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Abstract Quantifying the contribution of driving fac-
tors is crucial to urban expansion modeling based on
cellular automata (CA). The objective of this study is to
compare individual-factor-based (IFB) models and
multi-factor-based (MFB) models as well as examine
the impacts of each factor on future urban scenarios. We
quantified the contribution of driving factors using a
generalized additive model (GAM), and calibrated six
IFB-DE-CA models and fifteen MFB-DE-CA models
using a differential evolution (DE) algorithm. The six
IFB-DE-CA models and five MFB-DE-CA models
were selected to simulate the 2005–2015 urban expan-
sion of Hangzhou, China, and all IFB-DE-CA models
were applied to project future urban scenarios out to the
year 2030. Our results show that terrain (DEM) and
population density (POP) are the two most influential

factors affecting urban expansion of Hangzhou, indicat-
ing the dominance of biophysical and demographic
drivers. All DE-CA models produced defensible simu-
lations for 2015, with overall accuracy exceeding 89%.
The IFB-DE-CA models based on DEM and POP
outperformed some MFB-DE-CA models, suggesting
that multiple factors are not necessarily more effective
than a single factor in simulating present urban patterns.
The future scenarios produced by the IFB-DE-CA
models are substantially shaped by the corresponding
factors. These scenarios can inform urban modelers and
policy-makers as to how Hangzhou city will evolve if
the corresponding factors are individually focused. This
study improves our understanding of the effects of driv-
ing factors on urban expansion and future scenarios
when incorporating the factors separately.

Keywords Cellular automata . Differential evolution .

Generalized additivemodel .Urban expansion . Scenario
prediction . Hangzhou

Introduction

Urban expansion results from human alteration of the
land surface (Lambin et al. 2001; Zadbagher et al. 2018)
and is intensifying as a consequence of economic
growth. Modeling urban expansion can reveal its under-
lying processes and spatiotemporal dynamics (Akın
et al. 2015; Liu et al. 2017), providing planners and
decision-makers with early warning of ecological and
environmental consequences (Smidt et al. 2018; Sun
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et al. 2018). Cellular automata (CA) models are effec-
tive tools to reconstruct past urban expansion and pro-
ject future scenarios by analyzing land-use dynamics
(Liu et al. 2018; Soares-Filho et al. 2013). Biophysical,
socioeconomic, demographic, and meteorological pre-
requisites have been identified as factors that drive
urban expansion (Ahmed et al. 2014; Osman et al.
2016). These factors are commonly applied to build
transition rules in CA modeling. However, too many
factors may yield multicollinearity that has undesirable
impacts on the models (Feng and Tong 2017b; Von
Thaden et al. 2018), leading to negative effects on their
utility. Factor selection is therefore crucial in construct-
ing CA models. As a consequence, the comparison of
individual and multiple factors in CA-based urban
modeling should improve our understanding of land-
use dynamics.

Accurate analysis of the relationships between urban
expansion and its drivers is fundamental in estimating
land conversion probability, which guides CAmodels to
control the distribution of new urban cells (Kamusoko
and Gamba 2015). Wahyudi and Liu (2013) reported
that, during the past two decades, an increasing number
of driving factors of various categories have been ap-
plied in CA modeling. We have categorized these
influencing factors as:

1. Biophysical variables that represent primary deter-
minants of urban expansion, including meteorolog-
ical and topographic conditions such as land surface
temperature, normalized difference vegetation in-
dex, digital elevation model (DEM), and terrain
slope (Dubovyk et al. 2011; Mahiny and Clarke
2012)

2. Human-disturbance variables that represent the
proximity disturbance such as distance to city cen-
ter, road networks, water bodies, ecological re-
serves, and farmland (Engelen 2002; Reilly et al.
2009), as well as the activity disturbance such as
urban development activities and intensity (Li et al.
2011; Mitsova et al. 2011; Sang et al. 2011)

3. Socioeconomic variables that include social, eco-
nomic, and demographic factors, such as employ-
ment potential, gross domestic product (GDP), land
price, and population density (Dang and Kawasaki
2017; Haase et al. 2012; Poelmans and Rompaey
2009; Rienow and Goetzke 2015)

4. Institutional variables that represent macro-control
policies on urban development, including urban

planning regulations, rural development policies,
and land development regulations (Delden et al.
2010; Deng et al. 2015; Peña et al. 2005)

It is difficult to include all these factors in CAmodel-
ing, because they relate to hundreds of discrete
variables that have been shown in many cases to be
highly correlated. Factor correlation leads to variable
multicollinearity, hence a negative impact on simulation
accuracy. To reduce variable multicollinearity while
minimizing information loss, modelers have identified
dominant factors using different methods such as quan-
titative analysis, rough set theory, regression analysis,
and spatial statistics (Mondal et al. 2015; Osman et al.
2016; Wang et al. 2011). To eliminate data redundancy,
principal component analysis was applied to identify
factors that dominate land development (Li and Yeh
2002). For example, Osman et al. (2016) applied an
analytic hierarchy process to determine the weights of
candidate factors in different regions of the Giza Gov-
ernorate in Egypt. Rather than using all candidate fac-
tors, Wang et al. (2011) calibrated CA-based urban
models using dominant factors identified by a rough
set. A multivariate statistical model was applied to ex-
amine the influence of drivers on urban expansion at
two different periods and reconstructed the urban ex-
pansion using CA models (Ahmed et al. 2014). Geo-
graphically weighted regression has been used to probe
the spatial variation of driving factors for urban expan-
sion modeling (Mondal et al. 2015; Shafizadeh-
Moghadam and Helbich 2015). To assess the effects of
driving factors on CA-based simulation results,
González et al. (2015) applied a simplified global sen-
sitivity analysis in modeling the urban expansion of
Madrid.

Comprehensive analysis of the factors affecting
urban development is generally beneficial for CA
modeling. Feng and Tong (2017b) reported that
CA model performance might decline when includ-
ing more (e.g., larger than five) factors because
multicollinearity among them may likely lead to
inaccurate weight definition. With this knowledge,
it is essential to ask: (1) Which factors are important
to urban expansion in rapidly urbanizing areas, and
is a specific factor useful in building a CA model?
(2) Do multi-factor-based (MFB) CA models neces-
sarily outperform individual-factor-based (IFB) CA
models, if an individual factor can be used to build
CA models? (3) How each factor affects the future
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urban scenario prediction? As a result, the objective
of this study is to address the above issues.

We applied a generalized additive model (GAM) that
examines the ability of each factor to explain urban
expansion and rank factors by their statistical signifi-
cance. GAM is a nonparametric extension of a general-
ized linear model and uses an unspecified smoothing
function to build the nonlinear relationship between
response and explanatory variables (Larsen 2015). The
model has been utilized to build transition rules of urban
CA models (Brown and Goovaerts 2002; Feng and
Tong 2017a). Here, we focus on the identification of
explanatory ability and rank-order of each factor using
GAM in constructing urban CA models. We then ap-
plied differential evolution (DE) to capture the land
transition rules of CA models. Most recently, DE was
integrated with CA to build a hybrid DE-CA model that
successfully simulated rapid urban expansion in Kun-
ming (Feng and Tong 2018a). DE automatically mini-
mizes total residuals in the transition rules, resulting in
improved accuracy over traditional CA methods. Since
DE-CA can predict future scenarios, we applied this
model to simulate urban expansion based on the
GAM-identified individual and multiple factors. Hang-
zhou city that lies on the southeast coast of China was
selected as our case study area. Modeling urban expan-
sion and land-use change in Hangzhou is of great inter-
est to researchers (Hou et al. 2019; Liu et al. 2018)

because it is a rapidly urbanizing and economically
developed city in the Yangtze River Delta. A gradient
CA model and a CA-Markov model were applied in
these studies, but it is still unclear how urban scenarios
of Hangzhou will be affected by each driving factors.
For comparison, we calibrated DE-CA models based on
individual (IFB-DE-CA) and multiple (MFB-DE-CA)
factors using land-use change data from 2005 to 2015,
and used these models to simulate the 2015 urban pat-
tern of Hangzhou. We finally projected different urban
scenarios for the year 2030 using the DE-CA models.

Study area and data

Study area

Hangzhou is the capital of Zhejiang province on the
southeast coast of China (Fig. 1a). The city covers
16,596 km2 and has jurisdiction over 13 sub-areas in-
cluding 9 urban districts and 4 satellite cities (Fig. 1b, c).

Elevation gradually decreases from the southwest
with a high slope to the northeast with a low slope.
More than half of the study area is hilly, yielding the
most extensive urban development in the northeast. In
the Urban Agglomeration Development Planning of the
Yangtze River Delta (NDRC 2016), Hangzhou was
designated as a Type I large city with more than 5

Fig. 1 The Hangzhou study area
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million urban residents. According to the local Bureau
of Statistics (tjj.hangzhou.gov.cn), Hangzhou had 9.2
million registered and short-term residents as of 2016,
with a population density of 554 persons per km2.
Hangzhou’s GDP increased substantially since China’s
opening up, rising from 284 million Chinese Yuan
(about 45 million USD) in 1978 to 1130 billion Chinese
Yuan (about 180 billion USD) in 2016. Like other big
cities in China, the integrated effects of the population
explosion and rapid economic growth have led to the
fast expansion of the urban area. The built-up area of
Hangzhou grew from 314 km2 in 2005 to 506 km2 in
2015 as reported by the local Bureau of Statistics. Com-
parison of land-use patterns in 2005 and 2015 classified
from Landsat images shows that the newly built-up
areas occur principally around the Hangzhou city center
and two nearby suburban areas (Binjiang and
Xiaoshan). In this study, we focused the Hangzhou city
center and all the adjacent suburban areas that cover
about 6300 km2 (Fig. 1c).

Data and variables

We used vector and raster data to produce both depen-
dent and independent variables in our models. The
Hangzhou administrative map was implemented to
identify Hangzhou boundaries, city center, and county
centers (Fig. 2a). We acquired traffic network datasets
from OpenStreetMap, which classifies the roads into
motorway, trunk, and primary based on their categories.
Among them, we included national and provincial roads
that have greater impacts on urban expansion, but ex-
cluded urban roads and rural lanes that have weaker
influences on urban expansion. The raster datasets

include Landsat images acquired on March 7, 2005
and October 13, 2015, which were assembled from
Geospatial Data Cloud (www.gscloud.cn). We then
applied Mahalanobis distance classifier in ENVI 5.2 to
classify these images to produce land-use patterns. As
our focus is to model urban expansion, we only consid-
ered three types of land use (i.e., urban, non-urban, and
water body) to produce the 2005–2015 urban changes
(Fig. 2b). We also used a digital elevation model (DEM)
from the ASTER Global Digital Elevation Map and the
rasterized population density from Worldpop
(worldpop.org.uk). Spatial resolution set at 30 m
yielded 3011 × 4233 cells in each map.

The observed 2005–2015 urban expansion was ap-
plied to generate the dependent variable (y) with a value
of 1 (urban expansion) or 0 (others). We extracted four
distance-based independent variables for urban expan-
sion drivers from vector maps using the Euclidean Dis-
tance tool in ArcGIS 10.1 (Table 1; Fig. 3a–d). We
included the biophysical DEM factor to reflect the im-
pact of terrain, and the demographic POP factor to
reflect the influence of population density. All driving
factors were normalized using the method of Feng and
Tong (2018b) to reduce the influence of dimension on
DE-CA parameterization.

Among the independent variables, CITYand COUN
yielded the highest mean values, while DEM and POP
yielded the smallest mean values (Table 1). There are no
substantial differences in standard deviation between
CITY and COUN, suggesting a similar distribution of
these two factors across space. The standard deviation of
RAIL is larger than that of ROAD, indicating the more
discrete distribution of RAIL and a lower density of the
railway networks. The DEM and POP factors have the

Fig. 2 Major road networks and urban expansion from 2005 to 2015
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smallest standard deviation, suggesting that most areas
are relatively plain and most regions have a low popu-
lation density, sometimes with zero residents (Fig. 3e, f).

Methods

Workflow

Figure 4 shows our procedure of DE-CA modeling
in four steps: (1) data collection and preprocessing

that include radiometric calibration, atmospheric
and geometric rectification, and study area
cropping; (2) variable extraction that includes clas-
sification of Landsat images to produce land-use
patterns and spatial visualizations of driving fac-
tors; (3) factor assessment using GAM that selects
samples from the land-use change map and driving
factors using systematic sampling, and applies
GAM to identify the rank-order of driving factor;
and (4) modeling and assessment that construct CA
transition rules using DE to build IFB-DE-CA and

Table 1 Dependent [D] and in-
dependent [I] variables and sum-
mary statistics

Type Variable Meaning Min Max Mean Stdev

D y 1 if non-urban cell is transformed to an
urban cell, 0 if non-urban cell remains
static

0.00 1.00 0.10 0.30

I CITY Effect of Hangzhou city center on urban
expansion

0.00 1.00 0.46 0.22

I COUN Effect of county centers on urban expansion 0.00 1.00 0.41 0.21

I ROAD Effect of major roads on urban expansion 0.00 1.00 0.19 0.19

I RAIL Effect of railways on urban expansion 0.00 1.00 0.35 0.27

I DEM Effect of DEM on urban expansion 0.00 1.00 0.08 0.11

I POP Effect of population density on urban
expansion

0.00 1.00 0.03 0.09

Fig. 3 Spatial visualization of independent variables in the DE-CA model
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MFB-DE-CA models, and simulate present urban
pattern and future scenarios.

The DE-CA model

Our DE-CA model is an improvement of a typical CA
by automatic calibration using DE. In CA, four elements
including the current cell state, contiguity cell effects,
constraints, and land transition probability collabora-
tively determine the land transformation. The DE-CA
transition rules can be expressed as

Stattþ1
m ¼ LandTrans Stattm;NeiEff ;Con;Pt

� � ð1Þ
where

& Land transition function (LandTrans) denotes the
transition rules that integrate the effects of the four
current elements to determine the future cell state;

& Future cell state (Stattþ1
m ) represents the state of cell

m at time t + 1 and current cell state (Stattm) repre-
sents the state of the cell m at time t;

& Neighborhood effects (NeiEff) denote the influence
of neighboring urban cells on the state of the cell in
processing, with 5 × 5 Moore square neighbors
widely applied in DE-CA models (Pan et al. 2010;
Wu 1998);

& Constraints (Con) denote prohibited areas resulting
from unsuitable conditions or urban planning regu-
lations, including broad water bodies, high-slope
areas, and protected areas (Feng and Tong 2018b);
and

& Transition probability (Pt) denotes the temporally
stationary, but spatially non-stationary, land

conversion probability defined by driving factors.
The probability is calculated by (Mustafa et al.
2018):

Pt ¼ e a0þa1�D1þ…þan�Dnð Þ

1þ e a0þa1�D1þ…þan�Dnð Þ ð2Þ

where a0 is the intercept, n is the number of factors, and
a1,… , an are parameters for each factor representing its
weight. Here, n ranges from 1 to 6, with n = 1 indicating
only one factor included in the modeling and n = 6
indicating all six factors included in the modeling.

The parameters (an) are commonly retrieved using
logistic regression (LR). Many studies have reported
that LR alone cannot sufficiently address urban expan-
sion dynamics (Feng and Tong 2018a; Li and Yeh
2002). In contrast, heuristics such as DE can search for
parameters that represent the complex urban expansion
and can minimize the residuals in fitting samples. Re-
siduals are usually calculated as the root-mean-square
error (RMSE) between the observed land conversion
value and the predicted transition probability. A
RMSE-based objective function can thus project the
transition rule space into the DE space. A typical objec-
tive function is (Feng and Tong 2018a):

Min Func D1;…;Dnð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Pv D1;…;Dnð Þ−Poð Þ2m

Q
2

s

ð3Þ

where Func(D1,… , Dn) is the objective function; for
cell m, Pv(D1, … ,Dn) is the predicted transition prob-
ability and Po is the observed land conversion; and Q is
the number of samples.
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DE is a global heuristic similar to genetic algorithms
(GAs) that are guided by an objective function as well as
the population mutation, crossover, and selection oper-
ators. Compared with GA, DE searches for the global
optimum using differentiation among populations, and
does not easily fall into local optima (Das et al. 2009;
Noroozi et al. 2011). DE starts with population initiali-
zation under predefined bound constraints. The process
randomly selects three vectors from the initial popula-
tion and then subtracts two of these to generate a differ-
ence vector that is added with the third vector to gener-
ate a new vector, which is compared with the third one.
If the new individual’s function value is smaller than
that of the third one, the new one will replace the old one
at the next generation. DE finds a near-optimal solution
after the population undergoes mutation, crossover, and
selection operations. Here, the solution is a set of opti-
mal parameters for the CA transition rules.

Thresholds were defined according to the total land
available for development and the maximum number of
iterations from the initial to final year, where an iteration
denotes 1 year. For modeling the urban pattern, the total
land available was taken to be the actual urban area in
the final year (2015) of the model. The threshold is
preferred if it satisfies both the total land and the max-
imum iterations. We defined the thresholds for future
predictions using the same method.

Factor combination using GAM

We adopted a GAM to assess the influence of each
factor before building the transition rules. The model
has the advantage of quantifying the factors’ ability to
explain urban expansion and ranking them accordingly.
A standard GAM allows flexible estimation of the un-
derlying nonlinear relationships between dependent and
independent variables (Guisan Jr et al. 2002). An exam-
ple of GAM can be represented as

g E yð Þð Þ ¼ b0 þ s1 DEMð Þ þ s2 POPð Þ þ s3 CITYð Þ
þ s4 RAILð Þ þ s5 ROADð Þ
þ s6 COUNð Þ ð4Þ

where g(E(y)) is a function that links the expected value
E(y) to all independent variables, b0 is the intercept, and
si(·) is a nonparametric smoothing function that relates
each variable to g(E(y)). The factors’ positions in the
above equation reflect their impacts, in descending

order, which may be different when using these factors
to explain urban expansion at different locations and at
different periods.

GAM is a rank-order sensitive method that intro-
duces factors into the model one by one. An anterior
factor has a stronger impact on urban expansion while a
posterior factor has a weaker impact. Percentage of
deviance explained (PDE) indicates the factor’s ability
to explain urban expansion and this contribution in
GAM, and Akaike Information Criterion (AIC) indi-
cates the model’s comparative performance. We there-
fore applied PDE and AIC to define the rank order of
each factor and combinations of factors.

Evaluation methods

Accuracy assessment

CA models are usually assessed using cell-by-cell com-
parison between the simulated patterns and the actual
patterns (Feng and Tong 2018b; Liu et al. 2017; Musa
et al. 2017). This method usually generates an error
matrix that reports overall accuracy and Kappa coeffi-
cients. While pattern comparison indicates the global
performance of CA models, its weakness is obvious
when trying to identify the changes that are simulated
correctly or falsely (Pontius and Millones 2011). CA
models can also be assessed using an overlaid map of
the simulated urban expansion and the actual urban
expansion, which usually reports metrics such as hit,
correct rejection, miss, and false alarm (Aldwaik and
Pontius Jr 2012; Pontius et al. 2013). Hitmeans that the
2005–2015 reference urban expansion was correctly
simulated as urban expansion, and correct rejection
represents that the actual non-urban persistence during
2005–2015 was correctly identified. Miss indicates that
the 2005–2015 urban expansion was incorrectly simu-
lated as non-urban persistence, while false alarm indi-
cates that non-urban persistence was mistakenly simu-
lated as urban expansion.

Landscape metrics

To assess the agreement between the simulated land-
scape patterns and actual landscape patterns, researchers
have applied a set of metrics that can quantify the
landscape composition and structure (Chaudhuri and
Clarke 2013; Feng and Tong 2017b; Whitsed and
Smallbone 2017). The metrics include a number of
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landscape spatial characteristics at the landscape, class,
and patch levels (Feng et al. 2018; Mcgarigal 2014).
Among commonly used landscape metrics, area-edge
metrics reflect the size and edges of patches, shape
metrics reflect the complexity of patches, and aggrega-
tion metrics refer to the trend of spatial aggregation of
urban patches (Mcgarigal 2014). In this study, we cal-
culated ten class-level metrics to evaluate urban land-
use patterns following Niesterowicz and Stepinski
(2016):

& Pecentage of landscape (PLAND), Largest Path In-
dex (LPI), and total edge (TE) from the area-edge
category

& Perimeter-area fractal dimension (PAFRAC) from
the shape category

& Path density (PD), Interspersion Juxtaposion Index
(IJI), Patch Cohesion Index (COHESION), Land-
scape Division Index (DIVISION), Aggregation In-
dex (AI), and Splitting Index (SPLIT) from the
aggregation category

Results

Factor effects

A null model with no factors (Model-0) and six IFB-
DE-CA models (models 1–6) were constructed to eval-
uate each factor’s impact on urban expansion (Table 2).
The fitting statistics of GAMs show that the rank-order
of the factors are DEM, POP, CITY, RAIL, ROAD, and
COUN (Table 2). The terrain conditions (DEM) and
population density (POP) have the highest influences
with ~ 12.8% deviance explained while COUN

explained the least deviance ~ 2.4%. Models 1–2 yield
the largest PDE and smallest AIC, indicating good
performance of these two models. In contrast, models
3–6 yield smaller PDE and larger AIC, implying that
these models were built using less influential factors.

For comparison, fifteen MFB-DE-CA models were
constructed to assess the influences of multiple factors
on urban expansion (Table 3). Of the two-factor models,
model 7 (based on DEM and POP) explained ~ 15%
deviance, while the other four models explained ~ 13%
deviance. For the three-factor models, model 12 ex-
plained more than 16% deviance while the others ex-
plained deviance less than 16%. The models with four
and five factors explained similar deviance. We selected
the models that explained the highest deviance over
those with the same number of factors, and selected
model 21 that included all factors, to simulate the
2000–2015 urban expansion in Hangzhou. The devi-
ance increased and the AIC decreased as more factors
were put into the models, showing better fitting perfor-
mance as more factors applied in the models, given that
multicollinearity is not considered. While this suggests
that more factors lead to more accurate simulation re-
sults, it may be violated by simulation practices.

Transition rules and land conversion probability maps

Controlling parameter assignment is critical for solving
the objective function using DE because heuristics are
sensitive to their controlling parameters. We followed
Feng and Tong (2018a) to define the controlling param-
eters using the default values (Table 4) recommended in
the package BDEoptim^ in R-Gui. Among these param-
eters, the population size was assigned to 20 times the
sum of the number of variables and an interpret (a0). The
lower and upper bounds are external DE parameters

Table 2 The PDE, AIC, and rank order that show factor contribution for each IFB-DE-CA model

Model Variable Residual deviance Deviance
explained

Percentage of
deviance explained
(PDE; %)

Akaike information
criterion (AIC)

Rank order

Model 0 Null 520.108 2722.681

Model 1 DEM 453.707 66.401 12.77 2009.548 1

Model 2 POP 455.415 64.693 12.44 2030.229 2

Model 3 CITY 488.356 31.752 6.10 2401.780 3

Model 4 RAIL 496.085 24.023 4.62 2478.801 4

Model 5 ROAD 500.778 19.330 3.72 2530.451 5

Model 6 COUN 507.691 12.417 2.39 2608.308 6

291 Page 8 of 20 Environ Monit Assess (2019) 191: 291



defined by the parameters calculated in LR. The lower
bound of positive parameters and the upper bound of
negative parameters are taken to be 0, while the upper
bound of positive parameters and the lower bound pa-
rameters are defined as two times the calculated param-
eters by LR (Table 5).

Table 5 shows that the same factor may yield differ-
ent parameters and even different signs in various
models, suggesting the changing effects of factors
across models. For factors except for POP, a negative
parameter indicates a promotive effect on urban expan-
sion while a positive parameter indicates a resistive
effect. DEM has negative and the highest absolute pa-
rameters in models, suggesting that it strongly drives
urban expansion. This confirms the rank order and the
deviance explained for DEM (Table 3). The CITY’s
parameters are all negative in models 3, 19, and 21,
and there are no major differences between these param-
eters that show similar promoting effects. ROAD yield

negative parameters in models 5 and 21, where the
larger absolute parameter in model 5 shows a stronger
influence.

Some factors yield changing impacts in different
models. POP is positive in model 2 but negative in the
other five MFB-DE-CA models, suggesting that POP
promotes urban expansion in model 2 but inhibits it in
the other models. COUN is negative in model 6 but
positive in the other MFB-DE-CA models except for
model 7, suggesting that COUN yields less strong in-
fluences when applying it with other factors in models.
RAIL is negative and yields attractive effects in models
4 and 16, whereas it is positive and yields repulsive
effects in models 19 and 21.

The conversion probabilities derived from the IFB-
DE-CA models were stretched to range between 0 and
1, and used as input into the DE-CA models to simulate
urban expansion. The maps in Fig. 5 show different
spatial patterns that are characterized by their

Table 3 The PDE and AIC in GAMs that show factor contribution for the MFB-DE-CA models

Model Number of
variables

Variable Residual deviance Deviance
explained

Percentage of
total deviance
explained (%)

AIC

Model 0 0 Null 520.108 2722.681

Model 7 2 DEM-POP 440.858 79.250 15.24 1869.766

Model 8 2 DEM-COUN 450.428 69.680 13.40 1984.731

Model 9 2 DEM-CITY 450.841 69.267 13.32 1990.716

Model 10 2 DEM-RAIL 451.557 68.551 13.18 1995.474

Model 11 2 DEM-ROAD 453.059 67.049 12.89 2009.631

Model 12 3 DEM-POP-COUN 435.437 84.671 16.28 1816.901

Model 13 3 DEM-POP-RAIL 436.966 83.142 15.99 1836.305

Model 14 3 DEM-POP-CITY 437.375 82.733 15.91 1840.479

Model 15 3 DEM-POP-ROAD 439.416 80.692 15.51 1861.715

Model 16 4 DEM-POP-COUN-RAIL 432.488 87.620 16.85 1793.699

Model 17 4 DEM-POP-COUN-CITY 433.582 86.526 16.64 1806.131

Model 18 4 DEM-POP-COUN-ROAD 434.436 85.672 16.47 1811.915

Model 19 5 DEM-POP-COUN-RAIL-CITY 431.099 89.009 17.11 1788.591

Model 20 5 DEM-POP-COUN-RAIL-ROAD 432.257 87.851 16.89 1791.312

Model 21 6 DEM-POP-COUN-RAIL-CITY-ROAD 430.910 89.198 17.15 1786.939

Table 4 Definition of controlling
parameters in DE for solving the
objective function

Note: the crossover probability
indicates how often crossover will
be performed, and the scaling
factor is a parameter to adjust
mutation

Controlling setting Parameter Controlling setting Parameter

Starting population Null Convergence tolerance 1e−10
Optimization strategy Local-to-best/1/bin Max iteration 5000

Crossover probability 0.5 Population size 20 × (N + 1)

Scaling factor [0, 2] 0.8
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corresponding factors. In the DEM-based model 1 (Fig.
5a), conversion probability is low in the high-elevation
areas but high in the low-lying areas. Model 2 yields
high conversion probability in the city center with high
population density, while it yields low conversion prob-
ability in other areas with low population density (Fig.
5b). In models 3–6 (Fig. 5c–f), high conversion proba-
bilities occur principally in areas near the Hangzhou city
center, railways, main roads, and county centers,
respectively.

The multi-factor-based conversion probability maps
in Fig. 6a–e are similar to each other, with minor differ-
ences. All maps based onmultiple factors (Fig. 6a–e) are
similar to the DEM-based map (Fig. 5a). This is proba-
bly due to the dominant effect of elevation and topog-
raphy. Visual inspection shows different spatial patterns

for model 7 and models 12 and 16, but their differences
are small and probably insignificant (Fig. 6f, g). While
model 7 and models 19 and 21 (Fig. 6h, i) are quite
similar, they differ widely in probability, ranging from
0.00 to 0.32. This suggests that model 7 may be quite
different from models 19 and 21. All models yield the
same min and max due to normalization, but most
means and SDs differ between factors (Table 6), leading
to different land conversion thresholds.

Simulation results

We simulated 11 urban patterns for 2015 using the DE-
CA models but present only nine in Fig. 7 because
models 12 and 16, and models 19 and 21, are very
similar. Figure 7 shows that the selected DE-CAmodels

Table 5 The lower and upper bounds for DE and the computed CA parameters of all the selected models

Model Variable Lower Upper Parameter Model Variable Lower Upper Parameter

Model-1 Constant − 1.8 0 − 0.4915 Model-12 Constant − 1.6 0 − 0.5335
DEM − 140 0 − 134.6799 DEM − 150 0 − 122.4532
Best value 0.2238 POP − 2.7 0 − 0.6996

Model-2 Constant − 4.3 0 − 2.1301 COUN 0 0.5 0.0765

POP 0 3.5 1.0337 Best value 0.2237

Best value 0.2415 Model-16 Constant − 1.6 0 −0.5403
Model-3 Constant − 1.1 0 − 0.8705 DEM − 150 0 − 120.5924

CITY − 7.5 0 − 2.8592 POP − 2.8 0 − 0.7170
Best value 0.2364 COUN 0 0.5 0.1264

Model-4 Constant − 2.4 0 − 1.3045 RAIL − 0.6 0 − 0.1103
RAIL − 6.3 0 − 2.7965 Best value 0.2237

Best value 0.2364 Model-19 Constant − 1.2 0 − 0.1266
Model-5 Constant − 2.8 0 − 1.3765 DEM − 150 0 − 132.3592

ROAD − 9.9 0 − 5.3627 POP − 3.5 0 − 1.2380
Best value 0.2374 COUN 0 0.9 0.7793

Model-6 Constant − 3.3 0 − 1.5288 RAIL 0 1.5 0.8958

COUN − 2.1 0 − 1.4762 CITY − 2.5 0 − 2.3986
Best value 0.2410 Best value 0.2233

Model-7 Constant − 1.6 0 − 0.4986 Model-21 Constant − 1.2 0 − 0.1207
DEM − 150 0 − 122.9757 DEM − 150 0 − 132.5431
POP − 2.7 0 − 0.7665 POP − 3.6 0 − 1.2540
Best value 0.2237 COUN 0 1 0.8026

RAIL 0 1 0.9023

CITY − 2.4 0 − 2.3855
ROAD − 1.1 0 − 0.1838
Best value 0.2233
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are capable of generating the 2015 urban patterns where
newly built-up areas occur surrounding the existing
built-up areas.

Models 1, 2, 7, 12, and 19 (Fig. 7a, b, g–i) yielded
quite similar outcomes with minor differences. All
models simulated fewer changes in the outer suburb
Lin’an (region 3). Compared to the other models, model
2 simulated fewer changes in regions 1 and 2 (Fig. 7b)
while model 19 simulated the fewest changes in region 1
but more changes in region 5 (Fig. 7i). Models 3 and 4
produced similar spatial patterns as they simulated fewer
changes in the far suburbs for both Lin’an and Fuyang
(Fig. 7c, d). The simulated urban expansion areas are
mainly distributed around the Hangzhou city center. By
comparison, model 3 allocated new urban areas in the
east-west direction while model 4 allocated new urban
areas in the north-south direction. The simulated chang-
es in model 5 occur mainly along the road networks
(Fig. 7e), confirming the significant influence of the
major roads on urban expansion.Model 6 captured most
of the urban expansion in the Hangzhou city center and
two of its distant suburbs (Lin’an and Fuyang), but it
missed many other urban areas in region 2 (Fig. 7f).

Accuracy analysis and model response

The overall accuracy for all the DE-CAmodels varies as
the iteration number increases (Fig. 8). Models 1, 2, and

7 yielded the greatest accuracy (~ 91%) at the 10th
iteration (Fig. 8a), models 3–6 yielded the greatest ac-
curacy (~ 89%) at the 6th iteration (Fig. 8a), and the
remaining four models yielded the greatest accuracy (~
90%) at the 8th iteration (Fig. 8b). while the overall
accuracy of models 1, 2, and 7 monotonously increased
during iteration, their simulated quantity of urban ex-
pansion matched the total land available for develop-
ment at the 10th iteration. The overall accuracy of
models 3–6 first increased as the iteration number in-
creased, then peaked at the 6th iteration. The new urban
areas of these four models satisfied the total land avail-
able for development at the 10th iteration, where they
have lower overall accuracy than at the 6th iteration.
Models 12, 16, 19, and 21 yielded the greatest accuracy
at the 8th iteration, similar to models 3–6. These results
show that the DE-CA models containing different driv-
ing factors led to different simulation processes and
outcomes.

To show the spatial patterns of accurate and errone-
ous simulations, we performed an overlay analysis for
the 2005 reference map, the 2015 reference map, and the
2015 simulated map (Fig. 9). The overlay maps have
five categories: urban agreement, non-urban agreement,
miss, false alarm, and water body. The water body was
excluded from the accuracy assessment. The maps show
that the simulation results for models 1, 2, 7, 12, and 19
had fewer misses and false alarms (Fig. 9a, b, g–i), with

Fig. 5 Land conversion probability maps produced by all six IFB-DE-CA models
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Fig. 6 Land conversion probability maps and their differences for the MFB-DE-CA models

Table 6 Summary statistics of land conversion probability from different models

Model Variable Mean SD Threshold

Model 1 DEM 0.24 0.28 0.496

Model 2 POP 0.40 0.06 0.400

Model 3 CITY 0.32 0.18 0.430

Model 4 RAIL 0.41 0.24 0.530

Model 5 ROAD 0.42 0.25 0.530

Model 6 COUN 0.49 0.15 0.490

Model 7 DEM-POP 0.24 0.28 0.496

Model 12 DEM-POP-COUN 0.23 0.28 0.490

Model 16 DEM-POP-COUN-RAIL 0.24 0.28 0.495

Model 19 DEM-POP-COUN-RAIL-CITY 0.20 0.24 0.450

Model 21 DEM-POP-COUN-RAIL-CITY-ROAD 0.20 0.24 0.448
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simulation errors principally occurring in the east and
north of Hangzhou. In contrast, models 3–6 yielded
more misses in eastern Hangzhou, and most of the false
alarms occurred around the existing built-up area (Fig.
9c). Model-4 yielded more false expansion in the

southern and northern parts of Hangzhou (Fig. 9d) while
model 5 yielded more false expansion along the road
networks (Fig. 9e). For model 6, false alarms occurred
in Hangzhou city center and north of Hangzhou, as well
as in two satellite cities (Lin’an and Fuyang).

Fig. 8 Overall accuracy versus iteration number for 2015 urban expansion simulations
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As each simulation progressed, hits increased monot-
onously, while misses decreased and false alarms
increased (Fig. 10), indicating that more simulation
errors were introduced when more urban expansion
was accurately modeled. Quantitatively, models 1 and
2 hit 5.7% urban expansions correctly during 2005–
2015, while models 3–6 hit 0.7% fewer urban expan-
sions as compared with the former. Models 1 and 2
missed 4.9% actual urban expansions and generated
4.4% false alarms, whereas models 3–6 produced the
largest misses (5.6%) and false alarms (5.5%).
Models 7, 12, and 16 hit more than 5.7% of urban
expansion, and there are no quantitative differences
among them. The correctly captured urban expan-
sions (~ 5.4%) of models 19 and 21 are slightly
smaller than those of models 7, 12, and 16. Models

7 and 12 missed less than 5% of urban expansions
while models 16, 19, and 21 missed more than 5% of
urban expansions. Models 7 and 16 yielded similar
false alarms ~ 4.4%, while models 12, 19, and 21
yielded slightly larger false alarms than the former
models. Overall, the IFB-DE-CA models 1 and 2 and
all MFB-DE-CA models are superior to the IFB-DE-
CA models 3–6 as measured by all metrics including
hit, miss, and false alarm, suggesting the latter four
models are less preferred in modeling urban expan-
sion at Hangzhou.

Predicted 2030 scenarios

To evaluate the effect of factors on urban scenarios, we
predicted Hangzhou urban scenarios for 2030 using the

Fig. 9 Overlay maps showing 2015 simulation hits, misses, and false alarms
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IFB-DE-CAmodels because each only includes only one
factor. We applied a linear extrapolation to determine the
amount of future urban expansion based on the 2005–
2015 annual growth rate. Hangzhou’s urban area expand-
ed by approximately 488 km2 from 2005 to 2015, leading
to a projected expansion of ~ 732 km2 from 2015 to 2030
and a total urban area of ~ 2125 km2 by 2030.

Figure 11 shows distinct differences in the spatial pat-
tern among different scenarios, reflecting the effects of the
corresponding factors on future urban expansion when
applying them in DE-CA models. The model 1 scenario
shows that the newly built-up areas will occur mainly in
the flat and low-slope areas of eastern and northern Hang-
zhou (Fig. 11a). The model 2 scenario shows that urban
expansion will primarily occur in highly populated areas

with less expansion in areas of low population density
(Fig. 11b). For models 3 and 4, less expansion is observed
in eastern Hangzhou and the outer suburbs Lin’an and
Fuyang. Model 3 predicts greater urban expansion than
Model 4 in southern and northwestern Hangzhou, while
Model 4 predicts much more expansion in Xihu District.
Model 5 suggests that new urban areas will form along
existingmajor roads (Fig. 11e). Model 6 (Fig. 11f) projects
expansion in the coming 15 years in the fringe areas of
both Hangzhou city center and satellite cities Lin’an and
Fuyang.

To examine differences in the predictions, ten class-
level landscape metrics were used to characterize the spa-
tial patterns of the scenarios (Table 7). PLAND shows the
percentage of urban land use in 2030, where only ~ 0.7%
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differences exist between the models, indicating similar
quantity control ability. Models 1–2 have greater LPI than
the other models, suggesting that by 2030, these two
models will fill more non-urban areas surrounded by the
largest urban patch in 2015. These findings were con-
firmed by their relatively smaller values of TE and PD.
PAFRAC suggests that the model 2 scenario yields a
relatively less complex urban pattern than the other sce-
narios. As inferred by IJI, the urban patches of the model 3
scenario aremore juxtapositionedwhile those of themodel
5 scenario are less juxtapositioned comparedwith the other

models. This indicates that the CITY factor aggregates
more new urban cells to the Hangzhou city center (Fig.
11c) while the ROAD factor attracts more urban cells
along road networks (Fig. 11e). All scenarios have similar
large values of the COHESION, DIVISION, and AI met-
rics, demonstrating the high connectivity among urban
patches and the aggregation effect of the DE-CA models
in predicting future urban expansion.Models 5–6 show the
highest SPLIT, suggesting that urban landscapes in these
simulations are more fragmented when compared to the
other four scenarios.We applied the same samples to build

Table 7 Landscape metrics of predicted 2030 urban land-use

Category Metric Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Area-edge category PLAND (%) 33.2774 33.3831 33.9916 33.8305 33.863 33.8677

LPI (%) 13.7723 13.3585 11.7019 11.9556 11.415 10.8835

TE (10 km) 558.7320 565.1070 590.9310 684.8370 722.6010 685.5840

Shape category PAFRAC 1.3491 1.2671 1.3159 1.3453 1.3352 1.3014

Aggregation category PD (n/100 ha) 0.1481 0.1429 0.1655 0.1676 0.1665 0.1593

IJI (%) 33.7474 30.8198 35.1059 28.9423 25.2578 31.5347

COHESION (%) 99.7655 99.7930 99.8014 99.8068 99.7972 99.7973

DIVISION (%) 0.9729 0.9755 0.9726 0.9749 0.9794 0.9799

AI (%) 97.9918 97.9836 97.9349 97.5782 97.4652 97.5883

SPLIT (%) 36.9362 40.8499 36.5167 39.7660 48.6250 49.8690
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the DE-CA models using DE, and the differences among
the scenarios can be attributed to the effect of different
driving factors.

Discussion

Weused a stepwise GAM to examine the effects of driving
factors and ranked these factors according to their statistical
significance. Each factor was used to produce a land
conversion probability map to create a DE-CA model.
Such models based on individual factors have not been
previously reported. We identified five combinations of
land-use driving factors to generate conversion probability
maps, which were in turn used to build five MFB-DE-CA
models. The rapid urban expansion in Hangzhou during
2005–2015 was then simulated using all DE-CA models,
yielding high overall accuracies exceeding 89%. Our ac-
curacies are comparable to previous case studies in Hang-
zhou, which reported accuracies of 84~87% (Hou et al.
2019; Liu et al. 2018). To examine the impacts of individ-
ual factors on future urban expansion, we applied all six
IFB-DE-CA models to predict future scenarios of Hang-
zhou to the year 2030.

Our models show that an individual factor can be
applied to establish a CA model, which generated defen-
sible simulation results. Among the factors, DEMand POP
have the highest impact on urban expansion at Hangzhou
from 2005 to 2015. Models incorporating two factors
produced more accurate simulations when compared with
models using other factors. While earlier work suggests
including more significant driving factors into urban CA
models (Engelen 2002; Wahyudi and Liu 2013), our find-
ings show that MFB-DE-CA models are not necessarily
superior to IFB-DE-CA models. The differences between
the IFB-DE-CA and MFB-DE-CA models exist in both
the simulated accuracy and spatial patterns. IFB-DE-CA
models 1–2 performed better than the MFB-DE-CA
models 19 and 21, which bettered the IFB-DE-CAmodels
3–6 by ~ 1%. This indicates that a CA model using only
themost influential factor (e.g., DEM) performs better than
a model using a less significant factor (e.g., RAIL) only
and may perform better than models that include both the
most influential factor and other less significant factors
(e.g., DEM-POP-COUN-RAIL-CITY). Our findings con-
firmed the results of Feng and Tong (2017b), who showed
that model performance can be reduced when too many
factors are included.

CA models are built based on the land conversion
probability defined by driving factors and the combined
effects of other model elements. The definition of these
elements and their processing may substantially affect the
simulation results (Poelmans and Van Rompaey 2010;
Sang et al. 2011). Possible issues include neighborhood
configuration, constraints, spatial resolution, sampling
methods, and particularly the algorithms applied to define
land conversion probability (Feng and Tong 2017a). In this
study, all DE-CA models applied the same settings except
the factors included in the transition rules. As a result, the
differences among the models in this research can be
attributed mostly to the different impacts of the driving
factors.

Driving factors are approximations of real geographic
and socioeconomic elements, and the visualization of these
elements may lead to the loss of some spatial detail
(Goodchild et al. 1992). Different categories of factors
have different effects on urban expansion. Factors belong-
ing to the same categorymay generate different impacts on
urban expansion, because they represent different geo-
graphical aspects. When more driving factors are included
in DE-CA models, the interaction among factors does not
necessarily lead to improvements in the simulation results
and may even reduce the simulation accuracy. Applying
more driving factors probably leads to multicollinearity
(Feng and Tong 2017b), introducing more geographical
data errors that propagate through data processing and
model implementation and lead to negative impacts on
modeling.

The selection of appropriate driving factors is crucial in
CAmodeling,which can producemore realistic simulation
results by taking into account the most influential factors.
GAM is suitable to quantify the impacts of factors using
the fitting statistics and to select the appropriate combina-
tion of factors. Our study is a good example of how to
select the most influential driving factors among the can-
didates for calibrating CA models. Future urban scenarios
from various IFB-DE-CA modeling differ because each
scenario emphasizes the different impacts of each factor.
For a comprehensive prediction of urban expansion, IFB-
DE-CA models may not be the best choice because cities
are complex systems affected by numerous factors. How-
ever, IFB-DE-CA models can inform urban modelers and
policy-makers about potential urban scenarios when con-
sidering each factor separately. These scenario predictions
can be early warnings of the consequences of different
urban development schemes and can help policy-makers
to adjust and avoid unfavorable future urban scenarios.
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Conclusions

We used a stepwise GAM to examine the rank orders of
candidate driving factors and identify 21 combinations
of these factors, which were applied to calibrate 21 DE-
CA models. Among these models, six IFB-DE-CA
models and five MFB-DE-CA models were applied to
simulate urban expansion at Hangzhou from 2005 to
2015, and all these models produced defensible 2015
simulations with overall accuracies in excess of 89%.
We finally applied all six IFB-DE-CA models to project
future urban scenarios for the year 2030.

We concluded that (1) a CA model can be construct-
ed using only one driving factor, (2) IFB-DE-CA
models may outperform MFB-DE-CA models in simu-
lating present urban patterns, and (3) the major differ-
ences between the two types of models are their projec-
tions of future urban scenarios. Each IFB-DE-CAmodel
produces a very different future scenario that is shaped
by the corresponding factor, informing the modelers and
policy-makers about how cities will be formed if the
corresponding factors are individually applied. This im-
proves our understanding of the effects of driving fac-
tors on urban dynamics and their impacts on CAmodels
when incorporating them into the models separately. In
contrast, the MFB-DE-CA models take into account
several factors simultaneously and allocate new urban
cells where the combined effect of all factors is higher
than the threshold. Because cities are complex systems,
we suggest examining the significance and impact of
each candidate factor using GAM to determine whether
it should be included in the model.
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