in Beijing-
Tianjin-Hebei Urban Agglomera-
tion from 2009 to 2015
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fitting method (Chen and Pai 2015). GM (1, 1) predic-
tion model could be expressed in Eq. (3):

X̂
1ð Þ

tð Þ ¼ X 0ð Þ 1ð Þ− u
a
e−a t−1ð Þ

� �
þ u

a
ð3Þ

where X(0)(1) is the raw data in urban-industrial land

demand system. X̂
1ð Þ

tð Þ is the accumulated value of
raw data in urban-industrial land demand system. t
refers to time. a and u are the development gray number
and the endogenous control gray number.

RBF neural network prediction model

Compared with the widely used BP neural network
model, RBF neural network prediction model is more
advanced in terms of learning speed and parameter
settings with a single hidden layer feedforward network
(Ghritlahre and Prasad 2018). The framework of RBF
neural network prediction model is shown in Fig. 3.

Learning process of RBF includes two stages: unsu-
pervised learning and supervised learning. The main
calculation process includes three steps.

1. Calculate the output value Yb of the neuron b in the
output layer in Eq. (4):

Ya ¼ f ∑r
a¼1WbaYha

� � ð4Þ

where Yha is the output value of the neuron a in the
hidden layer.Wba is the weight from the neuron a in the
hidden layer to the neuron b in the output layer. We use
Sigmoid to express the function in Eq. (5):

f xð Þ ¼ 1= 1þ exp −x=x0ð Þð Þ ð5Þ

2. Calculate error of the output layer in Eq. (6):

Δb ¼ Yb⋅ 1−Ybð Þ⋅ yb−Ybð Þ ð6Þ
where yb is the actual value of the neuron b.

3. Adjust weight coefficient ΔW until the error is
minimized. It can be express in Eq. (7):

ΔW ¼ ε⋅ΔYb 1−Ybð Þ⋅ yb−Ybð Þ;W 0
b ¼ Wb þ ΔW ð7Þ

whereW
0
b is the adjustedweight. ε is the learning rate. ε

is selected based on the comparisonmethod. The value of ε
ranges between 0.01 and 0.8 (Monteiro et al. 2018). ε is set
as 0.03 in this study. The model can be used for prediction
when cluster center Ca and weightWa are defined.

Methods for prediction accuracy testing

The accuracy of the prediction model is verified by the
mean absolute error (MAE) and the error root mean
square (RMSE). They are expressed in Eqs. (8) and (9):

MAE ¼ 1

n
∑n

i¼1
bZi−Zi

���
��� ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1
bZi−Zi

� �2
r

ð9Þ

where Ẑi is the predictive value by the RBFmodel. Zi
is the actual value. n is the total number of samples taken
for training and testing. The smaller the value of MAEFig. 3 Framework of RBF neural network model
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and RMSE is, the smaller the error is, and the higher the
prediction accuracy of the model is.

Data collection and processing

Data collection

Data about urban-industrial land from 2009 to 2015 were
collected from the national land utilization conveyance
data. Statistical data related to socioeconomic conditions
were collected from Beijing Statistical Yearbook
(2010~2016) (Beijing Bureau of Statistics 2017), Tianjin
Statistical Yearbook (2010~2016) (Tianjin Bureau of
Statistics 2017), Hebei Statistical Yearbook (2010~2016)
(Hebei Bureau of Statistics 2017), and China Statistical
Yearbook for Regional Economy (2010~2016) (NBSC
2017). Expected data of urban-industrial land in the plan-
ning target year 2020 were obtained from the overall land
use plan (2006–2020) of Beijing, Tianjin, as well as 11
prefecture-level cities in Hebei Province.

Data processing

According to national land utilization conveyance data
originally derived from the first national land survey in
1996, urban-industrial land, including urban land, town
land, rural residential land, and independent industrial
and mining land, is the space that carries the main
production and living activities of urban and rural resi-
dents (Lin 2009). Urban-industrial land, similar to urban
construction land, including urban land, town land, and
independent industrial and mining land, is in line with
the urban population in terms of statistical caliber (Li
et al. 2018). The main factors affecting urban construc-
tion land change are economic growth, the secondary
and tertiary industry development, and urbanization
(Chen et al. 2017). Eleven indicators, including GDP
(x1), the secondary industry added value (x2), the tertiary
industry added value (x3), total investment in urban
fixed assets (x4), real estate development investment
(x5), per capita disposable income of urban residents
(x6), per capita consumption expenditure of urban resi-
dents (x7), highway mileage (x8), number of industrial
enterprises above designated size (x9), industrial output
(x10), and the total retail sales of social consumer goods
(x11), were selected from four respects of economic
growth, industrialization, industrial structure adjustment
and upgrading, and urbanization.

Each indicator was converted by using the extremum
method. The calculation processes were expressed in
Eqs. (10) and (11).

x ¼ xij−min x j
� �� 	

max x j
� �

−min x j
� �� 	 ð10Þ

x ¼ max x j
� �

−xij
� 	

max x j
� �

−min x j
� �� 	 ð11Þ

where x is the value of indicator xij processed by the
extremum method; xij is the actual value of indicator i in
the year j; max (xj) is the maximum actual value of
indicator i in the year j; and min (xj) is the minimum
actual value of indicator i in the year j.

GM (1, 1) model was established by using the
MATLAB R2016a software modeling tool. According
to the principle of RBF neural network model, using
Newrb toolbox in the MATLAB R2016a software, RBF
neural network model, where the SPREAD value in the
Newrb function was chosen to be the default value 1
(Morteza et al. 2018), was established by choosing 11
influencing factors as input samples and urban-industrial
land demand as output samples. Taking actual area of
urban-industrial land from 2009 to 2014 and its influenc-
ing factors as training samples, the area of urban-industrial
land from 2010 to 2015 was simulated. The simulation
results showed that RBF neural network model, of which
the output could well approximate the nonlinear function
Yj after repeated tests, was provided with an excellent
fitting ability. Urban-industrial land data from 2010 to
2015 of cities in Beijing-Tianjin-Hebei Urban Agglomer-
ation were imported from the GM (1, 1) model and RBF
neural networkmodel, respectively. The conditions for the
termination of training in the model is set in terms of the
actual situation (Morteza et al. 2018). The maximum
number of training cycles is 5000 in this study.

Results and discussion

Gray relational grade of the indicators

Gray relational grades of the indicators were conducted
by using gray relation system software developed by Liu
et al. (2004). The results of gray relational grades showed
that the correlation value of each influencing factor,
which is greater than 0.7, met three-level precision
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(Table 1). Therefore, there was a relatively strong corre-
lation between the 11 factors and the demand for urban-
industrial land, namely, the 11 factors were applicable to
the demand prediction of urban-industrial land in Beijing-
Tianjin-Hebei Urban Agglomeration.

Demand prediction of urban-industrial land

Results of the GM (1,1) prediction model

The prediction results of urban-industrial land area from
2009 to 2015 by using the GM (1, 1) model are shown in
Table 2.

Results of RBF neural network prediction model

The prediction results of urban-industrial land area from
2009 to 2015 by using the RBF neural network model
are shown in Table 3 and Fig. 4.

Prediction accuracy testing for the two models

Statistic error results of the two models showed that the
RBF neural network model, of which the prediction
accuracy was greater than that of the GM (1, 1) model,
was more suitable for urban-industrial land demand pre-
diction (Table 4). The RBF neural network model was
selected to predict the demand of urban-industrial land.
Hao et al. (2014) found that construction land demand

could be predicted by using the RBF neural network.
Therefore, artificial intelligence approach, including arti-
ficial neural network, has been confirmed to be an effec-
tive method to predict land resources demand.

Regulation zoning of urban-industrial land

A city is a unified organism, and the various parts of the
function which are used in different functions are reason-
ably organized (Panigrahi and Mohanty 2012). When
starting to plan a city, according to the different
characteristics and requirements of the city,
comprehensive planning should be carried out for the
industrial land, residential land, transportation land, etc.
However, a series of problems will emerge in cities
without a regulation zone of urban land. Li et al. (2019a)
proposed that urban-industrial land use efficiency of
Beijing-Tianjin-Hebei UrbanAgglomerationwas relative-
ly low. Therefore, zoning is necessary in urban-industrial
land in Beijing-Tianjin-Hebei Urban Agglomeration.

Based on the established RBF neural network model,
13 cities in Beijing-Tianjin-Hebei Urban Agglomeration
have been trained and predicted with different models;
the urban-industrial land demand of the 13 cities in 2020
was predicted. The comparison of the predicting results
and expected indicators of urban-industrial land in the
overall land use plan of cities in Beijing-Tianjin-Hebei
Urban Agglomeration in 2020 showed that the expected
indicator of urban-industrial land is approximately equal

Table 1 The gray correlation degree of urban-industrial land and driving factors of cities in Beijing-Tianjin-Hebei Urban Agglomeration

Indicators

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Gray correlation degree Beijing 0.805 0.710 0.710 0.715 0.706 0.753 0.752 0.995 0.756 0.704 0.804

Tianjin 0.958 0.925 0.924 0.924 0.881 0.925 0.925 0.924 0.702 0.907 0.926

Shijiazhuang 0.963 0.988 0.989 0.969 0.987 0.995 0.991 0.948 0.959 0.743 0.988

Tangshan 0.885 0.715 0.958 0.937 0.927 0.891 0.915 0.809 0.907 0.817 0.950

Qinhuangdao 0.931 0.973 0.949 0.905 0.977 0.942 0.790 0.754 0.873 0.844 0.950

Handan 0.966 0.980 0.984 0.957 0.973 0.933 0.967 0.893 0.984 0.767 0.977

Xingtai 0.830 0.887 0.935 0.839 0.977 0.811 0.838 0.879 0.912 0.737 0.905

Baoding 0.708 0.947 0.977 0.923 0.970 0.949 0.981 0.887 0.932 0.820 0.968

Zhangjiakou 0.771 0.853 0.887 0.755 0.902 0.849 0.805 0.802 0.904 0.759 0.886

Chengde 0.940 0.973 0.982 0.947 0.896 0.957 0.869 0.846 0.979 0.900 0.995

Cangzhou 0.852 0.828 0.882 0.779 0.757 0.705 0.717 0.746 0.661 0.806 0.858

Langfang 0.900 0.900 0.899 0.839 0.903 0.849 0.843 0.822 0.854 0.870 0.896

Hengshui 0.836 0.897 0.926 0.833 0.911 0.932 0.877 0.799 0.870 0.753 0.927
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to the predicted value by the RBF neural network mod-
el. Those indicated that the RBF neural network
model was available (Table 5). The predicted
values of Tianjin, Tangshan, Cangzhou, Zhangjia-
kou, and Chengde were obviously different from
the expected values, which reflected the deficiency
of the overall land use plan.

Combined with the actual scale of urban-industrial
land in 2015 and the predicated scale of urban-industrial
land in 2020, the remaining usable time of each city’s
urban-industrial land was calculated in terms of the
average annual growth rate of urban-industrial land
from 2009 to 2015. According to the comparative rela-
tionship between the remaining usable time and the
remaining time of the overall land use plan (5 years),
the ArcGIS natural breakpoint method was used to
divide regulation zones of urban-industrial land. Three
regulation zones were obtained (Fig. 5):

(1) Reasonable reduction zone (0.55 year ≤ remaining
usable time ≤ 2.68 years). This zone covers Tian-
jin, Tangshan, Zhangjiakou, and Chengde;

(2) Optimized adjustment zone (2.68 years ≤ remain-
ing usable time ≤ 4.36 years). This zone covers
Beijing, Cangzhou, and Hengshui;

(3) Core development zone (4.36 years ≤ remaining
usable time ≤ 6.22 years). This zone covers Shijia-
zhuang, Baoding, Xingtai, Langfang, Handan, and
Qinhuangdao.

Policy implications

The policy implications for urban-industrial land in the
three regulation zones are put forward as follows:

(1) Reasonable reduction zone. Covering Tianjin,
Tangshan, Zhangjiakou, and Chengde. This zone,
of which the actual scale of urban-industrial land
has exceeded the expected target of the overall
land use plan, should implement measures for
reduction of urban-industrial land. Tianjin and
Tangshan are important industrial cities in China,
and they are also one of the important carrying
places for the industrial transfer of Beijing-Tianjin-
Hebei cooperative development. The proportion of
industrial land among urban-industrial land is rel-
atively high. It is urgent to promote the internalT
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potential of urban-industrial land and improve the
level of intensive utilization of urban-industrial
land (Li et al. 2019a). Although the intensity of
u rban - indus t r i a l l and deve lopmen t in

Zhangjiakou and Chengde is not high, it is very
important to have a large number of ecological
functions in these regions. With frequent eco-
logical vulnerability and high geological

Table 3 RBF model prediction results

City Area/hm2 2009 2010 2011 2012 2013 2014 2015

Beijing Actual 161,266.67 165,200.00 168,733.33 170,600.00 172,866.67 173,933.33 174,733.33

RBF – 165,181.00 168,721.00 170,592.00 172,837.00 173,910.00 174,713.00

Error – (19.00) (12.33) (8.00) (29.67) (23.33) (20.33)

Tianjin Actual 184,333.33 184,666.67 185,400.00 189,800.00 194,200.00 196,466.67 197,466.67

RBF – 184,666.00 185,398.00 189,795.00 194,189.00 196,452.00 197,451.00

Error – (0.67) (2.00) (5.00) (11.00) (14.67) (15.67)

Shijiazhuang Actual 54,000.00 54,600.00 55,400.00 56,000.00 57,133.33 58,066.67 58,600.00

RBF – 54,597.30 55,399.30 55,995.50 57,125.00 58,050.10 58,586.90

Error – (2.70) (0.70) (4.50) (8.33) (16.57) (13.10)

Tangshan Actual 125,400.00 128,600.00 138,333.33 140,933.33 142,066.67 144,133.33 145,200.00

RBF – 128,593.00 138,321.00 140,930.00 142,055.00 144,105.00 145,184.00

Error – (7.00) (12.33) (3.33) (11.67) (28.33) (16.00)

Qinhuangdao Actual 22,666.67 23,333.33 23,533.33 23,866.67 24,000.00 24,200.00 24,400.00

RBF – 23,330.00 23,532.60 23,865.60 23,997.30 24,193.90 24,395.50

Error – (3.33) (0.73) (1.07) (2.70) (6.10) (4.50)

Handan Actual 42,866.67 43,266.67 43,800.00 44,133.33 44,333.33 45,000.00 45,400.00

RBF – 43,265.30 43,799.50 44,131.50 44,329.90 44,988.70 45,392.00

Error – (1.37) (0.50) (1.83) (3.43) (11.30) (8.00)

Xingtai Actual 30,800.00 31,400.00 32,466.67 33,200.00 33,933.33 34,600.00 35,400.00

RBF – 31,397.30 32,459.70 33,194.20 33,921.10 34,587.70 35,384.60

Error – (2.70) (6.97) (5.80) (12.23) (12.30) (15.40)

Baoding Actual 54,600.00 55,400.00 55,933.33 56,400.00 56,933.33 57,800.00 58,600.00

RBF – 55,349.10 55,832.00 56,385.80 56,915.00 57,787.70 58,590.10

Error – (50.90) (101.33) (14.20) (18.33) (12.30) (9.90)

Zhangjiakou Actual 41,266.67 42,333.33 43,000.00 43,800.00 44,466.67 45,200.00 45,666.67

RBF – 42,328.40 42,998.00 43,792.00 44,456.90 45,183.50 45,660.10

Error – (4.93) (2.00) (8.00) (9.77) (16.50) (6.57)

Chengde Actual 25,800.00 26,666.67 27,400.00 28,000.00 28,133.33 28,533.33 28,933.33

RBF – 26,664.30 27,398.80 27,998.40 28,128.70 28,524.40 28,924.80

Error – (2.37) (1.20) (1.60) (4.63) (8.93) (8.53)

Cangzhou Actual 81,533.33 82,133.33 82,933.33 83,400.00 84,066.67 85,200.00 85,866.67

RBF – 82,128.90 82,932.30 83,399.30 84,060.00 85,184.90 85,856.10

Error – (4.43) (1.03) (0.70) (6.67) (15.10) (10.57)

Langfang Actual 34,533.33 34,666.67 35,200.00 35,600.00 35,733.33 36,000.00 36,333.33

RBF – 34,666.40 35,199.50 35,599.30 35,731.30 35,992.20 36,328.30

Error – (0.27) (0.50) (0.70) (2.03) (7.80) (5.03)

Hengshui Actual 22,000.00 22,600.00 22,933.33 23,666.67 24,200.00 25,000.00 25,333.33

RBF – 22,596.90 22,932.50 23,665.00 24,194.30 24,990.10 25,325.60

Error – (3.10) (0.83) (1.67) (5.70) (9.90) (7.73)
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hazards, these regions are not suitable for large-
scale development and construction of urban-
industrial land.

(2) Optimized adjustment zone. Covering Beijing,
Cangzhou, and Hengshui. This zone, of which
the surplus scale of urban-industrial land is rela-
tively insufficient, should activate the existing
urban-industrial land, promote the adjustment of
industrial structure, and carry out land transforma-
tion of old towns, old villages, and old factories
with the historical opportunities of industrial trans-
fer and non-capital functions in the coordinated
development of Beijing, Tianjin, and Hebei. As
the main industry transfer place of Beijing-
Tianjin-Hebei coordinated development, Beijing
should activate the stock of construction land, re-
duce the proportion of industrial and storage land,
and optimize land distribution with the require-
ments of Borderly relaxing the non-capital

Fig. 4 RBF model prediction simulation results. PV: predicted value; Av: actual value; a–m: Beijing, Tianjin, Shijiazhuang, Tangshan,
Qinhuangdao, Handan, Xingtai, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, and Hengshui

Table 4 Statistical errors of the two models

City GM (1, 1) RBF

MAE RMSE MAE RMSE

Beijing 3041.47 3055.43 18.78 20.06

Tianjin 2726.33 3023.05 8.17 10.09

Shijiazhuang 822.82 828.47 7.65 9.52

Tangshan 6359.27 6924.27 13.11 15.31

Qinhuangdao 244.18 245.30 3.07 3.59

Handan 431.13 438.03 4.41 5.90

Xingtai 973.38 975.98 9.23 10.23

Baoding 503.23 503.97 34.49 47.69

Zhangjiakou 748.83 750.15 7.96 9.16

Chengde 648.12 653.94 4.54 5.53

Cangzhou 683.93 688.77 6.42 8.22

Langfang 434.55 446.04 2.72 3.90

Hengshui 536.25 550.96 4.82 5.82
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functions of Beijing, optimizing and upgrading the
core functions of the capital.^ Formulate policies
to guide land withdrawal for general industries,
especially Btwo high^ industries (high pollution,
high energy consumption), labor-intensive indus-
tries, partial public service functions, partial ser-
vice agencies, and enterprise headquarters.

(3) Core development zone. Covering Shijiazhuang,
Baoding, Xingtai, Langfang, Handan, and

Qinhuangdao. The expanding space of urban-
industrial land of this zone is relatively larger. At
present, the intensity of development is moderate,
the resources and environment are relatively low,
and there is some suitable space for construction.
Meanwhile, according to the industrial belt, the
industrial chain, and the specific industrial under-
taking platform proposed by the guidelines on
industrial transfer among Beijing, Tianjin, and He-
bei and the opinions on strengthening the construc-
tion of key platforms for industrial transfer among
Beijing, Tianjin, and Hebei, the region is along the
development axis of Beijing and Tianjin, develop-
ment axis of Beijing-Bao-Shi, and the development
axis of Beijing-Tang-Qin, and is the main region to
undertake the industries transfer of Beijing-Tianjin-
Hebei. Owing potential for future development and
should guide the rational agglomeration of industries,
the scale of urban-industrial land should be moder-
ately increased in the region.

Because the spatial data of urban-industrial land
of the study area are not available, this paper only
predicts urban-industrial land in respect of quanti-
tative scale. It could be studied in respect of
spatial scale in the future. The spatial distribution
of urban-industrial land could be predicted with
the quantitative scale, so as to further improve its
effectiveness.

Table 5 Comparisons between the predicated demand of urban-industrial land and the expected indicators of urban-industrial land in the
overall land use plan in 2020

City Actual value
in 2009/km2

Predicted value
in 2020/km2

Expected value
in 2020/km2

Actual value
in 2015/km2

Modified value
in 2020/km2

Average annual
growth rate/(km2/year)

The remaining
usable time/year

Beijing 1612.67 1854.99 1970.00 1747.33 1970.00 51.05 4.36

Tianjin 1843.33 2030.51 1750.00 1974.67 2030.51 26.74 2.09

Shijiazhuang 540.00 615.68 781.00 586.00 781.00 34.43 5.66

Tangshan 1254.00 1468.95 731.00 1452.00 1468.95 30.71 0.55

Qinhuangdao 226.67 251.33 295.05 244.00 295.05 9.77 5.23

Handan 428.67 478.18 603.00 454.00 603.00 24.90 5.98

Xingtai 308.00 386.92 481.89 354.00 481.89 24.84 5.15

Baoding 546.00 632.35 706.00 586.00 706.00 22.86 5.25

Zhangjiakou 412.67 475.25 368.00 456.67 475.25 8.94 2.08

Chengde 258.00 308.81 230.00 289.33 308.81 7.26 2.68

Cangzhou 815.33 900.61 653.00 858.67 900.61 12.18 3.44

Langfang 345.33 433.12 506.00 363.33 506.00 22.95 6.22

Hengshui 220.00 274.87 290.00 253.33 290.00 10.00 3.67

Fig. 5 Regulation zones of urban-industrial land of Beijing-
Tianjin-Hebei Urban Agglomeration
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Conclusions

Using the MATLAB R2016a software modeling
tools to establish the GM (1, 1) model and RBF
neural network model, respectively, this paper pre-
dicted the demand of urban-industrial land in
Beijing-Tianjin-Hebei Urban Agglomeration. Com-
paring the predicted results with the actual value
of urban-industrial land in Beijing, Tianjin, and 11
prefecture-level cities in Hebei Province, we deter-
mined the reasonable prediction model for urban-
industrial land after testing the accuracy of the two
prediction models. The results showed that RBF
neural network model was the more reasonable
prediction model for urban-industrial land. Using
the predicted results of the RBF neural network
model, combining expected indicators of BOverall
Land Use Plan (2006–2020)^ in Beijing and Tian-
jin, as well as in 11 prefecture-level cities in Hebei
Province in the planning target year, determined
remaining usable time of urban-industrial land.
Finally, combined with the actual scale of urban-
industrial land in 2015 and the predicated scale of
urban-industrial land in 2020, the remaining usable
time of each city’s urban-industrial land was cal-
culated in terms of the average annual growth rate of
urban-industrial land from 2009 to 2015. According to
the comparative relationship between the remaining us-
able time and the remaining time of the overall land use
plan (5 years), urban-industrial lands were divided into
three kinds of regulation zones: reasonable reduction
zone, optimized adjustment zone, and core development
zone. This paper can provide reference for regulation
zoning of urban-industrial land in developing countries
and regions.

Funding information This study has been supported by Xi’an
University of Architectural Science and Technology Talents Sci-
ence and Technology Foundation (RC1813), National Natural
Science Foundation of China (41371226), Beijing Municipal Sci-
ence and Technology Project (Z161100001116016), State Schol-
arship Fund of China (201908610060), Shaanxi Soft Science
Research Program (2019KRM103) and Special Research Project
of Education Department of Shaanxi-Study of the mechanism of
collective construction land entering the land market from the
perspective of urban and rural integration.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

António, X., Maria, B., Rui, F., & Maria, S. (2018). A regional
composite indicator for analysing agricultural sustainability
in Portugal: A goal programming approach. Ecological
Indicators, 89, 84–100.

Aurbacher, J., & Dabbert, S. (2011). Generating crop sequences in
land-use models using maximum entropy and Markov
chains. Agricultural Systems, 104(6), 470–479.

Bartoli, A., Cavicchioli, D., Kremmydas, D., Rozakis, S., &Olper,
A. (2016). The impact of different energy policy options on
feedstock price and land demand for maize silage: The case
of biogas in Lombardy. Energy Policy, 96, 351–363.

Beijing Bureau of Statistics. (2017). Beijing statistical yearbooks
(2010~2016). Beijing: China Statistical Press.

Chen, L., & Pai, T. (2015). Comparisons of GM (1, 1) and BPNN
for predicting hourly particulate matter in Dali area of
Taichung City, Taiwan. Atmospheric Pollution Research,
6(4), 572–580.

Chen, Z., Tang, J., Wan, J., & Chen, Y. (2017). Promotion incen-
tives for local officials and the expansion of urban construc-
tion land in China: Using the Yangtze River Delta as a case
study. Land Use Policy, 63, 214–225.

Fu, H., Manogaran, G., Wu, K., Cao, M., Jiang, S., & Yang, A.
(2019). Intelligent decision-making of online shopping be-
havior based on internet of things. International Journal of
Information Management. https://doi.org/10.1016/j.
ijinfomgt.2019.03.010.

Ghritlahre, H., & Prasad, R. (2018). Exergetic performance pre-
diction of solar air heater using MLP, GRNN and RBF
models of artificial neural network technique. Journal of
Environmental Management, 223, 566–575.

Hao, S., Xie, T., Wu, W., Gao, X., Deng, L., & Li, Q. (2014).
Construction land demand forecast in Chengdu city based on
a RBF neural network. Resources Science, 36(6), 1220–
1228.

He, B. J., Zhao, D. X., Zhu, J., Darko, A., & Gou, Z. H. (2018).
Promoting and implementing urban sustainability in China:
An integration of sustainable initiatives at different urban
scales. Habitat International, 82, 83–93.

He, B.-J., Zhu, J., Zhao, D.-X., Gou, Z.-H., Qi, J.-D., & Wang, J.
(2019). Co-benefits approach: Opportunities for
implementing sponge city and urban heat island mitigation.
Land use policy, 86, 147–157.

Hebei Bureau of Statistics. (2017). Hebei statistical yearbooks
(2010~2016). Shijiazhuang: China Statistical Press.

Hermanns, T., Katharina, H., Hannes, J. K., Katharina, S., Li, Q.,
& Faust, H. (2017). Sustainability impact assessment of
peatland-use scenarios: Confronting land use supply with
demand. Ecosystem Services, 26, 365–376.

Kelly, O., Carlos, A., Gustavo, E., Alexandre, S., Nero, L.,
Getulio, F., José, R., & Alexandre, R. (2018). Markov chains
and cellular automata to predict environments subject to
desertification. Journal of Environmental Management,
225, 160–167.

Kun, Y., Meie, P., Yi, L., Kexin, C., Yisong, Z., & Xiaolu, Z.
(2018). A time-series analysis of urbanization-induced im-
pervious surface area extent in the Dianchi lake watershed

Environ Monit Assess (2019) 191: 412 Page 13 of 14 412

https://doi.org/10.1016/j.ijinfomgt.2019.03.010
https://doi.org/10.1016/j.ijinfomgt.2019.03.010


from 1988–2017. International Journal of Remote Sensing,
1–20.

Li, Y., Chen, X., Tang, B., & Wong, S. (2018). From project to
policy: Adaptive reuse and urban industrial land restructuring
in Guangzhou city. China. Cities, 2018, 68–76. https://doi.
org/10.1016/j.cities.2018.05.006.

Li, C., Gao, X., He, B.-J., Wu, J., & Wu, K. (2019a). Coupling
coordination relationships between urban-industrial land use
efficiency and accessibility of highway networks: Evidence
from Beijing-Tianjin-Hebei Urban Agglomeration, China.
Sustainability, 11, 1446.

Li, C., Wu, K., & Gao, X. (2019b). Manufacturing industry
agglomeration and spatial clustering: Evidence from Hebei
Province, China. Environment, Development and
Sustainability. https://doi.org/10.1007/s10668-019-00328-1.

Lin, J. (2009). Urban rural construction land growth in China.
Beijing: The Commercial Press.

Liu, S., Dang, Y., & Fang, Z. (2004). Grey systems theory and
applications. Beijing: Science Press.

Maria, S., Claire, H., Alice, B., Paul, J. B., James, C., Paul, G.,
David, H., Jerry, K., &Kevin, A. (2016). A nexus perspective
on competing land demands:Wider lessons from aUK policy
case study. Environmental Science & Policy, 59, 74–84.

Ministry of Housing and Urban-Rural Development of China.
(2011). Code for classification of urban land use and plan-
ning standards of development land (GB 50137–2011).
Beijing: China Architecture & Building Press.

Monteiro, D. S. E., Dourado, M. R., & Dias, C. C. (2018). Bee-
inspired RBF network for volume estimation of individual
trees. Computers and Electronics in Agriculture, 152, 401–
408.

Morteza, T., Abbas, R., Farshad, S., & Abdeshahi, A. (2018).
Assessment of energy consumption and modeling of output
energy for wheat production by neural network (MLP and
RBF) and Gaussian process regression (GPR) models.
Journal of Cleaner Production, 172, 3028–3041.

National Bureau of Statistics of China (NBSC). (2017). China
Statistical Yearbook for Regional Economy (2010~2016).
Beijing: Architecture & Building Press.

Panigrahi, J. K., & Mohanty, P. K. (2012). Effectiveness of the
Indian coastal regulation zones provisions for coastal zone
management and its evaluation using SWOTanalysis.Ocean
& Coastal Management, 65, 34–50.

Pignatti, E., Leng, S., Carlone, D. L., & Breault, D. T. (2016).
Regulation of zonation and homeostasis in the adrenal cortex.
Molecular and Cellular Endocrinology, 441, 146–155.

Pilehforooshha, P., Karimi, M., & Taleai, M. (2014). A GIS-based
agricultural land-use allocation model coupling increase and
decrease in land demand. Agricultural Systems, 130, 116–
125.

Qiu, R., Xu, W., & Zhang, J. (2015). The transformation of urban
industrial land use: A quantitative method. Journal of Urban
Management, 4(1), 40–52.

Reshmidevi, T. V., Eldho, T. I., & Jana, R. (2009). A GIS-
integrated fuzzy rule-based inference system for land suit-
ability evaluation in agricultural watersheds. Agricultural
Systems, 101(1–2), 101–109.

Shu, H., & Xiong, P. P. (2019). Reallocation planning of urban
industrial land for structure optimization and emission reduc-
tion: A practical analysis of urban agglomeration in China’s
Yangtze River delta. Land Use Policy, 81, 604–623.

Tianjin Bureau of Statistics. (2017). Tianjin statistical yearbooks
(2010~2016). Tianjin: China Statistical Press.

Xiao, D. (2012). Research on factors of urban and industrial-
mining land growth and its spatial variation based on spatial
quantitative model: An empirical analysis on prefectural-
level units in the southeastern part of Hu’s Line of China.
Beijing: Peking University.

Xie, B., Chen, Y., Bai, Z., & Pei, T. (2014). A quantitative study on
the interaction between urban industrial land use changes and
economic development in Gansu Province. Journal of Arid
Land Resources and Environment, 28(10), 7–13.

Yang, J., Guo, A., Li, Y., Zhang, Y., & Li, X. (2018a). Simulation
of landscape spatial layout evolution in rural-urban fringe
areas: A case study of Ganjingzi District. GIScience &
Remote Sensing, 56(3), 388–405.

Yang, J., Liu, W., Li, Y., Li, X., & Ge, Q. (2018b). Simulating
intraurban land use dynamics under multiple scenarios based
on fuzzy cellular automata: A case study of Jinzhou district,
Dalian. Complexity, 2018, 1–17.

Yang, K., Yu, Z., Luo, Y., Yang, Y., Zhao, L., & Zhou, X. (2018c).
Spatial and temporal variations in the relationship between
lake water surface temperatures and water quality - A case
study of Dianchi lake. Science of the Total Environment, 624,
859–871.

Yang, K., Yu, Z., Luo, Y., Zhou, X., & Shang, C. (2019). Spatial-
temporal variation of lake surface water temperature and its
driving factors in Yunnan-Guizhou Plateau.Water Resources
Research. https://doi.org/10.1029/2019WR025316.

Yin, K., Xu, Y., Li, X., & Jin, X. (2018). Sectoral relationship
analysis on China’s marine-land economy based on a novel
grey periodic relational model. Journal of Cleaner
Production, 197, 815–826.

Yong, L., Xingguang, C., Bo-Sin, T., & Wai, W. S. (2018). From
project to policy: Adaptive reuse and urban industrial land
restructuring in Guangzhou city, China. Cities, 82, 68–76.

Zhai, T., Guo, J., Ou, M., & Kong, W. (2015). Study on allocation
of total construction land in Jiangsu province based on the
Gini coefficient. China Population. Resources and
Environment, 25(4), 84–91.

Zhang, D., Zang, G., Li, J., Ma, K., & Liu, H. (2018). Prediction of
soybean price in China using QR-RBF neural network mod-
el. Computers and Electronics in Agriculture, 154, 10–17.

Zhao, R. (2012). The expansion and the driving mechanism of the
urban-industrial land in Hebei province. Beijing: Peking
University.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

412 Page 14 of 14 Environ Monit Assess (2019) 191: 412

https://doi.org/10.1016/j.cities.2018.05.006
https://doi.org/10.1016/j.cities.2018.05.006
https://doi.org/10.1007/s10668-019-00328-1
https://doi.org/10.1029/2019WR025316

	Demand...
	Abstract
	Introduction
	Study area and methods
	Study area
	Methods
	Gray relational analysis
	GM (1, 1) prediction model
	RBF neural network prediction model
	Methods for prediction accuracy testing
	Data collection and processing
	Data collection
	Data processing


	Results and discussion
	Gray relational grade of the indicators
	Demand prediction of urban-industrial land
	Results of the GM (1,1) prediction model
	Results of RBF neural network prediction model

	Prediction accuracy testing for the two models
	Regulation zoning of urban-industrial land
	Policy implications

	Conclusions
	References


