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Abstract Historically, the Brazilian coast has been im-
pacted by urban, industrial, and port activities that have
increased the input of chemical contaminants, such as
heavy metals, to the ecosystem. The Paranaguá estua-
rine complex (PEC), Cananéia-Iguape estuarine-lagoon
complex (CIELC), and Santos-São Vicente estuarine
complex (SSVEC) (S-SE Brazil) are surrounded by
urbanized cities and port areas characterized by various
anthropogenic discharges comprising several potential
pollutants, including heavy metals. Concerns about such
contamination are paramount because these estuaries are
important for traditional fishing communities and are
categorized as World Heritage sites and biodiversity
hotspots by UNESCO. In this study, metals (Cu, Cr,
Ni, Pb, Zn, and Hg) and metalloids (As and Se) known
to affect the health of marine life were evaluated in
regional fishes. Muscle and liver tissues from three
demersal teleosts (Stellifer rastrifer, Paralonchurus
brasiliensis, and Isopisthus parvipinnis) were analyzed
by inductively coupled plasma optical emission

spectrometry (ICP-OES), with a coupled vapor generat-
ed accessory (VGA). Irrespective of species, metal
bioconcentration was significantly greater in fishes from
the PEC and CIELC, which had higher As, Cu, and Zn
concentrations, while Se levels were higher in fish from
the PEC and SSVEC estuaries. Seasonality, fish species
and maturation stage affected the accumulation of
metals. Some metal levels, including As, Cr, Pb, and
Se in all species across all estuaries, and Zn in the PEC,
exceeded the maximum permitted level for seafood and
might present a risk for daily human consumption. The
results provide reference points for existing chemical
contamination and should be used to guide monitoring
programs and the sustainable development of these
coastal regions, within a broader objective of maintain-
ing public health.
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Introduction

Tropical and subtropical estuaries are highly productive
ecosystems that have an important role in human history
and the life histories of aquatic organisms (Chapman
and Wang 2001). Nevertheless, in the last century, these
regions have been highly modified by deleterious an-
thropogenic activities (e.g., as urban and industrial de-
velopments) that contaminate aquatic ecosystems
(Salgado-Ramírez et al. 2017).
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In south and southeastern Brazil, the Paranaguá es-
tuarine complex (PEC), Cananéia-Iguape estuarine-
lagoon complex (CIELC), and Santos-São Vicente es-
tuarine complex (SSVEC) are characterized by different
levels of contaminants throughout their trophic chains
(Marone et al. 2005; Azevedo et al. 2009). These estu-
aries and their coastal zones comprise densely popula-
tion areas, where industrial, agricultural, and port activ-
ities coexist with the largest Atlantic Forest remnants
and mangroves supporting high fisheries productivity
and biodiversity. Such characteristics have qualified the
areas as World Heritage sites and biodiversity hotspots
(UNESCO 1999). Therefore, understanding and evalu-
ating anthropogenic impacts in these environments is
crucial, not only for their conservation but also sustain-
able development and human wellbeing (Chapman and
Wang 2001).

Metals are among the most frequently detected pol-
lutants in estuaries and represent a problem owing to
their toxicity, persistence and stability in the environ-
ment, and accumulation capacity in biota, including fish
(Islam and Tanaka 2004). High levels of metals in water
and sediments do not evoke direct toxicological risks to
trophic chain. Rather, risk only occurs when such ele-
ments are bioavailable. Metal bioconcentration includes
complex processes that are regulated by exogenous (i.e.,
abiotic) and endogenous (i.e., biotic) factors
(Moiseenko and Kudryavtseva 2001). Exogenous fac-
tors are reflected in environmental parameters such as
metal bioavailability, and the temperature and salinity of
the aquatic environment, while endogenous factors en-
compass the age, sex, body size (i.e., length or weight),
physiological status, feeding habits, habitats, and migra-
tions of species (Moiseenko and Kudryavtseva 2001;
Al-Yousuf et al. 2000; Angeli et al. 2013).

Fish are considered good indicators of environmental
quality, mostly because (i) their taxonomies and life
cycles usually are sufficiently known, (ii) their taxo-
nomic groups occupy various trophic levels and habi-
tats, and (iii) many are economically important (Gusso-
Choueri et al. 2018; Santana et al. 2017; Storelli 2008).
Fishes are consumers that generally are located at higher
trophic levels, and for this reason, they may accumulate
large amounts of metals (Jaric et al. 2011). Moreover,
fish are among those aquatic organismsmost susceptible
to toxic substances present in the water (Jaric et al.
2011). Therefore, because they are sensitive to short-
term environmental changes (e.g., dissolved oxygen
levels, dissolved and solid-phase spills), have a

relatively long life (among many aquatic organisms),
and can accumulate metals, fish frequently are used for
evaluating acute and/or chronic pollution (Kasper et al.
2007; Vernenberg 1981). Using fish in monitoring pro-
grams informs the environmental quality and the con-
tamination status of animals consumed by higher tro-
phic level species, including humans. Consequently,
evaluating fish health condition is a precursor to eco-
logical, socioeconomic, and human health risk assess-
ments related to fish consumption (Azevedo et al. 2009).

Currently, there remains a dearth of knowledge re-
gardingmetal levels in the tissues of the most commonly
harvested fish species, including Stellifer rastrifer
(cangoá, Bloch, 1790), Isopisthus parvipinnis (pescada
tortinha, Cuvier, 1830), and Paralonchurus brasiliensis
(maria-luiza, Steindachner, 1875) in the SSVEC,
CIELC, and PEC. All three species are demersal,
inhabiting regional estuarine and coastal environments,
are among the species identified in fishing landings in
the study areas, and serve as food for local fishing
community and prey for top predators in the trophic
web (Branco et al. 2005; Mendonça and Miranda
2008; Queiroz et al. 2006). Consequently these species
are vectors of the metal contamination to consuming
animals and humans.

Considering the above, the objective of this study
was to first quantify metal and metalloid concentrations
(As, Cu, Cr, Ni, Pb, Se, Zn, and Hg) among key fish
species (S. rastrifer, I. parvipinnis, and P. brasiliensis)
inhabiting the SSVEC, CIELC, and PEC. These data
were then used to address the hypotheses that any re-
gional bioconcentration of metals is (i) affected by var-
ious exogenous or endogenous factors, (ii) related to
anthropic pressures within each estuary, and (iii) likely
to pose risk to human health via consumption (via
contamination assessment using the target hazard quo-
tient (THQ)). Ultimately, addressing these hypotheses
provides the required baseline information that will
contribute to future monitoring programs and coastal
management guidelines.

Material and methods

The study area comprises the stated three estuarine
systems located along the southeastern and southern
Brazilian coast (Fig. 1). The SSVEC is formed by the
Santos and São Vicente bays and is on the central coast
of São Paulo state, with a total area of 2.4 km2 and an
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Fig. 1 Map of the studied areas including sampling stations: (s) Santos-São Vicente estuarine complex, (c) Cananéia-Iguape estuarine-
lagoon complex, and (p) Paranaguá estuarine complex, in southern Brazil
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extension of 40 km. Surrounded by the cities of Santos,
São Vicente, and Cubatão, the total population is ap-
proximately 870,565 inhabitants (IBGE 2010). Santos
Bay is highly urbanized. Further, the region is a petro-
chemical and metallurgical industrial complex (Cubatão
Industrial Complex), and where the port of Santos is
placed, which is the largest commercial port in Latin
America (Azevedo et al. 2009; CETESB 2008).

The CIELC is located to the south on the coast of São
Paulo state and has an extension of ~ 110.0 km2

(Besnard 1950). The estimated population in the sur-
rounding area is 50,092 inhabitants (IBGE 2010). The
estuary is characterized by the presence of mangroves,
and the main human activities are artisanal fisheries.
Thus, the CIELC is considered a non-polluted site in
biomonitoring studies. Furthermore, this complex has
also been recognized as a World Heritage site by
UNESCO (1999) and was recently included in the
RAMSAR List as the Environmental Preservation Area
of Cananéia-Iguape-Peruíbe (MMA 2017).

Further south, the PEC is located in the adjacent state
of Paraná and covers an area of ~ 551.8 km2 (Noernberg
et al. 2006). The PEC surroundings encompass the
largest populated area on the coast of Paraná, with a
population of approximately 197,231 inhabitants (IBGE
2010). The PEC is surrounded by one of the last rem-
nants of Atlantic rainforest, which is an important char-
acteristic that contributes to its status as a World Heri-
tage site and Biosphere Reserve (UNESCO 1999). It
also has great economic importance owing to the port
areas of Paranaguá and Antonina, with the former con-
sidered the largest port for grain exports in South Amer-
ica (Soares and Barcelos 1995; Choueri et al. 2009).

The fish sampling occurred in the summer and winter
of 2015. The fish species were collected using bottom
trawls deployed in standardized 5-min tows. Captured
fish were kept frozen for further analyses. Despite the
sampling effort, the only site where fish were not cap-
tured was at S3 (Fig. 1). This site is located in the Santos
upper estuary, which is a zone with high anthropogenic
impacts and perceived by different groups of researchers
as an area with poor fauna diversity and abundance.
These conditions might be a consequence of the human
activities and associated stressors.

In the laboratory, 775 captured fish specimens were
identified to species, sex, and maturation stage after they
were measured and weighed according to the identifica-
tion manual elaborated by Menezes and Figueiredo
(1980), and were analyzed in composite samples

according to the characteristics described above.Muscle
and liver tissues were extracted, lyophilized, and mac-
erated for further analysis.

The metal extraction from the biota was performed
following the method described by Trevizani et al.
(2016). Specifically, 0.35 g of each dried sample was
digested with 4 mL of nitric acid, followed by the
addition of 1 mL of hydrogen peroxide. After 18 h, the
treated analytes were placed into a heated digester block
for 3 h, and the final solution was filtered and diluted to
35 mL. An adapted version of method 7471 (USEPA
1994) was used for Hg analysis. The determination of
heavy metals was performed using inductively coupled
plasma optical emission spectrometry (ICP-OES –
Varian, model 710ES), with a coupled vapor generated
accessory (VGA) for Hg analysis.

The trueness of the method was checked using the
certified reference materials SRM 2976 (mussel tissue,
trace elements and methylmercury, freeze-dried) of the
National Institute of Standards and Technology and
DORM-2 of the NRCC (National Research Council
Canada). All recoveries were between 70 and 110%
(Supplementary material).

The results were evaluated by statistical analyses, the
normality premises were verified using the Shapiro-
Wilk test, and the homogeneity of the data was verified
using the Bartlett test. When data did not present nor-
mality and homogeneity, a logarithmic transformation
was performed. Analysis of variance (ANOVA) follow-
ed by Tukey’s HSD test was used to test for differences
related to the sampling station, seasonality, fish species
(S. rastrifer, P. brasiliensis, and I. parvipinnis), sex
(male and female), and maturation stage (1 to 4) on the
metal concentration in the muscle tissue. The ANOVA
was also used to verify the metal accumulation in the
different tissues (muscle and liver) of the studied fish.

Fishes are important indicators of contamination in
marine organisms due to their high consumption (Abdel-
Baki et al. 2011; Afonso et al. 2017); thus, it is necessary to
follow the specific legislation to identify levels that are safe
for human consumption. Worldwide, these legislative
limits are established by the Food and Agriculture Organi-
zation of the United Nations (FAO 1983), and nationally
the limits are established by Agência Nacional de
Vigilância Sanitária (ANVISA 1965, 2013). The metal
concentration values were compared with the available
legislation to evaluate potential toxically levels and the
availability of consumption by human and the health status
of fish from the studied regions.
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The target hazard quotient (THQ, below) was esti-
mated only for those metals that presented values above
the limits established by the legislation. Considering the
exposure of adults and children, different scenarios of
fish consumption were simulated: daily (365 days per
year), weekly (52 days per year), and monthly (12 days
per year). These calculations facilitated estimating the
number of safe meals for the consumption of these fish.

The THQ considers the ratio between the exposure
and the reference dose and was calculated as recom-
mended by USEPA (2000), according to Eq. 1:

THQ ¼ EF� ED�MS� Cð Þ
RfD� BW� ATð Þ ð1Þ

In the equation, EF is the exposure frequency
(365 days year−1, 52 days year−1, and 12 days year−1);
ED is the exposure duration (6 years for children and
70 years for adults); MS is the food meal size (0.114 kg
for children and 0.227 kg for adults) (USEPA 1989;
USEPA 2000); C is the annual mean concentration of
the metal in fish (mg kg−1); BW is the body weight
(16 kg for children and 70 kg for adults); and AT is the
average time of exposure (days) to the chemical
(365 days year−1 × ED) (USEPA 1989; USEPA 2000).
The RfD is the oral reference dose (i.e., Cr 3 ×
10−3 mg kg−1 day−1; Se 5 × 10−3 mg kg−1 day−1; Zn
3 × 10−1 mg kg−1 day−1 (USEPA 2018); and Pb 4 ×
10−3 mg kg−1 day−1 (Storelli and Barone 2013)). Note
that the As consumption limits were calculated as inor-
ganic arsenic contents (3% of the total arsenic) (FSA
2004), whereby the RfD for inorganic arsenic is 3 ×
10−4 mg kg−1 day−1 (USEPA 2018). Values of exposure
higher than the reference dose (THQ > 1) suggest that
chronic systemic effects may occur (USEPA 1989).

Results

Heavy metal concentrations in different tissues

Significant differences were observed in the accumu-
lation of As (p = 0.00), Cr (p = 0.00), Cu (p = 0.00),
Ni (p = 0.02), Se (p = 0.00), Zn (p = 0.00), and Hg
(p = 0.01) between the concentration of analyzed tis-
sues. The highest concentrations were found in the
liver (Fig. 2).

Biotic and abiotic factors affecting heavy metal
concentrations in muscle

The sampling station was a significant variable in
the accumulation of As (p = 0.0003). The highest
levels were found at sampling stations P1 and C3
in the PEC and CIELC. The levels of Cu, Se, and
Zn differed significantly between the studied sites
(p = 0.00) and seasons (p = 0.00). Higher levels
were found during the summer. The sampling sta-
tions P3 and C3 in the PEC and CIELC showed
the highest levels of Cu. The highest levels of Se
were found in fish from the sampling stations P1
and S2 in the PEC and SSVEC. Additionally, all
PEC sampling stations showed higher levels of Zn.
Neither sample station nor season significantly af-
fected the concentrations of Cr, Ni, Pb, and Hg in
the studied fish (Fig. 3).

The concentrations of As (p = 0.00), Cr (p =
0.04), and Ni (p = 0.00) varied significantly among
the studied species (Fig. 4), with higher levels
found in P. brasiliensis. Zinc showed the highest
concentrations in fish, but differed significantly be-
tween species (p = 0.00), with higher levels in
I. parvipinnis and S. rastrifer and lower levels in
P. brasiliensis. The concentrations of Cu, Se, and
Hg did not differ among fish species.

The variables of sex and maturation stage did not
influence the concentrations of As, Cr, Ni, Se, and
Hg in the studied fish (Fig. 5). However, of these two
factors, the maturation stage influenced the concen-
tration of Cu (p = 0.00) and Zn (p = 0.00), with higher
levels in juveniles.

Comparison with legislation and food security

The concentrations of metals concentrated in mus-
cle tissues in the fishes species (P. brasiliensis,
S. rastrifer, and I. parvipinnis) collected from
SSVEC, CIELC, and PEC, as well as those obtain-
ed during other studies along the Brazilian coast are
presented in Table 1 along with the minimum levels
legislated for human consumption (ANVISA 1965,
2013; FAO 1983).

The THQ of inorganic As, Cr, Pb, Se, and Zn in
P. brasiliensis, S. rastrifer, and I. parvipinnis from
SSVEC, CIELC, and PEC are presented in Table 2.
It is assumed that THQ values greater than 1 are of
concern because there is a high risk of developing
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chronic systemic effects (USEPA 2000). In general,
for those adults and children that consume these
fish species daily (365 days year−1), THQs were
greater than 1 for inorganic As and Se in all species
and sites, for Cr only in P. brasiliensis from the
PEC, and for Pb only in S. rastrifer from the
CIELC and SSVEC. Only the THQ for Zn did
not exceed the reference values.

Discussion

All fish are exposed to metals via prey and, to a lesser
extent, by direct absorption from the water column
(Rejomon et al. 2010). Because metals sink and accu-
mulate in sediments, demersal fish species, such as the
P. brasiliensis, S. rastrifer, and I. parvipinnis, assessed
here generally are more affected by bioconcentration
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than pelagic species (Rejomon et al. 2010). Neverthe-
less, despite greater bioconcentration among demersal
species, like all fish, the rates are influenced by several
factors, including sex, maturation stage, length/weight,

tissue type, habitats, feeding strategies, and, perhaps
most importantly, the duration of exposure to contami-
nants (Azevedo et al. 2009; Storelli 2008). These vari-
ous factors can be discussed separately for the assessed

Fig. 3 Sampling station (Paranaguá estuarine complex—P1, P2,
and P3; Cananéia-Iguape estuarine-lagoon complex—C1, C2, and
C3; and Santos-São Vicente estuarine complex—S1, S2, and S3)

and seasonal (summer and winter) variation of metal levels
(mg kg−1) in the studied estuarine systems
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species, and used to propose the likely risks to regional
populations that rely on their exploitation.

Metals and metalloids in different tissues

Previous studies on a plethora of fish species around the
world clearly demonstrate that metals have the tendency

to bioconcentrate at different levels in various tissues,
but with the greatest short-term rates in the liver (Afonso
et al. 2017; Alamdar et al. 2017; Dikanovic et al. 2016;
El-Ghazaly et al. 2016; Kehrig et al. 2009; Salgado-
Ramírez et al. 2017). The data here support this trend
with the highest metal concentrations in the livers of all
analyzed species. The liver has high metabolic activity,

Fig. 4 Variation of mean (± SD) metal concentrations (mg kg−1)
among the studied fish species (Stellifer rastrifer, Isopisthus
parvipinnis, and Paralonchurus brasiliensis), sampled in the

Santos-São Vicente estuarine complex, Cananéia-Iguape
estuarine-lagoon complex, and Paranaguá estuarine complex,
Brazil
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and great capacity for the assimilation and accumulation
of metals, being perhaps the most appropriate organ to
evaluate in studies focused on environmental pollution
(Alamdar et al. 2017; Dikanovic et al. 2016; Salgado-
Ramírez et al. 2017).

Fish usually regulate the concentrations of metals in
their muscle tissue and preferentially accumulate them
in the liver due to the different contents of proteins and
amino acids, such as metallothionein and cysteine that
are present in different organs. Metallothioneins are

Fig. 5 Variation of metal concentration (mg kg−1) among matu-
ration stage (1, 2, 3, and 4) and between sex (male and female) of
the total fishes sampled in the Santos-São Vicente estuarine

complex, Cananéia-Iguape estuarine-lagoon complex, and
Paranaguá estuarine complex, Brazil
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proteins found in large amounts in the liver and are
responsible for the storage and detoxification of metals,
particularly Cu and Zn (D’ Costa et al. 2017; Eisler
1993; Fernandez et al. 2014; Dikanovic et al. 2016).
This latter characteristic means that for assessing longer-
term bioaccumulation of metals, it is also appropriate to
assess muscle tissue owing to its high consumption.
Specifically, the ingestion route absorbs more than
90% of the metals that further accumulate in dif-
ferent parts of an organism and act as final reser-
voirs, such as the muscles (Afonso et al. 2017;
Alamdar et al. 2017; Moreno-Sierra et al. 2016;
Salgado-Ramírez et al. 2017).

Biotic and abiotic factors affecting heavy metal
concentrations

Even though fishes are considered good indicators for
environmental pollution, it is well established there are
species-specific metabolic and biological accumulation
capacities. The results here reiterate that metal accumu-
lation may vary according to the fish species and the
metal type; with the highest concentrations of As, Cr,
and Ni observed in P. brasiliensis, while Zn showed
higher concentrations in S. rastrifer and I. parvipinnis.

Other biotic factors were less influential. For exam-
ple, irrespective of the metal, the sex of the fish did not
influence metal concentrations, and the maturation stage
influenced only the accumulation of Cu and Zn, which
were present in relatively greater concentrations among
juveniles (maturation stage 1). During a study conduct-
ed on several fish species in the Caspian Sea, Dadar
et al. (2016) also failed to detect sex-specific differences
in bioconcentration. But, such differences have been
reported elsewhere and attributed to distinct sex-
specific physiological and biochemical processes (Al-
Yousuf et al. 2000; El-Ghazaly et al. 2016).

By comparison, the observed variation in the metal
concentrations with the maturation stage of the fish here
might have been influenced by metabolic rates and the
dilution of these elements because the ingestion rate is
reduced based on the development of the individual.
Such an outcome would justify an often observed re-
duction in metal accumulation with fish growth (Farkas
et al. 2003; Anan et al. 2005).

Like biotic factors, abiotic influences were also clear-
ly variable. The concentrations of Cu, Se, and Zn were
influenced by seasonality and were greater in summer.
Such increases in the concentrations of these essentialT
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metals may also be related to an increase in food avail-
ability during summer, leading to increased intake and
prey sizes for the fish species studied (Branco et al.
2005). However, the result may also be related to the
availability of these elements in sewage discharges,
which are substantially higher during the summer. For
example, the seasonal variability of Hg levels in
Cathorops spixii from the Santos estuary (São Paulo
state) was associated with the occurrence of different
inputs, especially from the industrial area, and a
deactivated dump and the mouth of a sewer (Azevedo
et al. 2011). Further, the Cu, Se, and Zn concentrations
in this study were greater than those in fish from many
other environments around the world (Chouvelon et al.
2017; Dadar et al. 2016; Moreno-Sierra et al. 2016;
Salgado-Ramírez et al. 2017), implying at least some
sewage discharge contamination of three estuaries.

Bioconcentration was also different among the estu-
aries, and in general was greater in the PEC and CIELC
than the SSVEC. Specifically the concentrations of As,
Cu, and Zn were greater in fish from the PEC and
CIELC, while levels of Se were greater in fish from
the PEC and comparable to those observed at SSVEC.
Furthermore, the greatest levels of Cr, Ni, and Hg were
observed in fish from the PEC, and the highest levels of
Pb were found in fish from CIELC and SSVEC. These
results raise concerns, and not only for resident human
populations, but also because these regions are globally
recognized as hotspots of biodiversity and are consid-
ered priority areas for conservation (MMA 2017).

Although subject to many anthropogenic pressures,
the SSVEC had a lower bioconcentration of metals. The
lower bioavailability of these contaminants maybe re-
lated to hydrographic conditions of the region, which
transports the contaminated sediments out of the Bay
(Magalhães et al. 2017). Nonetheless, the presence of
compounds such as persistent organic pollutants (POPs)
andmetals imply that urban activities in the region affect
regional water and sediments quality (Lamparelli et al.
2001), and consequently could affect the health of biota
across both short- and long-term scales (Azevedo et al.
2011; Magalhães et al. 2017).

Heavy metals, metalloids, and human health

It is clear from the obtained results that Cu, Ni, and Hg
in muscle tissues were below the allowed limits
established by the legislation for fish (FAO 1983;
ANVISA 1965, 2013). But, the concentrations of As

and Se were greater in all species from the studied sites
and are very likely to be affecting human health, includ-
ing adults and children that consume these fish species
daily. These results were compared with other regions in
terms of spatial variation, and with C. spixii, in the
same study area. This demersal species was chosen
for comparison because it is also regionally abun-
dant, and it is considered a bioindicator of metal
pollution (Angeli et al. 2013; Azevedo et al. 2011;
Gusso-Choueri et al. 2018).

The results for As were similar to those previously
obtained in C. spixii from the PEC (Angeli et al. 2013)
and CIELC (Gusso-Choueri et al. 2018). The presence
of As in the environment and biota might reflect of
anthropogenic activities, but it also can be released
through the natural weathering of rocks. For example,
previous studies have implied strong natural As enrich-
ment in the PEC, CIELC, and SSVEC (Luiz-Silva et al.
2008; Sá et al. 2006, 2015).

By comparison, the levels of Se in the present study
were lower than those measured in fish from the coast of
Rio de Janeiro (Kehrig et al. 2013), but greater than
those found in P. brasiliensis and I. parvipinnis from the
Parnaíba do Sul River (Rio de Janeiro) (Kehrig et al.
2009). Selenium is absorbed by fish through ingestion,
and it presents a bioconcentration tendency at the base
of a trophic web (Kehrig et al. 2009; Seixas et al. 2012).
Water, sediment, and organic debris can be potential
routes of exposure to Se in benthic organisms (Kehrig
et al. 2009, 2013; Seixas et al. 2012).

With respect to Cr, while the concentrations here
were lower than those obtained by other studies con-
ducted in Brazil, the levels were above those allowed by
legislation in all species and sites and daily consumption
of P. brasiliensis from the PEC could affect human
health. Chromium is an essential element, but when
present in excess (especially, chromium VI), cause ad-
verse health effects in humans (Demirezen and Uruç
2006).

Similarly, the concentrations of Pb were above the
established limits in all species from the studied sites
and present a clear risk for daily human consumption of
S. rastrifer from the CIELC and SSVEC. Further, the Pb
levels in fish from the studied regions were greater than
those in fish many other fish species from around the
world (Alamdar et al. 2017; Chouvelon et al. 2017;
Dadar et al. 2016; Moreno-Sierra et al. 2016). One
hypothesis for the high observed Pb may be related to
the intense historical mining activity carried out in
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Cananéia (Mahiques et al. 2013). This metal is related to
a reducing fraction in the sediments of the region, which
are then available in the environment for the absorption
of the biota (Tramonte et al. 2016).

The Zn levels were above the established limits in
S. rastrifer and I. parvipinnis from the PEC, but the
consumption of these species might not pose a risk to
human health. In the fishes from the PEC, the Zn con-
centrations were similar to C. spixii (Angeli et al. 2013)
but at the CIELC, the Zn levels found here were greater
than those in C. spixii (Gusso-Choueri et al. 2018). Zinc
is an important element involved in metabolic activities
and reproductive processes (Salgado-Ramírez et al.
2017); due to its essentiality, its incorporation appears
to be independent of environmental conditions
(Abdallah 2008).

Considering the calculation of THQ, it was possible
to estimate the number of days of consumption of fish
that might be considered safe. This value varies accord-
ing to the evaluated element and the type of consumer
(i.e., adult or child). Considering all of the metals and
metalloids studied, food safety for fish consumption in
these regions is 118 and 41 days a year for adults and
children, respectively.

Human risk, impacts, and conclusions

This study is one of the first to quantify the
bioconcentration of metals in fishes and key contribut-
ing biotic and abiotic factors across three divergent, but
proximal, estuaries that are among the most important in
southern Brazil. Considering that the main anthropogen-
ic sources of metals for the marine environment include
mining activities, burning of fossil fuels, use of pesti-
cides, domestic and industrial sewage, and atmospheric
emissions from industries (Abdallah 2008; Baird 2002;
Eisler 1988, 2010) and that these sources are present in
the regions studied, measures should be taken to miti-
gate contamination. Doing so will avoid further conse-
quences to ecosystem and human health.

The THQ results of the current study reveal the levels
of As, Cr, Pb, and Se in the muscle of P. brasiliensis,
S. rastrifer, and I. parvipinnis from PEC, CIELC, and
SSVEC have a potential risk of affecting human health
through the daily consumption of contaminated fish.
Despite the essentiality of some metals, excesses of
inorganic As, Cr, Pb, and Se can cause acute intoxica-
tion, tissue hypoxia, and inhibit hemoglobin production,
which ultimately causes the death of fishes (Eisler 1993,

2010). For humans, such impacts extend to food poi-
soning, allergies, lung irritation, liver and kidney dam-
age, and cancer (Demirezen and Uruç 2006). These data
reinforce the need for monitoring, to accompany eco-
logical and socioeconomic damages resulting from the
pollution of these environments.

The data from this study should provide an alert
against excessive consumption of fish from the stud-
ied estuaries because they are natural metal routes
for the human population (Copat et al. 2012; Gusso-
Choueri et al. 2018). Quantifying the local sources
of pollutants is an essential task for the conservation,
recovery, and remediation of the ecosystem; more-
over, this information provides security related to
food consumption and human health (Rabitto et al.
2011; Gusso-Choueri et al. 2018).

The need for such data is reiterative by the exces-
sive level of some compounds. The concentrations of
As, Cr, Se, and Pb were above the legislation limits
for fish (FAO 1983; ANVISA 1965), while the level
of Zn was above the allowed limits for fish con-
sumption in PEC, representing a health concern,
particularly for daily consumers of the fish species
studied. The current findings will be useful for en-
vironmental monitoring and management of the
SSVEC, CIELC, and PEC, contributing to the con-
servation and sustainable development of coastal
regions that include a World Heritage site and a
Biosphere Reserve (UNESCO), a RAMSAR site,
and environmental preservation areas.
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