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Abstract This study proposes a fuzzy multi-stakeholder
socio-optimal methodology for joint water and waste
load allocation (WWLA) in river systems while address-
ing upstream flow uncertainty and different social choice
rules (SCRs). QUAL2Kw, as the numerical river water
quality model, is executed for various scenarios of water
and waste loads to construct a comprehensive dataset of
plausible settings, which is in turn used to train a meta-
model in the form of multivariate linear regressions. The
river upstream flow as the main uncertain parameter is
assessed by fuzzy transformation method (FTM). Then,
for different confidence levels of fuzzy uncertain input,
the meta-model is linked with the non-dominated sorting
genetic algorithm (NSGA-II) multi-objective optimiza-
tion model to generate trade-off curves among the stake-
holders’ utility functions. Subsequently, five SCRs are
utilized at each confidence level to determine the fuzzy
interval solutions for each objective. Next, the possibility
degree method is applied to rank the fuzzy interval
solutions in each α-cut level. Finally, considering the
priorities of all stakeholders, the fallback bargaining
method is used to specify the most appropriate SCR in
each confidence level. Application of the proposed meth-
odology in Kor River, Iran, shows its efficacy to realize

the socio-optimal WWLA scenario(s) among different
stakeholders.

Keywords Fuzzy transformationmethod . NSGA-II .
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Introduction

River systems are an integral part of the sustainable
development in different communities (Sadegh et al.
2010). Over the past few decades, joint water and
waste load allocation (WWLA) has become a serious
challenge in integrated river management (Karamouz
et al. 2003; Nikoo et al. 2013). This is mainly due to
agricultural and industrial expansion, population
growth, and consequently excessive water pollution
(Tavakoli et al. 2014; Sadegh and Kerachian 2011),
exacerbated by climate change (Mallakpour et al.
2018). This is more pressing at the presence of nu-
merous stakeholders with conflicting interests in the
river basin (Karamouz et al. 2008; Nikoo et al.
2012a, b). Therefore, the decision makers were
prompted to adopt allocation policies that are com-
patible with water equity, efficiency, and sustainability
(Nikoo et al. 2012a). Social acceptance of the joint
WWLA plans in river systems, however, is
overlooked in the literature, and lack of socio-
optimal plans is tangible. This research proposes
multi-stakeholder socio-optimal solutions for joint
WWLA based on the priorities of all involved stake-
holders given the underlying uncertainties.
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There are different studies in the literature that con-
sider water quality or waste allocation as a constraint in
single or multi-objective optimization models (Cao
2005; Karamouz et al. 2008; Kerachian and Karamouz
2007; Karamouz et al. 2009; de Moraes et al. 2010;
Paredes-Arquiola et al. 2010; Hakimi-Asiabar et al.
2010; Mahjouri and Ardestani 2011; Nikoo et al.
2016; Yao et al. 2016; Afshar and Masoumi 2016;
Allam et al. 2016a; Xu et al. 2016; Xu et al. 2017;
Saberi and Niksokhan 2017; Afshar et al. 2018; Moridi
2019; Saadatpour et al. 2019; Jamshidi et al. 2019;
Aghasian et al. 2019) or as an integral component in
water management systems (Mousavi et al. 2004;
Labadie 2004; Ghosh and Mujumdar 2010; Nikoo
et al. 2013; Estalaki et al. 2015; Mahjouri and Abbasi
2015; Farhadi et al. 2016; Meng et al. 2017; Saberi and
Niksokhan 2017; Xia et al. 2017; Xu et al. 2017; Huang
et al. 2018; Yu and Lu 2018). In these studies, water
quality is taken into consideration as a static condition,
which does not replicate the dynamic nature of the water
quantity (Zhang et al. 2010). Moreover, studies that
have directly performed joint WWLA in a river system
are limited in number (Dai and Labadie 2001; Zhang
et al. 2010; Nikoo et al. 2012b; Nikoo et al. 2013; Liu
et al. 2014; Tavakoli et al. 2014; Soltani and Kerachian
2018), neither of which has considered socio-optimal
conflict resolution. Models like social choice rules
(SCRs) and fallback bargaining method can modify
the solutions provided by the joint WWLA methods,
which are explored in this study.

Planning under uncertainty is another significant is-
sue for decision makers (Zhang et al. 2010). An inte-
grated optimization model for joint WWLA should be
able to handle the underlying uncertainties both in meth-
odology and in boundary condition (Zhang et al. 2010;
Shojaeezadeh et al. 2018). Considering the parameters’
uncertainties in WWLA models, similar to any other
modeling practice, can markedly improve the reliability
of the results (e.g., Sadegh et al. 2018). Source of
uncertainty is the defining factor in selecting the analysis
methods. Classical stochastic models have a high com-
putational burden and application of probabilistic distri-
butions in large-scale problems may not be specifically
useful (Ghosh and Mujumdar 2010; Naeini et al. 2018).
Fuzzy set theory is a powerful tool when data is sparse
and incomplete, or when data inaccuracy is the source of
uncertainty, in which case, it is more appropriate to
consider uncertain parameter as intervals (Tavakoli
et al. 2014; Sadegh and Kerachian 2011). Uncertainty

analysis in the field of water or waste load allocation in
the form of randomness or fuzziness of parameters has
been considered in the literature (Singh et al. 2007; Li
et al. 2008; Qin et al. 2009; Mesbah et al. 2009;
Niksokhan et al. 2009; Sadegh and Kerachian 2011;
Poorsepahy-Samian et al. 2012; Nikoo et al. 2012a, b;
Mahjouri and Abbasi 2015; Zolfagharipoor and Ahmadi
2016; Xu et al. 2017; Nafarzadegan et al. 2018;
Sedghamiz et al. 2018; Jamshidi et al. 2019). However,
uncertainty analysis of joint WWLA is only proposed in
Nikoo et al. 2013, in a single objective optimization
problem, to the best of authors’ knowledge. Due to
involvement of many influential factors such as interac-
tion of stakeholders, variations of assimilative capacity
throughout the river, and water flow dynamics in joint
WWLA problems, it is inevitable to utilize a multi-
objective optimization model (Zhang et al. 2010;
Nikoo et al. 2012a, b; Liu et al. 2014). Hence, this
research proposes a fuzzy multi-objectiveWWLAmod-
el that generates intervals of objectives in each fuzzy
degree and utilizes the possibility degree method to rank
the fuzzy intervals in each confidence level.

Need for a comprehensive study that considers dif-
ferent aspects of an integrated allocation plan in a uni-
fied framework for joint WWLA is clear. These aspects
include numerical river water quality model, multi-
objective optimization of WWLA, and more important-
ly, finding the multi-stakeholders socio-optimal solu-
tions based on the priorities of all involved stakeholders.
In this study, to bridge these scientific gaps, a non-linear
multi-stakeholder socio-optimal methodology is pro-
posed for joint optimization of WWLA in river systems
that accounts for the upstream flow uncertainty. Accord-
ingly, the water quality model of the river system was
developed and calibrated using QUAL2Kw model. The
validated model was executed for various water and
waste load scenarios to construct a comprehensive
dataset of plausible environmental situations, which is
in turn used to train a substitute meta-model in the form
of multivariate linear regressions. Then, the upstream
flow as the most substantial uncertain parameter in the
river was analyzed by fuzzy transformation method
(FTM). The meta-model was linked with the non-
dominated sorting genetic algorithm (NSGA-II) multi-
objective optimization model at different confidence
levels (α-cuts) of the fuzzy uncertain parameter to (i)
maximize the allocated water and waste load allocation
to different stakeholders, and (ii) minimize the deviation
of water quality variables from the standard levels. The
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NSGA-II model provides trade-off curves among stake-
holders’ utility functions for differentα-cut levels. Next,
at each confidence level, five SCRs were utilized to
determine the fuzzy intervals for each objective. Subse-
quently, the possibility degree method was applied to
rank the resulted fuzzy intervals in each α-cuts level.
Finally, according to the priorities of stakeholders, the
fallback bargaining method specifies the most appropri-
ate SCRs in each α-cuts level. The proposed methodol-
ogy considers the quantity of discharged waste, allocat-
ed water to different users, and river water quality. The
water quality variables are 5-day biochemical oxygen
demand (BOD5), total suspended solid (TSS), and dis-
solved oxygen (DO), which were assessed at five
checkpoints.

Novelty of this study lies in incorporating social
choice rules to achieve a socio-optimal solution, which
is agreed among multi-stockholders, in joint WWLA
problems. This study also further states the knowledge
by addressing uncertainty of environmental factors (riv-
er upstream flow) in joint WWLA problems and
implementing the possibility degree method to rank
the fuzzy interval solutions in each confidence level.
Furthermore, this study establishes a quantitative frame-
work for considering the uncertainty in joint WWLA by
a fuzzy multi-objective model and initiates the first step
to thoroughly examine the application of SCRs and
fallback bargaining method to achieve a socio-optimal
plan in joint WWLA. The efficiency and applicability of
the proposed methodology were assessed in the Kor
River system, southwest of Iran. This study is presented
in five sections. Following the methodology in the next
section, the case study is presented in the BCase study^
section. The results and discussions are reported in the
BResults^ section, which is followed by the conclusions
in the BSummary and conclusion^ section.

Methodology

The proposed methodology consists of five main steps
(Fig. 1). First, essential information including hydrolog-
ical and geometrical parameters of the Kor river system
was collected based on the Fars Regional Water
Authority’s (FRWA) reports, and main pollution sources
and water users throughout the river path were deter-
mined. Accordingly, the main objective functions and
relative constraints were defined to construct the optimi-
zation framework. Second, the QUAL2Kw model was

parameterized to develop the multi-index river water
quality model. To reduce the runtime and couple with
the multi-objective water and waste load allocation
(WWLA) model, the QUAL2Kw model was run for
different allocated water and waste load scenarios and a
comprehensive input-output dataset was obtained, which
was in turn used to train a substitute meta-model in the
form of multivariate linear regressions. In addition, up-
stream river flow, water depth, amount of waste load
(BOD5 and TSS) discharge, temperature, and conductiv-
ity in river water, which represent various geometric,
hydraulic, and environmental variables, were assessed
in sensitivity analysis of the QUAL2Kw model. Accord-
ingly, the upstream flow in the river was detected as the
most important stochastic parameter of the river. In this
study, the main source of uncertainty is related to the
inexactness of upstream flow in the river, which is partly
because of lack of observation and missing data, and
partly due to the ambiguity or imprecision in measured
data. Thus, in the third step, general fuzzy transform
method (FTM) was utilized to determine the fuzzy form
of upstream flow in different confidence levels. Next, the
fuzzy multi-objective WWLA model was developed by
coupling the water quality meta-model and the NSGA-II
model to optimize objective functions in different confi-
dence levels. Fuzzy NSGA-II multi-objective WWLA
model for eachα-cut level returns a series of Pareto fronts
among various objectives. Finally, five SCRs were uti-
lized to determine the fuzzy intervals for each objective in
each confidence level. This stage continued by using the
possibility degree method to rank the fuzzy intervals in
each α-cut level. Based on the priorities of all stake-
holders, the fallback bargaining method specified the
most desirable SCRs in each confidence level.

QUAL2Kw model and substitute meta-model

QUAL2Kw is a flexible and precise model to simulate
fate and transport of pollutants in the watershed (Pelletier
et al. 2006) and has been widely used in river water
quality management (Ning et al. 2001; Pelletier et al.
2006; Cho and Ha 2010; Zhang et al. 2012; Shojaei
et al. 2015; Zhu et al. 2015; Allam et al. 2016a, 2016b;
Chaudhary et al. 2018). This model considers the disper-
sion and advection transport in the longitudinal direction
of the river stream. The geometric, hydraulic, and the
environmental data of the river system are required to
develop the QUAL2Kw model. In order to develop the
QUAL2Kw model, the river has to be divided into
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several intervals with similar geometric, hydraulic, and
qualitative characteristics. In this model, flow rate, depth,
temperature, amount and location of waste load dis-
charge, concentration of river water quality variables such
as DO and BOD5, alkalinity, pH, pathogens, phytoplank-
ton, organic and inorganic phosphorus (SRP), nitrogen,
and inorganic solids are the input data (forcing).

The model was calibrated by tuning the parameters
associated with the river quality including DO, BOD5,
and TSS. Model calibration was performed to minimize
the difference between the simulated and measured
values of river water quality variables. Next, a range of
probable changes in the allocated water and waste load
to different stakeholders were determined and input
variables were perturbed with white noise to mimic the

stochasticity of the system. The QUAL2Kw model was
executed to estimate the concentration of the river water
quality variables in the five checkpoints along the river
path. The resulted dataset is recorded to create a substi-
tute model for the QUAL2Kw model in the form of
multivariate linear regressions. The obtained meta-
model can readily explain the relationship between the
allocated water and waste load, upstream flow rate, and
the concentration of river water quality variables at each
checkpoint.

Uncertainty analysis

There are the different uncertain parameter(s) in the
spatio-temporal simulation of river water quality. In order

Developing and parameterizing a river water quality model using QUAL2Kw model

Developing multivariate linear regressions as a substitute model of QUAL2Kw 

3: Uncertainty analysis 

Sensitivity analysis on the effective 

parameter(s) of the river system 

Uncertainty analysis on river upstream 

flow by general FTM

Executing QUAL2Kw model based on different water and waste load scenarios for 

stakeholders and upstream flow rate to construct a comprehensive input-output dataset

2: Water quality model and substitute meta-model 

1: Data collection

Determining stakeholders, objective 

functions and related constraints

Gathering hydrological and geometrical 

parameters of the Kor river system 

Start

5: Socio-optimal solutions 

End

Applying fallback bargaining method to specify the most appropriate SCR in each 

confidence level based on the priorities of all stakeholders

Utilizing five SCRs to determine fuzzy intervals for each objective

Using the possibility degree method to rank the fuzzy intervals in each α-cut level

4: Fuzzy multi-objective WWLA

Running the NSGA-II model in different 

confidence levels of fuzzy parameter

Determining Pareto front for all possible values of the uncertain parameters in each α-cut level

Linking the developed meta-model and 

NSGA-II multi-objective WWLA model 

Fig. 1 Proposed methodology to achieve socio-optimal WWLA in the river system. WWLA, water and waste load allocation; SCR, social
choice rule; FTM, fuzzy transform model
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to determine the most influential uncertain input, a sensi-
tivity analysis was performed and the river upstream flow
was selected as the most influential uncertain variable in
the current WWLA problem. FTM (Hanss 2003; Hanss
and Klimke 2004) as an advanced fuzzy arithmetic meth-
od has a great potential to evaluate a range of uncertain
data in the non-linear and non-monotonic models, such as
QUAL2Kw, and can effectively improve the applicability
and reliability of uncertainmodels (Ghosh andMujumdar
2010; Nikoo et al. 2013; Alizadeh et al. 2017). Hence,
given the non-monotonic and non-linear nature of
WWLA in a river system, the general FTM model was
applied to address the uncertainty of upstream river flow.
Accordingly, based on the membership functions of the
fuzzy parameter, all possible values of the uncertain
parameter in each confidence level (α-cut level) were
characterized. For more details and applications of
FTM, refer to Hanss (2003), Nikoo et al. (2013), and
Alizadeh et al. (2017).

Fuzzy multi-objective WWLA model

There are many stakeholders with numerous priorities
and sometimes conflicting utilities involved in a
WWLA problem. Accordingly, to achieve an agreement
based on the utilities of all stakeholders, a multi-
objective WWLA model is required (Nikoo et al.
2013). Such a model was developed herein by coupling
the multivariate linear regression (water quality surro-
gate model) and the NSGA-II models. NSGA-II (Deb
et al. 2000) is a multi-objective optimization algorithm
that provides a trade-off curve (Pareto front) among the
objectives. The Pareto front in turn provides compro-
mise solutions for the optimization problem (Deb et al.
2000; Nikoo et al. 2014). The multi-objective WWLA
model was executed for each possible value of the fuzzy
parameter in all α-cut levels to account for the underly-
ing uncertainties. Subsequently, for each specific α-cut
level, trade-off curves were derived. In this study, the
fuzzy multi-objective WWLA model maximizes the
allocated water to three main water users along the river.
Also, to use the river’s self-purification capacity, the
optimization model maximizes the allocated waste load
to four different dischargers, while minimizing the de-
viation of water quality variables from the standard
threshold. The main utility functions of different in-
volved stakeholders in joint WWLA problem are de-
scribed as follows:

Max h1 ¼ ∑
nwu

i¼1
xi

� �
i ¼ 1; 2; :::; nwu ð1Þ

Max h2 ¼ ∑
nwl

j¼1
y j

 !
j ¼ 1; 2 :::; nwl ð2Þ

Min h3 ¼ WDO � VDO=DOMaxð Þ þWBOD

� VBOD=BODMaxð Þ
þWTSS � VTSS=TSSMaxð Þ

ð3Þ

− ∑
4

i¼1
xi þ ∑

3

j¼1
y j≤qup−Ed ð4Þ

− ∑
3

i¼1
xi þ y j≤qup j ¼ 1 i ¼ 1; 2; 3 ð5Þ

− ∑
3

i¼1
xi þ ∑

2

j¼1
y j≤qup ð6Þ

− ∑
4

i¼1
xi þ ∑

2

j¼1
y j≤qup ð7Þ

Cc;DO ¼ R ∑
i−1

i¼1
xi; ∑

j−1

j¼1
y j; qup;Cup;DO

 !
≥CS;DO ∀c ¼ 1; 2; :::; 5 ð8Þ

Cc;TSS ¼ g ∑
i−1

i¼1
xi; ∑

j−1

j¼1
y j; qup;Cup;TSS

 !
≤CS;TSS ∀c ¼ 1; 2; :::; 5 ð9Þ

Cc;BOD ¼ f ∑
i−1

i¼1
xi; ∑

j−1

j¼1
y j; qup;Cup;BOD

 !
≤CS;BOD ∀c ¼ 1; 2; :::; 5

ð10Þ
where h signifies objective function in the optimization
model. In this case, h1 is the total amount of waste load
discharged to the river system, which is considered as the
first objective, h2 is the total amount of allocated water to
different users as the second objective, and h3 is the
deviation of water quality variables from standard (third
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objective). The Fars Environmental Organization (FEO)
as the local authority enforcing river water quality is
considered as the third stakeholder, corresponding to third
objective. xi and yj indicate the amount of dischargedwaste
load by ith discharger and the amount of water allocated to
the jth water user, respectively. In this study, there are four
waste load dischargers (j) and three water users (i). WDO,
WBOD, andWTSS define the weights of the three river water
quality variables in the third objective, and V shows the
variation of water quality variable from the standard.
DOMax, BODMax and TSSMax show the maximum values
of DO, BOD5, and TSS in the river path. qup is the daily
upstream flow rate in the river system and Ed is the river
ecological demand. In fact, Eq. 4 dictates that after all
waste load dischargers and water users supply their needs,
the river flow should hold the capability to meet the
ecological needs of the downstream. Cc and Cup show
the concentration in the cthcheckpoint and upstream, re-
spectively, and Cs is their standard level.

Socio-optimal solution(s)

There are different practical methods to resolve the
conflicts among all involved stakeholders in a river
system including social choice rules (SCRs) and fall-
back bargaining method (Sheikhmohammady and
Madani 2008; Raei et al. 2017; Alizadeh et al. 2017).
The social choice theory is a powerful tool in facilitating
agreement among stakeholders when they have various
preferences on available alternatives. This approach
prefers to satisfy the priorities of all stakeholders in the
form of compromised solutions instead of prioritizing
each individual. The socio-optimal solutions are accept-
able by all stakeholders, while solutions might or not be
their first priority. The social choice theory is an effec-
tive method for decision-making in the social, econom-
ic, and political fields (Sheikhmohammady and Madani
2008; Sheikhmohammady et al. 2010; Madani et al.
2014a). Hence, in this study, five SCRs including
Condorcet’s practical method (CPM), Condorcet choice
(CC), Borda scoring (BS), plurality rule (PR), and me-
dian voting rule (MVR) were employed to gain socio-
optimal fuzzy intervals for each objective in different α-
cut levels. Due to the different criteria for each SCR, the
socio-optimal solution by each rule may differ. The
resulted fuzzy intervals indicate the bounds (lower and
upper) of each objective. The main concept behind the
mentioned SCRs is presented herein.

& Condorcet’s practical method (CPM): Based on
pairwise comparisons of the alternatives, CPM se-
lects an alternative as socio-optimal that obtains the
majority of reliance on the first priority level. If such
an alternative does not exist, the one with the highest
reliance (which may not be the majority reliance) on
the second priority level is the CPM solution, and so
on (Nurmi 1999; Brams and Kilgour 2001).

& Condorcet choice (CC): For each alternative, this
rule evaluates how many times it is preferred in all
priority levels. The winner alternative is, hence,
preferred by a majority of participants.

& Borda scoring (BS): Each stakeholder allocates the
score s − i to his ith most preferred alternative while
s defines the number of alternatives. The score of ith
alternative is equal to the number of all alternatives
that i was preferred against. The alternative(s) that
has (have) the highest total score is (are) selected as
the Borda choice set (Sheikhmohammady and
Madani 2008; Mahjouri and Bizhani-Manzar 2013).

& Plurality rule (PR): This rule focuses on the first
level of priority, regardless of any other quality
levels, and selects the alternative that has the highest
number of selection as the socio-optimum choice
(Reynolds et al. 2008).

& Median voting rule (MVR): After ranking the alter-
natives by stakeholders, the number of times that
alternatives are preferred in each quality level is
calculated. Then, at the highest possible quality,
the first alternative associated with the majority of
support is defined as the MVR choice (Bassett and
Persky 1999; Alizadeh et al. 2017).

Due to using five SCRs to achieve socio-optimal solu-
tions, all stakeholders bargain on their priorities and
should compromise on an individual SCR. To serve this
purpose, given the fuzzy nature of the proposed method-
ology, the obtained fuzzy interval in each α-cut level was
ranked and prioritized through possibility degree method.
Then, unanimity fallback bargaining (UFB) method
(Brams and Kilgour 2001) was applied to find the SCR
that is capable to maximize the stakeholder’s minimum
satisfaction. Consequently, a bargaining agreement is
found (the compromise solution). For more details and
applications of SCRs, possibility degree method and UFB
refer to Brams and Kilgour (2001), Sheikhmohammady
and Madani (2008), Sheikhmohammady et al. (2010),
Madani et al. (2014a), Nikoo et al. (2016), Raei et al.
(2017), and Alizadeh et al. (2017).
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Case study

The efficacy of the proposed methodology was evaluated
in a part of the Kor River system in Fars Province, Iran.
The Kor River system with the total area of 9650 m2

originates from the Zagros mountain range and dis-
charges to the Bakhtegan Lake in Fars Province, Iran.
This river passes through different cities including
Sivand, Marvdasht, Kenareh, Seidan, Ghaderabad,
Sourian, and Safashahr. It is considered as the most
important river of the Fars Province due to its vital role
in agriculture and supplying ecological demand of the
Bakhtegan and Tashk lakes. This river is regulated by the
Doroodzan Reservoir Dam and irrigates a large agricul-
tural sector. The Kor River receives various types of
pollution from the urban, industrial, and agricultural
sources. Based on FRWA’s report, the pollution from

Table 1 The multivariate linear regressions for DO concentration
as the meta-model

Checkpoint
number

Multivariate linear regression

1 DOC1 ¼ 6:6062þ −0:0833� O1ð Þ

2 DOC2 ¼ 8:564þ −0:228� O2ð Þ þ −0:306� DOC1ð Þ

3 DOC3 ¼ −4:401þ −0:171� O3ð Þ þ 1:625� DOC2ð Þ

4 DOC4 ¼ −0:163þ 0:144� O5ð Þ þ 1:0204� DOC3ð Þ

5 DOC5 ¼ −23:771þ −0:346� O7ð Þ þ 4:534� DOC4ð Þ

DOCi and Oi: the DO concentration at the ith checkpoint and ith

water user/waste load discharger

Check point 5

Water user 3

Check point 4

Water user 2

Water user 1

Check point 3 

Check point 2

Check point 1

Doroodzan Dam Waste load 
discharger 1

Waste load 
discharger 2

Waste load 
discharger 3

Waste load 
discharger 4

Fig. 2 The schematic view of the considered section of the Kor River system
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agricultural activities accounts for about 42% of the total
pollution discharged to this river and is the highest per-
centage in the Kor River contamination budget, followed
by urban and industrial sectors with 34% and 18% of the
total budget, respectively. The study area is constrained to
74.3 km of the Kor River system, located between two
large drainages of Sabz Mountain and Ahoochar, which
consists of three water users (the first stakeholder) and
four waste load dischargers (the second stakeholder). The
FEO as the third stakeholder enforces the river water
quality. The schematic positions of the water users and
waste load dischargers are presented in Fig. 2.

Results

In this study, the QUAL2Kw model was developed and
calibrated based on the geometry and velocity of the Kor
River at different sections provided in the Fars Regional
Water Authority’s (FRWA) report. The considered
length of the river was 73.4 km, which was divided into
12 segments throughout the Kor River flow path. Also,
as part of the boundary conditions for the model (head-
water), average annual flow, average annual

temperature, and pH were set to 31.153 m3/s, 18 °C,
and 7, respectively. The solution methods for integration
and pH were set to Euler and Newton-Raphson, respec-
tively. Using different potential forcing for the WWLA
for various stakeholders, the outputs of the QUAL2Kw
model were determined and utilized to construct a sub-
stitute meta-model in the form of multivariate linear
regressions. The meta-model determines the values of
three river water quality variables namely DO, BOD5,
and TSS in five consequent checkpoints along the river
path. To summarize, these multivariate linear regres-
sions are presented for DO in Table 1.

In this table, DOCi is the DO concentration at the ith
checkpoint and Oi is the DO concentration at the
ithwater user/waste load discharger location along the
Kor River path (Fig. 2). The substitute meta-model is
readily coupled with the multi-objectiveWWLAmodel.
Note that sensitivity analysis indicated that the river’s
upstream flow rate is the most influential uncertain

Table 2 The fuzzy form of riv-
er’s upstream flow rate for differ-
ent fuzzy degrees

Fuzzy degree Array number (l)

l = 1 l = 2 l = 3 l = 4 l = 5

0 21.81 26.48 31.15 35.83 40.50

0.25 24.14 28.82 33.49 38.16 –

0.50 26.48 31.15 35.83 – –

0.75 28.82 33.49 – – –

1 31.15 – – – –

Fig. 4 Pareto front of optimal solutions in α-cut level of 0 and
river’s upstream flow of 31.153 m3/s

0

0.25

0.5

0.75

1

20 25 30 35 40 45

eerged
yzzuF

River upstream flow(m3/s)

Upper bound
Lower bound

Fig. 3 The fuzzy degree of river’s upstream flow rate
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parameter. Hence, a symmetric triangular fuzzy mem-
bership function was applied for uncertainty analysis
according to its maximum, average, and minimum pos-
sible values. In this study, the average value for the
minimum recorded flow rate of 7 consecutive days with
a return period of 10 years (7Q10) was considered as the
river’s upstream flow rate. Using the variation of ob-
served data over the years 2008–2018 and engineering
judgment, the maximum and minimum values of the
uncertain parameter were determined in the range of ±
30% of the average value. Accordingly, the lower and
upper bounds of the uncertain parameter for five differ-
ent α-cut levels (0, 0.25, 0.5, 0.75, and 1) were deter-
mined by general fuzzy transform method (FTM),
which considers all possible values of the uncertain
parameter at different confidence levels. The set of fuzzy

points in each α-cut level is demonstrated in Fig. 3. In
this way, an interval of upstream flow rate with a con-
fidence level of α was simulated in each α-cut level,
which in turn was utilized in the fuzzy multi-objective
WWLAmodel. As shown, the points on the red (the left
side) and blue (right side) lines show the lower and
upper bounds of each fuzzy degree, respectively. Also,
the values of the upstream flow rate in each fuzzy degree
are presented in Table 2.

Considering three objectives including maximizing
the allocated water and waste load to stakeholders and
minimizing the deviation of water quality variables from
maximum allowable thresholds, the NSGA-II multi-ob-
jective WWLAmodel explored the feasible space to find
the optimal solutions. The corresponding weights of the
river water quality variables (WDO, WBOD, and WTSS)

Table 3 Lower and upper bounds of stakeholders’ utility functions in each α-cut level by social choice rules (SCRs)

Method α-cut level Objective 1* Objective 2** Objective 3***

CPM1 0 [20.663, 53.657] [28.186, 63.283] [0.237, 0.877]

0.25 [20.663, 53.657] [28.186, 63.283] [0.259, 0.877]

0.5 [42.066, 53.657] [28.186, 63.283] [0.259, 0.877]

0.75 [42.792, 53.657] [28.186, 63.283] [0.304, 0.877]

1 53.657 63.283 0.877

CC2 0 [33.545, 53.657] [28.186, 63.283] [0.237, 0.877]

0.25 [35.748, 53.657] [28.186, 63.283] [0.259, 0.877]

0.5 [42.066, 53.657] [28.186, 63.283] [0.259, 0.877]

0.75 [42.792, 53.657] [28.186, 63.283] [0.304, 0.877]

1 53.657 63.283 0.877

BS3 0 [33.545, 53.657] [28.186, 63.283] [0.237, 0.877]

0.25 [35.748, 53.657] [28.186, 63.283] [0.259, 0.877]

0.5 [42.066, 53.657] [28.186, 63.283] [0.259, 0.877]

0.75 [42.792, 53.657] [28.186, 63.283] [0.304, 0.877]

1 53.657 63.283 0.877

PR4 0 [20.663, 53.657] [28.186, 63.283] [0.237, 0.877]

0.25 [20.663, 53.657] [28.186, 63.283] [0.259, 0.877]

0.5 [42.066, 53.657] [28.186, 63.283] [0.259, 0.877]

0.75 [42.792, 53.657] [28.186, 63.283] [0.304, 0.877]

1 53.657 63.283 0.877

0 [20.663, 53.657] [28.186, 63.283] [0.237, 0.877]

0.25 [20.663, 53.657] [28.186, 63.283] [0.259, 0.877]

MVR5 0.5 [42.066, 53.657] [28.186, 63.283] [0.259, 0.877]

0.75 [42.792, 53.657] [28.186, 63.283] [0.304, 0.877]

1 53.657 63.283 0.877

1 Condorcet’s practical method, 2 Condorcet choice, 3 Borda scoring, 4 Plurality rule, 5Median voting rule

Objective 1*: water allocation (stakeholder 1); objective 2**: waste load allocation (stakeholder 2); objective 3***: deviation of water
quality variables from the standard (stakeholder 3)
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were considered 0.5, 0.3, and 0.2, respectively (Eq. 3). In
the NSGA-II optimization model, based on trial and error
analysis, the population size and the number of genera-
tions were set to 70 and 100, respectively. To develop a
fuzzy multi-objective WWLA model, the values of the
uncertain parameter in each α-cut level were considered
as forcing data. In other words, the NSGA-II model was
executed for all possible values of upstream flow rates,
obtained from the general FTM, and 15 trade-off curves
were obtained among stakeholders’ utility functions. The

fuzzy multi-objective WWLA model provided a set of
optimal solutions (Pareto front) that are the best match on
the mentioned objectives in each α-cut level. The Pareto
front space corresponding to each value of the river’s
upstream flow rate consists of 35 optimal solutions,
which cannot be dominated by any other point in the
feasible space. As an example, the Pareto front of the
fuzzy multi-objective WWLA model for α-cut level of 0
and for river’s upstream flow of 31.153 m3/s is presented
in Fig. 4.

(a) First objective (b) Second objective

(c) Third objective
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1
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eerged
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BS PR
MVR
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1
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1
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eerged
yzzuF

Deviation of water quality variables from standard
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PR MVR

Fig. 5 Fuzzymembership functions for water allocation (stakeholder 1) (a), waste load allocation (stakeholder 2) (b), and deviation of water
quality variables from standard levels (stakeholder 3) (c) through different SCRs
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In order to find the socio-optimal solutions, which are
acceptable by all involved stakeholders, five social
choice rules (SCRs) were applied. These rules select
the compromise solutions on the Pareto front in each
α-cut level. Subsequently, the lower and upper bounds

of the three objectives were determined by each SCR in
each α-cut level (Table 3). For the first objective (stake-
holder 1), the Borda scoring (BS) and Condorcet choice
(CC) methods select the same solutions on the Pareto
front for all α-cut levels and Condorcet’s practical

Table 4 Ranking of interval numbers through the possibility degree method for α-cut level 0

Objectives

Water users (objective 1) Waste load dischargers (objective 2) Water quality deviation (objective 3)

Pairwise comparison Possibility
degree (PA>B)

Pairwise comparison Possibility
degree (PA>B)

Pairwise comparison Possibility
degree (PA>B)

A B A B A B

CC - PR 0.695 CC - PR 0.500 CC - PR 0.500

CC - MVR 0.695 CC - MVR 0.500 CC - MVR 0.500

BS - PR 0.695 BS - PR 0.500 BS - PR 0.500

BS - MVR 0.695 BS - MVR 0.500 BS - MVR 0.500

CPM - PR 0.500 CPM - PR 0.500 CPM - PR 0.500

CPM - MVR 0.500 CPM - MVR 0.500 CPM - MVR 0.500

CC - BS 0.500 CC - BS 0.500 CC - BS 0.500

PR-MVR 0.500 PR-MVR 0.500 PR-MVR 0.500

CPM - CC 0.179 CPM - CC 0.500 CPM - CC 0.500

CPM - BS 0.179 CPM - BS 0.500 CPM - BS 0.500

Table 5 Preference matrix of three objectives for different α-cut levels

α-cut level Objective Preference level (ranking)

1st 2nd 3rd 4th 5th

0 1* CC, BS CPM, PR MVR – –

2** Identical# – – – –

3*** Identical – – – –

0.25 1 CC, BS CPM, PR MVR – –

2 Identical – – – –

3 Identical – – – –

0.5 1 Identical – – – –

2 Identical – – – –

3 Identical – – – –

0.75 1 Identical – – – –

2 Identical – – – –

3 Identical – – – –

1 1 Identical – – – –

2 Identical – – – –

3 Identical – – – –

1*: water allocation; 2**: waste load allocation; 3***: variation of water quality variables from the standard. Identical# means that all SCRs
have the same priority for this situation.
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method (CPM), plurality rule (PR), and median voting
rule (MVR) yield an identical alternative as their result.
Furthermore, for the second and third objectives (stake-
holders 2 and 3), all SCRs determined the same alterna-
tive in each α-cut level and consequently, the fuzzy
ranges of stakeholders’ utility function are similar.

For more clarification, fuzzy membership functions of
the involved stakeholders derived by different SCRs in
the uncertain environment are presented in Fig. 5. For the
second and third objectives (stakeholders 2 and 3), sim-
ilar socially optimal solutions were selected on all Pareto
fronts using different SCRs. This issue, in turn, returns
identical values of the fuzzy membership function. On
the other hand, for the first objective (stakeholder 1), there
are different solutions in α-cut levels 0 and 0.25. It is
notable that the range of variation for stakeholders’ utility
functions derived by CPM, PR, and MVR is wider than
those selected by CC and BS methods.

The results presented in Table 3 and Fig. 5 indicate
that, in terms of the first objective, widely different
solutions are found based on the stakeholders’ prefer-
ence functions. Therefore, it is necessary to find one
SCR, as the most appropriate method for all involved
stakeholders, to determine the compromise solution. In
this process, ranking the resulted interval numbers from
SCRs is an integral part of the negotiation process.
Possibility degree method was used herein to rank in-
terval numbers for each stakeholder and in each α-cut
level. As an example, for α-cut level 0, possibility
degree of different interval numbers in ascending or
descending orders is presented in Table 4. It should be
noted that only unique pairwise comparison obtained by
the possibility degree method, in which PA>B = 1−PB >

A, are presented here. However, all possible pairwise
comparisons among interval numbers were computed.

Objectives of this study may advocate conflicting solu-
tions, with the first two objectives (maximizing the
WWLA) preferring the interval numbers with more possi-
bility degree and the third objective (minimizing the devi-
ation of water quality variables from standard levels) pre-
ferring less possibility degree. Accordingly, interval num-
bers based on the values of possibility degree were sorted

in descending order given the first two objectives and in
ascending order corresponding to the third objective. For
instance, from the first objective point of view, PCC>

PR = PCC>MVR = PBS>PR = PBS>MVR = 0.695, which
shows that the possibility of interval numbers obtained by
CC and BS rules is larger than those obtained by PR and
MVR with the possibility degree of 0.695. The possibility
degree of 0.5 for the second and third objectives in eachα-
cut level expresses that the possibility of interval numbers
obtained by all SCRs in those levels is identical, and they
were ranked similarly. This means that all SCRs select the
same alternative in theα-cut levels of 0.5, 0.75, and 1. The
final ranking or preference matrix of different SCRs based
on the priority of objectives for eachα-cut level is listed in
Table 5. For example, from the first objective’s point of
view, in the first and second α-cut levels (0 and 0.25), CC
and BS were located in the first preference, followed by
CPM and PR as the second preference and MVR as the
third desired social choice rule.

Finally, it is necessary to find the most appropriate
SCR for all stakeholders, which is determined by the
bargaining process. In this study, the unanimity fallback
bargaining (UFB) method was utilized in various con-
fidence levels to determine the best rule for selecting the
socio-optimal solution. The minimum satisfaction of all
involved bargainers is maximized by UFB method with
sufficient support of stakeholders. This ensures that the
results are at the middle of the ranking list or above for
all stakeholders. Table 6 shows the compromise set of
UFB method in different α-cut levels, which are the
common agreement among stakeholders. As listed in
Table 6, Borda scoring (BS) and Condorcet choice (CC)
were suggested by UFB method in the α-cut levels of 0
and 0.25. For the rest of α-cuts (0.5, 0.75, and 1), all
SCRs are identical in terms of priority.

Summary and conclusion

In this study, a novel methodology was proposed for
optimization of water and waste load allocation
(WWLA) in river systems. This non-linear multi-

Table 6 The most appropriate SCRs in various α-cut levels based on UFB

α-cut level 0 0.25 0.5 0.75 1

Selected SCRs BS, CC BS, CC Identical# Identical Identical

UFB, unanimity fallback bargaining. Identical# means that all SCRs have the same priority for this situation
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stakeholder socio-optimal methodology considers the
upstream flow uncertainty in the optimization process.
The QUAL2Kw model was used in this framework to
develop and calibrate the river water quality model. The
QUAL2Kw model was then executed for various water
and waste load scenarios, the results of which were used
to train a set of multivariate linear regressions as the
substitute meta-model for QUAL2Kw. To consider the
parameter uncertainty, the upstream flow was analyzed
through general fuzzy transform method (FTM). Con-
sidering three objectives and various confidence levels
(α-cuts) of the fuzzy uncertain parameter, the fuzzy
multi-objective WWLA model was developed by cou-
pling the meta-model and NSGA-II. Due to the fuzzy
nature of the developed simulation-optimization model,
the developed optimization model was executed for all
possible values of the uncertain parameter and optimal
solutions on the Pareto front were determined. In order
to achieve the socio-optimal solution on each α-cut
level, five social choice rules (SCRs) were utilized.
Subsequently, the fuzzy intervals for each objective
were determined. Next, the possibility degree method
was applied to rank the fuzzy interval results in each α-
cut level, and the preferencematrix was derived. Finally,
based on the simultaneous preference of all involved
stakeholders, the unanimity fallback bargaining (UFB)
method specified the most appropriate SCR for each α-
cut level. The proposed methodology optimized water
and waste load allocation to different users, while con-
sidering the river water quality in a unified framework.
The results showed that for the first two firstα-cut levels
(0, 0.25), stakeholders agreed on Borda scoring and
Condorcet choice methods for optimal WWLA in the
Kor River system. For the rest of α-cut levels (0.5, 0.75,
and 1), based on the results of possibility degree meth-
od, all SCRs were identical in the bargaining process
among all stakeholders through UFB method.

The novelty of this study lies in the application of the
social choice rules and fallback bargaining method in river
water quality management, while considering the uncer-
tainty of environmental factors in joint WWLA. More-
over, this study contributes to the body of knowledge by
applying social choice rules in the context of jointWWLA
and employing an array of technical tools (e.g., possibility
degree method, fallback bargaining method) to solve a
complex system. In the future works, this methodology
can be extended by applying bankruptcy methods for
resolving conflicts in WWLA (Madani et al. 2014b). In
addition, using agent-based models and water quality

indices to investigate the effect of water users’ behavior
in the upstream on the reservoir water quality and releases
can be a great contribution in the context of the herein
proposed framework (e.g., Nikoo et al. 2011; Farhadi et al.
2016). Furthermore, main uncertainties (water demands
and inflow’s water quality variables) can be addressed
using either fuzzy set theory or Bayesian analysis (e.g.,
Sadegh et al. 2017; Sadegh et al. 2018b). Finally, using the
concept of trading discharge permits in rivers along with
the optimized WWLA is an interesting idea for the future
studies (e.g., Mesbah et al. 2009; Nikoo et al. 2016).
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