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Abstract Rapid population and economic growth
quickly degrade and deplete forest resources in many
developing countries, even within protected areas.Mon-
itoring forest cover change is critical for assessing eco-
system changes and targeting conservation efforts. Yet
the most biodiverse forests on the planet are also the
most difficult to monitor remotely due to their frequent
cloud cover. To begin to reconcile this problem, we
develop and implement an effective and efficient ap-
proach to mapping forest loss in the extremely cloud-
prevalent southern Ghana region using dense time series
Landsat 7 and 8 images from 1999 to 2018, based on
median value temporal compositing of a novel vegeta-
tion index called the spectral variability vegetation index
(SVVI). Resultant land-cover and land-use maps
yielded 90 to 94% mapping accuracies. Our results
indicate 625 km2 of forest loss within the 9800-km2

total mapping area, including within forest reserves
and their environs between circa 2003 and 2018. Within
the reserves, reduced forest cover is found near the
reserve boundaries compared with their interiors, sug-
gesting a more degraded environment near the edge of
the protected areas. A fully protected reserve, Kakum
National Park, showed little forest cover change

compared with many other less protected reserves (such
as a production reserve—Subri River). Anthropogenic
activities, such as mining, agriculture, and built area
expansion, were the main land-use transitions from for-
est. The reserves and census districts that are located
near large-scale open pit mining indicated the most
drastic forest loss. No significant correlation was found
between the magnitudes of forest cover change and
population density change for reserves and within a
1.5-km buffer surrounding the reserves. While other
anthropogenic factors should be explored in relation to
deforestation, our qualitative analysis revealed that re-
serve protection status (management policies) appears to
be an important factor. The mapping approach described
in this study provided a highly accurate and effective
means to monitor land-use changes in forested and
cloud-prone regions with great promise for application
to improved monitoring of moist tropical and other
forests characterized by high cloud cover.
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Introduction

Forest cover is associated with ecosystem services that
are vital to human health and livelihoods, including
watershed protection, climate change mitigation, and
soil erosion prevention. However, tropical forests glob-
ally were depleted at an annual rate of 6 million hectares
in recent years, while agricultural land increased by
almost the same amount, based on a report by the Food
and Agriculture Organization of the United Nations
(FAO 2016). Other studies indicate that most of the
deforestation in tropical forests is related to agricultural
practices (Barraclough and Ghimire 2000; Appiah et al.
2009; UNEPGEO-5 report 2012). Population dynamics
(such as birth, death, and migration) have also been
commonly associated as an underlying and indirect
cause for deforestation, particularly in rural regions
(Carr 2004; Carr et al. 2005). Ghana, as a developing
country in sub-Saharan Africa, has experienced steady
economic, population, and urban growth, and in turn,
land-cover and land-use change (Acheampong et al.
2018). The country’s total population increased from
19 million to 25 million between 2000 and 2010
(Ghana Statistical Service 2012). Ghana’s GDP had an
annual gain of 6.6% from 2010 to 2014 (FAO 2016).
Despite the net rural-to-urban migration and over half of
the population residing in urban areas since 2010, the
rural population continues to grow, suggesting that fer-
tility rates remain high (UN DESA 2018).

Forest resources and deforestation in Ghana

Most of the pristine forest resources, including tropical
evergreen seasonal forest and tropical semi-deciduous
forest (UNESCO 1973), are located in the high forest
zone in the southern part of Ghana. Historically, these
primary forests in Ghana are mostly depleted due to past
agricultural expansion and over-exploitation of forest
resources (Appiah et al. 2009). Timber harvesting, sur-
face mining, and export-oriented agriculture are among
the main economic activities in Ghana (Hens and Boon
1999; UNDESA 2017), and these activities are destruc-
tive to forest cover (Osafo 2005). Heavy logging took
place during the 1960s and 70s in Ghana. Almost all
forests, even within protected areas, have been selec-
tively logged at some point in time, many of them since
1990. Vegetation outside of the reserves is mostly sec-
ondary regeneration on abandoned farms (Hall and
Swaine 1976; Dickson et al. 1988), with small

agricultural plots mixed in. Expansions of plantations
of trees, oil palm, and cocoa also contribute to defores-
tation or forest degradation. The commonly practiced
taungya system, in which plantation workers are given
rights to grow agriculture crops among forest planta-
tions, can cause forest disturbances (Kalame et al. 2011;
Hawthorne and Abu-Juam 1995). Unsuccessful taungya
systems can lead to forest cover conversion to agricul-
ture; this Bslash-and-burn^ agriculture practice can also
lead to higher fire risk within plantations and forests.
Ghana is a major producer of gold, bauxite, and man-
ganese among African countries. In 2016, its total gold
output was over 113,400 kg. Twenty-three large-scale
mines were located in the country in 2016, and most of
them operate as open pit mines. This surface mining
style and mine expansions cause both large- and small-
scale forest cover removal.

It is estimated by the FAO that the livelihood of 2.5
million people in Ghana depends on forests. Appiah
et al. (2009) documented that almost 40% of rural
household income in Ghana consists of forest-related
activities. More revenue is generated and more forest is
cleared when the household is larger or resides closer to
forests. With a lack of off-farmwork opportunities, rural
residents rely on poverty-driven agriculture (compared
with economical, longer-cycle planting). Short cycle
crops are planted and shifted between agriculture plots
while long cycle crops are also cultivated. This practice
generates higher crop yields but is also destructive to
forest cover (Barraclough and Ghimire 2000). Firewood
collection from fields and forest near villages is also
common in rural regions (Calvo 1994). Firewood is the
preferred and main fuel source for cooking in rural
zones, and few households use charcoal or crop residue
according to the Ghana 2010 population and household
census (Ghana Statistical Service 2012). Due to defor-
estation, the travel time and distance to collect firewood
have increased in recent years according to a UN report
(2010).

Individuals and local communities/tribes own rough-
ly 80% of the lands in Ghana. Most of these customary
lands are managed based on indigenous tribal customary
laws and are not bound by specific national manage-
ment laws (Ubink and Quan 2008). Some of these
customary lands, such as sacred groves and community
forests, are preserved as areas for traditional shrines for
local communities. The remaining 20% of lands in
Ghana are state owned, which the Ghanaian government
owns and manages. Over 200 forest reserves and
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protected areas (i.e., on-reserves) are set aside to be
managed by the Ghanaian government (Osafo 2005),
and they are located on both customary land and state
land. However, reserves are further classified with dif-
ferent protection status and human disturbances are still
present. Protected areas are classified as conversion,
production, and protected reserves (Hilson and Nyame
2006). Conversion reserves are degraded regions that
are being targeted for replanting. Production reserves
are resource reserves that can be used to sustainably
produce wildlife products, and timber and non-timber
products, used for cultural practices (e.g., tribal sacred
lands), tourism, and trophy hunting (Hawthorne and
Abu-Juam 1995). Protected reserves, including national
parks, allow no exploitation. However, based on a man-
agement evaluation report published by the Internation-
al Union for Conservation of Nature (Hawthorne and
Abu-Juam 1995), even protected reserves and national
parks can experience land conversion, bush fire, and
encroachment.

Remote sensing solutions to monitoring land change
in cloud-prone areas

Remote sensing offers a cost-effective and practical
means to map vegetation, other land-cover, and land-
use over large areas, compared with field survey. Mod-
erate spatial resolution satellite systems such as Landsat
provide near-global coverage of multi-spectral imagery
dating back to the mid-1980s that can be used tomonitor
long-term and extensive forest cover (Roy et al. 2014).
Landsat surface reflectance products offer more compa-
rable and reliable land change analysis than spectral
radiance or digital number products (Hall et al. 1991;
Moran et al. 1992) as the conversion accounts for some
atmospheric and solar illumination effects. These sur-
face reflectance products are generated by algorithms
implemented by the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS; Masek et al.
2006) for Landsat 4 to 7 imagery, and Landsat Surface
Reflectance Code (LaSRC; Vermote et al. 2016) for
Landsat 8 images.

Optical satellite imagery is susceptible to cloud cov-
er, particularly in humid and tropical regions where
cloud cover and optically dense atmospheres are pre-
dominant. Much research has demonstrated the poten-
tial of image composites, formed by combining multi-
temporal cloud-free observations, to resolve cloud cover
and cloud shadow issues (Broich et al. 2011; Huang

et al. 2009; Hansen et al. 2008). Lindquist et al. (2008)
evaluated the pixel quality for the humid tropics in
central Africa and found that, ideally, all available
image data would be utilized to achieve the highest
image composite quality. Coulter et al. (2016) used
dense Landsat images to derive maximum-value image
composites as a means to resolve the frequent cloud
cover and cloud shadow issue in southern Ghana. Their
derived land-cover and land-use change map detected
changes with over 70% accuracy, although some image
anomalies from maximum-value compositing were
present. Ruefenacht (2016) tested the utility of median
value image composites to estimating tree canopy per-
cent cover. Median value composites were found to
retain comparable image information and yielded fewer
image anomalies from the cloud and shadow pixels
compared with the maximum-value composite prod-
ucts, as median value is more resistant to data outliers.
The utility of median value image composites is dem-
onstrated in this study of southern Ghana.

Unsupervised image classification or clustering
followed by manual labelling is commonly adopted for
large area land-cover mapping, particularly when the
mapping classes are uncomplicated (Franklin and
Wulder 2002) or when training data are not readily
available for supervised image classifiers (Rogan and
Chen 2004). Muller et al. (1999) mapped vegetation in
northern Alaska spanning multiple scenes of Landsat
images using K-means clustering. Forest and meadow
were discriminated using the Landsat imagery and
ISODATA clustering in Yellowstone by Debinski et al.
(1999). Unsupervised image classification techniques
have also been applied to map land-cover and land-use
in Ghana. Pabi (2007) used Landsat TM images and
ISODATA clustering to map land-cover and land-use
for eight sites within two census districts in central
Ghana. With a post-classification map comparison be-
tween 1991 and 2001, Pabi found that dense woodland
areas decreased significantly in all eight sites while
cultivated land increased. The effectiveness of unsuper-
vised image classification has not yet been tested in
mapping the extensive tropical southern Ghana region
where cloud cover is prevalent.

Land-cover and land-use change in Ghana has been
examined in previous studies based on remote sensing
data and techniques, mostly for localized areas. Forest
cover decrease and concomitant increase in other land-
uses (e.g., built, agriculture, and mining area) are com-
mon findings in these studies. Kusimi (2008) mapped
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land-cover and land-use change for 1986–2002 within a
single census district in southwestern Ghana, using
Landsat TM images and a combina t ion of
unsupervised and supervised image classification
routines. He found that forest reserves in the district
experienced significant forest cover loss of over
400 km2, while areas of mining, farming, built, and
settlements in the district increased. Yorke and Margai
(2007) mapped land-cover and land-use from 1990 to
2000 Landsat images using a supervised, maximum
likelihood image classification routine for a watershed
in southeastern Ghana. They found forest cover de-
creased by over 32%, while agricultural land and built
land expanded substantially. Coulter et al. (2016)
mapped land-cover changes between circa 2000 and
2010 using four Landsat scenes coveringmuch of south-
ern Ghana, and found that 62% of the land changes were
related to agricultural land increase. An up-to-date and
more extensive examination of forest cover change in
southern Ghana is needed and can aid in land-use deci-
sions and conservation efforts.

The objectives of this study are twofold. First, land-
cover and land-use changes with an emphasis on forest
cover change for protected areas and their environs in
southern Ghana are mapped and quantified based on
Landsat multi-temporal composite data. Second, the
magnitude of forest loss in relation to population growth
between 2000 and 2010 is examined. Forest cover and
other land-cover and land-use types are mapped for two
study periods from 1999 to 2018. Changes in forest
cover are quantified and examined in conjunction with
high spatial resolution satellite images to identify the
corresponding causes of land change. A regression anal-
ysis is utilized to evaluate the potential anthropogenic
pressure on forest cover by examining the statistical
relationship between forest loss and population growth.

Study area and data

Figure 1 shows the protected areas and forest reserves in
the Western, Ashanti, Eastern, and Central regions of
Ghana that were selected for this study. The selected 76
reserves are located in the tropical evergreen forest zone
and within a single Landsat image scene. Among the
selected reserves is a fully protected reserve, Kakum
National Park. Kakum National Park is located in the
Central region in Ghana. Established in 1931, Kakum
National Park is currently being considered as a

UNESCO World Heritage Site for its high biodiversity
and esthetic value. Kakum National Park covers a total
of 212 km2. Poaching has been identified as one of the
main wildlife threats in this area (Hawthorne and Abu-
Juam 1995). Farming activities surrounding the park are
key deforestation drivers. Subri River, the largest re-
serve in Ghana (588 km2) is a production reserve in
the study area. Other production reserves are included as
well, such as Opon Mansi and Bowiye Range. Reserves
that are near some of the largest open pit mines in Ghana
are also included (e.g., Bonsa Ben, Oda River,
Anwhiaso, and Wassaw Conservation Areas). Many
potential anthropogenic disturbances exist in these
protected areas besides mining, including villages locat-
ed at the reserve boundaries, large-scale commercial
agriculture, and logging exploitation. Based on the av-
erage one-way walking time for firewood collection in
rural Ghana (Calvo 1994; United Nations 2010), a 1.5-
km surrounding area of each reserve is incorporated in
addition to the reserve lands as the mapping area for this
study, as seen in Fig. 1. Based on a polygon shapefile of
protected areas provided by the Forestry Commission of
Ghana, a subset and buffer of the reserves were created
to delineate the mapping area. The total designated
reserve area in this study is about 5370 km2, and the
total mapping area (i.e., reserves and environs) is about
9800 km2.

Surface reflectance image products located at World-
wide Reference System 2 path 194 and row 56 collected
from the Landsat 4 and 5 Thematic Mapper (TM),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+),
and Landsat 8 Operational Land Imager (OLI) platforms
were reviewed interactively on the Google Earth Engine
platform (earthengine.google.com) and in the USGS
Earth Explorer (earthexplorer.usgs.gov). The imagery
data were limited to only Landsat Tier-1 surface reflec-
tance products, for they meet certain radiometric and
geometric standards during processing to ensure a con-
sistent data quality that supports multi-temporal image
analysis (Hall et al. 1991; Moran et al. 1992; USGS
landsat.usgs.gov/landsat-level-1-standard-data-
products). Based on image and reference data
availability, two compositing periods were selected for
this study—circa 2003 and circa 2018. The circa 2003
composite image was generated from all available
Landsat 7 ETM+ image scenes (i.e., 39 scenes total)
captured from January 1999 to mid-May of 2003. The
circa 2018 composite image consists of multi-spectral
data from all available Landsat 8 OLI images (i.e., 41
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scenes) collected between January 2013 and May 2018.
We experimented with circa 1991 (using Landsat 4 and
5 TM images) and 2010 (using Landsat 7 ETM+ im-
ages) image composites for this study. Only six Landsat
TM images are available for the study area due to a lack
of a data recording station between 1986 and 1991 prior
to the launch of Landsat 7 in 1999. Likely due to the
limited number of images in the composite and lower
image quality, the circa 1991 composite image yielded a
problematic land-cover map with a lower mapping ac-
curacy. Landsat 7 images collected after mid-May 2003
were affected by the Scan Line Corrector issue (i.e.,
SLC-off) for the ETM+ sensor. The post-2003 Landsat
7 images were not considered in this study after we
found the dense forest regions susceptible to scan line
data gaps.

Some high spatial resolution satellite imagery col-
lected in recent years for southern Ghana was available
as reference data. QuickBird and IKONOS images were
available for viewing on Google Earth. WorldView-2

and a Digital Globe high spatial resolution commercial
satellite image mosaic (collected between 2012 and
2014) is available for viewing as the BaseMap Imagery
product in ArcGIS software. Three-meter spatial reso-
lution planet imageries collected in Fall 2017 and Spring
2018 are also available through the Planet Education
and Research program (Planet Team 2017). Three rela-
tively cloud-free Landsat images were identified and
downloaded from Earth Explorer for visual interpreta-
tion. The images corresponding to the study periods
were collected in May 2002 (Landsat 7), December
2015, and January 2018 (both Landsat 8).

Methods

Landsat surface reflectance products were retrieved
from the Google Earth Engine image library and proc-
essed using its JavaScript-based code editor platform.
The images were masked for clouds, cloud shadow, and

Fig. 1 Study area map showing forest reserves (outlined in red)
and the mapping area (blue) in southern Ghana. Reserves are
located in Western, Central, Eastern, and Ashanti regions. The

gray-scale base image is the NIR band of a Landsat 8 OLI image
captured in December 2015
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water bodies using the pixel quality assessment band
(i.e., pixel_qa) that was derived by the C version of the
Function ofMask algorithm (CFMask; Foga et al. 2017)
and provided as part of the Landsat surface reflectance
products. A reflectance normalization process devel-
oped by Wu (2004) was applied to the Landsat surface
reflectance images to correct for terrain effects. Each
spectral band was divided by the sum of all spectral
bands for each image date to minimize the illumination
differences. The illumination normalized data were used
for the subsequent image analysis.

Median value image composites were formed using
the available cloud-free pixels for the study periods.
Besides the Landsat spectral bands, spectral variability
vegetation index (SVVI) and a SVVI texture image
were also generated. SVVI was developed through ex-
ploratory analysis in a previous study mapping land-
cover and land-use in southern Ghana (Coulter et al.
2016). It is calculated as the difference between the
standard deviation (SD) of all Landsat spectral bands
and the standard deviation of infrared bands for a given
pixel, as defined in Eq. 1:

SVVI ¼ SD ρall bandsð Þ−SD ρNIR and SWIR bandsð Þ ð1Þ

Here, ρall bands and ρNIR and SWIR bands represent
surface reflectance values for all Landsat bands (exclud-
ing thermal) and near-infrared and shortwave-infrared
reflectance values respectively, for a given pixel. The
SVVI metric was found to effectively minimize image
compositing artifacts and to enhance the spectral and
textural difference between natural vegetation and sub-
sistence agriculture land in the southern Ghana study
area.

SVVI was calculated for each image date captured
within the study periods and composited using the me-
dian value for each pixel within the dense time stack.
Forest and moist natural vegetation exhibits a low SVVI
value, compared with non-vegetated areas, and shows
low variability among the surrounding pixels. Thus,
texture images were generated based on the SVVI prod-
ucts, calculated with a 3-by-3 focal standard deviation
function to further differentiate forest and other non-
forested land-cover types. A SVVI texture composite
image was subsequently created using the median pixel
values of the entire time series.

The median value composite layers of red and near-
infrared spectral bands, SVVI, and SVVI texture were
layer-stacked and utilized as the land-cover

classification input. An unsupervised image classifier
using K-means clustering was used to classify the im-
ages. Five hundred image pixels within the mapping
area were randomly selected as the image classifier
training data. Spectral clusters were generated by the
K-means image classifier while the number of clusters
was experimented on iteratively. The cluster images
were examined in conjunction with high spatial resolu-
tion reference imagery and relatively cloud-free single-
date Landsat imagery for the corresponding study peri-
od. Image clusters were merged and assigned manually
into three classes: forest, agriculture/open canopy, and
built/bare/surface mining. The forest class represents the
undisturbed dense forest, mostly seen as closed canopy
forest cover. The agriculture and open canopy class
includes sparse secondary forest regeneration, oil
palm/cocoa plantations, low-intensity subsistence agri-
culture, and fallow land. The built, bare, and mining
class includes built-up, roads, cleared land with exposed
soil, and surface mining. After the image classification,
a 3-by-3 focal mode smoothing function was applied to
the Landsat-derivedmaps to yield a generalizedmap at a
more appropriate minimum mapping unit (closer to
1 ha) and to reduce per-pixel classification noise.

Classification accuracies were assessed using a total
of 120 reference image pixels. The reference pixels were
generated in a stratified random sampling manner and
interpreted in conjunction with available high spatial
resolution reference imagery and relatively cloud-free
Landsat images to identify the corresponding land-cover
and land-use types. Forty samples for each of the three
mapping classes—forest, agriculture/open canopy, and
built/mining—were created and reviewed to ensure the
reference pixels represented stable and single class land-
cover and land-use types during circa 2003 to 2018. The
resulting reference pixels were used to measure the
mapping accuracy of each study period. The mapping
agreement, user’s, producer’s, and overall accuracies
were summarized in an accuracy assessment table.

Land-cover and land-use change maps were generat-
ed based on the multi-temporal Landsat-derived map
products through post-classification map comparison.
Spatial patterns of forest loss (e.g., locations where
closed forest transitioned to non-forest classes) were
examined both quantitatively and qualitatively. Areal
data of forest loss was summarized at the reserve and
census district levels. Districts are relatively large census
units, composed of multiple enumeration areas (similar
to census blocks in the US), and each district
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encompasses multiple forest reserves. Areal summaries
of reserves were aggregated to the district level prior to
analysis. Only districts that contained 15% or greater
amounts of reserved land were selected for analysis.
There are 14 districts within the study area that meet
the 15% areal threshold.

Regression analyses were carried out to examine the
amount of forest loss in relation to population density
and population density change. Forest cover change was
summarized for circa 2003–2018. Population data were
derived from the decadal Ghana Population and Hous-
ing Census (PHC) from the years 2000 to 2010. The
PHC data are georeferenced to the Enumeration Area
(EA) level. The population density of EAs that are
within a 1.5-km distance from the reserve boundary
was averaged for each reserve. The population density
was also summarized to the census district level and
compared with the forest cover change amounts within
each district. Two other independent variables (i.e.,
cooking fuel types and occupations) were also examined
but the data variance was too limited to enable statistical
analyses.

Results

Land-cover and land-use maps for circa 2003 and
2018 are shown in Fig. 2. The circa 2018 images
generated using K-means clustering were based on
25 spectral clusters while the circa 2003 image was
created with 16 spectral clusters. Mapping accuracies
for the Landsat-derived maps are shown in Table 1.
High overall mapping accuracies were achieved for
both study periods, with the overall classification ac-
curacies at 94 and 90% for circa 2003 and 2018,
respectively. As Table 1 shows, some confusion oc-
curred between the forest and open canopy vegetation
classes, with slight confusion between built and open
canopy vegetation for both image dates. The forest
class appears to be over-classified for both study pe-
riods, as the user’s accuracies are slightly lower than
the producer’s accuracies. The open canopy/agriculture
class on the other hand is under-classified, with higher
user’s accuracies compared with producer’s accuracies.
The built/mining class is mapped with high accuracy,
with nearly 100% producer’s and user’s accuracies for
both dates.

As seen in Fig. 2, the dense evergreen forest cover is
generally constrained within reserve boundaries. Open

canopy and agriculture are mostly found outside of
reserves. Some small patches of forest were mapped
beyond reserve boundaries, mixed in with agriculture
and open canopy. Unpaved roads inside reserves, forest
clearing, and regeneration were also classified as open
canopy. Built and surface mining are found near and
within reserves. Some changes in forest cover and non-
forest vegetation are apparent from the Landsat-derived
classification products. About 80 km2 of forest clearing
is identified in Subri River forest reserve in the south of
the mapping area between 2003 and 2018. The
Anwhiaso East reserve located in the northeastern por-
tion of the mapping area also shows forest loss during
this period. Expansion in built and mining land-uses is
also observed, particularly on the western side of the
study area. Roads within reserve lands increased or at
least became more definable in the Landsat images
captured during the 2003 to 2018 period.

Table 2 summarizes areal land-cover and land-use
and change between the two image periods for the entire
mapping area (i.e., almost 9800 km2), which varies
slightly between image dates and data coverage. The
percent areal change is calculated as the relative change,
which is the difference between the two mapping dates
relative to the earlier date. A total of 6655 km2 or 68% of
the mapping area was mapped as forest cover in circa
2003. The forest cover decreased by − 625 km2 or − 9%
between circa 2003 and 2018. The open canopy and
agricultural land exhibit the opposite temporal dynam-
ics, with an increase of over 535 km2 (18% relative
increase) since circa 2003. Built, bare, and surface min-
ing showed a consistent increase in area, with a doubling
of area since circa 2003.

Figure 3 shows the land-cover and land-use change
map between circa 2003 and 2018 for the study area.
Most of the reserve land remained dense forest canopy
between circa 2003 and 2018, about 5142 km2 in area.
Almost 1500 km2 of forest in circa 2003 transitioned to
open canopy or agriculture land in circa 2018 (shown in
blue in Fig. 3), mostly in the western portion of the study
area. Over 2000 km2 of land remained open canopy or
agricultural land during this period, most of which was
outside the protected area boundaries. Besides road
network expansion through the forest reserves creating
linear patterns of forest loss, logging, mining, and agri-
cultural development contributed to most of the large-
scale forest conversion. Over 110 km2 was mapped as
built and mining expansion (from both forest and
agriculture/open canopy are in yellow and red,
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respectively, in Fig. 3). Large groupings of new built
land and mining occurred in the northwest, northeast,
and south in portions of the mapping area. Mining
expansion is observed within the reserves northwest of
the study area in the circa 2003 to 2018 period.

Forest cover within the reserve boundaries is ob-
served to be more fragmented and declined near reserve
boundaries in Figs. 2 and 3. Forest cover was quantified
based on inward buffer zones from reserve boundaries
to evaluate edge effects (Murcia 1995). An areal sum-
mary is given in Table 3.

Forest cover and forest cover change both exhibited
substantial fragmentation and reduction near the reserve
boundaries. Forest cover increased from 88 to 93% in
circa 2003 moving from reserve boundaries to the inte-
rior of the reserves. The proportion of forest for circa
2018 exhibited a similar pattern but with a lower pro-
portion compared with 2003. The 2018 forest cover
showed a gradual increase from 82 to 90% as the dis-
tance inward from reserve boundaries increases. Areas
within 500 m of reserve boundaries showed the greatest
forest to non-forest transition between circa 2003 and

Fig. 2 Land-cover and land-use
maps for circa 2003 (top) and
circa 2018 (bottom). The
mapping area includes forest
reserves and a 1.5-km outward
buffer region from reserve
boundaries. The background is a
gray-scale NIR Landsat 8 image
from December 2015
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2018. A 13% relative forest loss from 2003 to 2018 is
observed within this 500-m buffer zone from reserve
boundaries. Essentially no difference in forest cover or
forest loss is observed for the buffers 500–1000, 1000–
1500, and 1500–3000 m from reserve boundaries.

Reserve level analysis of land-use and population
change

Within the designated forest reserve areas, a total of
181 km2 of forest transitioned to non-forest cover (i.e.,
open canopy and built) between circa 2003 and 2018. This
represents a − 4% decrease relative to the forest area
mapped in circa 2003. Most of the reserves had a slight
forest cover decrease during this period. Three reserves
showed over − 25% relative forest loss in circa 2018 when
compared with the circa 2003 forest area, namely
Anhwiaso North, Anhwiaso East, and Afoa Hills. These
three reserves are located at the northwest end of the study
area and have large-scale open pit mines nearby. Open pit

mines are mapped within Afao Hills for both study pe-
riods, with mining expansion during circa 2003–2018. A
few reserves in the northeast of themapping area showed a
slight forest increase between circa 2003 and 2018. These
include Aiyaola, Nsuensa, Bediako, and Mamang River
Reserves. Despite being near mining activity, these re-
serves are also near large-scale plantation and commercial
agriculture lands.When including the 1.5-kmbuffer region
as reserve environs, eight reserves (including the three
mentioned previously) had over − 25% forest loss in circa
2018 compared with the forest area in circa 2003. All but
one reserve is located in the western portion of the study
area, and adjacent to mines. KakumNational Park showed
a 0.6% increase in forest cover by circa 2018 compared
with the circa 2003 forest area within the park boundary.
The park and its environs combined exhibited a 2.98-km2

increase in forest area or 1.3% during circa 2003–2018.
Subri River, where large-scale forest clearingwas observed
from the classification maps, had a − 11% relative forest
decreasewithin the protected area during circa 2003–2018.
This is likely due to forest plantation activity between
planting and clear-cutting, as observed on the high spatial
resolution reference images.

Figure 4 shows the scatterplots between population
density change and forest cover change. The estimated
population derived from the 2000 and 2010 censuses
showed an increase in population for all the reserves
(aggregated from EAs) and districts within the mapping
area. As Fig. 4a shows, no significant correlation (R2 =
0.05; p = 0.1770) was found between population density
change and forest cover loss at the reserve level. Similar
regression results were found when comparing popula-
tion density of 2000 and 2010 with forest cover loss.
Due to the limited availability of EA boundary

Table 2 Areal summary and change of forest, agriculture/open
canopy, and built/bare/mining classes for the entire mapping area.
The areal summary shows the area mapped for each class and the
percentage relative to the mapping area. The areal change is
calculated as the difference between image dates and percent
change compared with the earlier date. Units are in km2

Image date Mapped area (km2)

Forest Open canopy Built

c. 2003 6655 (68%) 3051 (31%) 70 (0.7%)

c. 2018 6030 (62%) 3586 (37%) 153 (1.6%)

2003–2018 change − 625 (− 9%) 535 (18%) 83 (119%)

Table 1 Mapping accuracies of the Landsat-derived classification products for circa 2003 and 2018. The accuracies were evaluated using 40
reference pixels per class, 120 pixels total for each study period

Image-derived class Reference class User’s accuracy %

Forest Open canopy Built

2003 2018 2003 2018 2003 2018 2003 2018

Forest 39 37 5 8 89 82

Open canopy 1 3 35 32 1 1 95 89

Built 39 39 100 100

Producer’s accuracy % 98 93 88 80 98 98 Overall accuracy %

94 90
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coverage, only the northern and eastern parts of the
study area (a total of 38 reserves) were analyzed for
the relationship between forest cover change and popu-
lation gain. All the analyzed reserves showed a popula-
tion increase and forest loss with varying degree. Annu-
al population density change between 2000 and 2010
ranged from an increase of 1 to 14 people km−2 year −1,
with an average of 2 people km−2 year −1 (rural Ghana
average population increase is about 1 person
km−2 year −1). The average relative forest cover loss
between circa 2003 and 2018 per year is − 1.3% and
ranged from − 0.4 to − 2.3%. Ochi Headwaters forest
reserve had the greatest increase in population density
among the analyzed reserves, and also had a high rela-
tive forest loss at − 37%. The Landsat-derived land-
cover and land-use maps also indicated large-scale built
expansion (from the town of Asin Foso) adjacent to both
north and south ends of Ochi Headwaters. The reserve
was established to protect the Ochi River water source

(Hawthorne and Abu-Juam 1995). Despite this goal, the
Landsat-derived maps indicated drastic forest reduction
from agriculture activity in the reserve. Anwiaso East
reserve exhibited the greatest relative forest cover loss,
with an average population density increase of 2 people
km−2 year −1 (or a 6% annual increase) between 2000
and 2010. Kakum National Park area had a low popu-
lation density increase at 1 person km−2year −1 (12%
annual increase).

District level analysis of land-use and population change

Table 4 shows the forest area mapped for circa 2003 and
2018 aggregated to the census district level, along with
the population density for 2000 and 2010. Four out of
the 14 districts showed forest cover increase, namely
Ashanti Akim, Asikuma, BirimNorth, and Birim South.
Birim North had the most forest increase of 29 km2 or
15% compared with the forested area in 2003. These

Fig. 3 Land-cover and land-use
change map between circa 2003
and 2018. The gray-scale
background image is the NIR
band of a Landsat 8 December
2015 image

Table 3 Areal summary of forest cover in relation to distance from reserve boundary. Forest loss is measured as the area that transitioned
from forest in 2003 to non-forest in 2018, with the percentage showing the relative forest loss compared with forest in 2003

Distance from edge (m) Total area (km2) 2003 forest (km2) 2018 forest (km2) Forest loss (km2)

0–500 927 818 (88%) 762 (82%) 108 (13%)

500–1000 816 756 (93%) 728 (89%) 65 (9%)

1000–1500 680 634 (93%) 610 (90%) 53 (8%)

1500–3000 1145 1068 (93%) 1030 (90%) 87 (8%)
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four districts are located on the eastern side of the
mapped area, as a north-south contiguous region. The
remaining ten districts showed forest cover decreases,

ranging from − 13 km2 (Assin district) to − 165 km2

(Wassa Amenefi). Percentage wise when comparing
with the circa 2003 forest area, forest loss ranges from
− 3 (Assin) to − 23% (Bibiani). Wassa Amenefi and
Bibiani districts are adjacent to each other, located on
the western edge of the study area. Assin district, where
Kakum National Park is located, showed the least forest
loss between 2003 and 2018.

At the district level, population density change be-
tween 2000 and 2010 showed a modest (R2 = 0.35; p =
0.0264) inverse relationship with the amount of forest
change between circa 2003 and 2018, as seen in Fig. 4b.
On average, a 2-people-km−2 year −1 increase was ob-
served at the district level. In districts where there was
forest reduction, population density showed a mild in-
crease, ranging from a gain of 1 to 3 people km−2 year −1.
In districts where forest cover was mapped as an increase
between circa 2003 and 2018, population density also
showed greater increases. In the Bibiani district where
forest cover reduced the most, annual population density
change was average, at a 2-people-km−2 year −1 increase.
No correlation (R2 = 0.008; p = 0.8006) was found be-
tween the annual population density change and the
amount of forest cover loss when excluding the four
districts of forest cover increase.

Discussion and conclusions

Land-use dynamics of over 70 forest reserves of tropical
forest and the reserve environs were examined in this
study. Dense Landsat image time series and median
value SVVI composites were found effective in

Fig. 4 Scatterplots of regression models for annual population
density vs. forest cover change at the reserve level (a) and census
district level (b). The annual population density was derived from

the 2000 and 2010 censuses, and the annual relative forest cover
change was measured based on the circa 2003 and 2018 Landsat-
derived classification maps

Table 4 The mapped forest areal summary of 14 census districts
for circa 2003 and 2018, and population density for 2000 and 2010
derived from the census data. The areal change is calculated as the
difference between image dates and percent change compared with
the earlier date. Units are in km2. Population density is measured
as the number of people per km2 for a given district

District Forest area (km2) Population density
(people km−2)

2003 2018 Change 2003 2010 Change

Birim N. 189 218 + 29 (15%) 107 152 45 (42%)

Asikuma 132 149 + 17 (13%) 118 146 28 (24%)

Birim S. 306 320 + 14 (5%) 143 213 70 (49%)

Ashanti
Akim
S.

183 189 + 5 (3%) 83 101 18 (22%)

Assin 507 494 − 13 (− 3%) 93 126 33 (35%)

Twifu 386 359 − 27 (− 7%) 72 77 5 (7%)

Amansie
E.

369 335 − 34 (− 9%) 113 134 21 (19%)

Nzema E. 366 330 − 36 (− 10%) 69 71 2 (3%)

Mpohor
Wassa

869 776 − 93 (− 11%) 57 58 1 (2%)

Obuasi 608 537 − 71 (− 12%) 157 166 9 (6%)

Wassa
Amen-
efi

1129 964 − 165 (− 15%) 49 51 2 (4%)

Amansie
W.

211 173 − 38 (− 18%) 91 111 20 (22%)

Wassa W. 631 494 − 137 (− 22%) 86 92 6 (7%)

Bibiani 228 175 − 53 (− 23%) 124 148 24 (19%)
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minimizing the effects of no-data pixels due to cloud
cover and yielded high classification accuracy in the
cloud-prone southern Ghana area. The median value
SVVI composites used in this study showed no residual
clouds or other compositing artifacts, an improvement
compared with the maximum-value composites used
previously by Coulter et al. (2016). Some mapping
confusion is apparent, as open canopy was mapped as
closed forest for both image dates. Most misclassified
pixels are associated with areas located outside of re-
serve boundaries, where secondary regeneration, plan-
tation, and off-reserve forest could be confused with
dense on-reserve forest cover. Available high spatial
resolution imagery is limited for circa 2003, creating a
challenge for generating reliable reference data for ac-
curacy assessment. This could also lead to mapping
disagreement and uncertainty, particularly between the
open canopy and forest classes.

Land-cover and land-use change is most commonly
associated with anthropogenic processes (IGBP report
1993; UNEP GEO-5 report 2012). In this study, anthro-
pogenic activities such as mining, plantation/logging,
agriculture, and built expansion were observed in south-
ern Ghana from 1999 to 2018, resulting in declining
forest cover and secondary regeneration/open canopy,
even within protected areas. While subsistence farming
and built expansion are the common and widespread
threats to forest areas, other factors are more localized.
Large-scale open pit mines expanded in a concentrated
manner in the northwestern side of the study area (e.g.,
Anwhiaso) during circa 2003–2018. Although few
mines are present within protected areas, drastic forest
reduction is observed at both the reserve level and
district level. While mining was also observed near
reserves in the northeast of the study area, large-scale
commercial agriculture/plantation is also present. Haw-
thorne and Abu-Juam (1995) documented logging ac-
tivity and open canopy within these reserves, but ob-
served concomitant forest regeneration. This may ex-
plain why extensive forest cover loss was not observed
in the northeast region. Large-scale plantation activities
such as afforestation and harvesting (when plantations
mature) were observed in reserves within the southern
part of the study region (e.g., Subri and Neung) as
another source of land change. The commonly practiced
taungya systems might increase human disturbances
through additional subsistence agriculture activity with-
in plantations in Ghana, leading to forest cover change
and unsustainable forest management.

The livelihoods of rural households in Ghana depend
heavily on forest-related income (Appiah et al. 2009;
FAO 2016). While a growing rural population could
mean an increasing reliance on forest resources, no
correlation was found between the magnitude of forest
and population change at the reserve level and a weak
significant positive correlation at the district level in this
study. The population density increase in the study area
is relatively low with little variance, particularly at the
reserve level (2 people km−2 year −1). At the district
level, the population data are summarized from a larger
spatial extent than the mapped forest cover, such that
populations included within census data do not neces-
sarily reside or conduct activities near and within the
reserves. Although percentage and density were used to
standardize areal estimates, differences in area between
the census and land-use analytical units likely influ-
enced uncertainty in the regression analysis. More forest
conservation efforts could also arise from scarce forest
resources due to population increase (López-Carr and
Burgdorfer 2013), resulting in less forest loss or even
forest recovery. Deforestation has been associated with
population growth in varying ways in other studies.
Mertens and Lambin (2000) examined deforestation in
South Cameroon with various potential land-cover and
land-use change causes. They found that at the village
level, deforestation is positively related to population
growth while the highest magnitude of deforestation
was found in villages with a small population. On the
other hand, population density has been found to have
an insignificant relationship with deforestation rate in
the Brazilian Amazon (IGBP report 1993). DeFries et al.
(2010) also found that tropical forest loss is not associ-
ated with rural population growth at a global scale.
These varying results suggest that deforestation can be
a complex type of land-cover and land-use change, and
population alone might not be a sufficient predictor of
forest loss (Lambin et al. 2001). Other factors such as
affluence, land management policies, macro-economic
factors, and political influences should also be consid-
ered in future studies.

Different types and magnitudes of land-cover and
land-use changes were observed between protected
and production reserves in this study. The only fully
protected reserve found in the study area, Kakum Na-
tional Park, exhibited minimal land-cover and land-use
change, and relatively stable forest cover during the
study periods. In addition to Kakum National Park, a
cluster of reserves included in the Greater Kakum
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working plans (including Assin and Pra Suhien) all
showed stable forest cover between circa 2003 and
2018. Production reserves such as Subri River, Bowiye
Range, and Opon Mansi each have a substantial
plantation/productive area. These reserves all had over
− 16% relative forest loss during circa 2003–2018 as
mapped in the classification products. The variation
suggests that reserve regulations and policies could be
an influential factor in forest protection. However, we
do not have the details of the working plans or the spatial
extent of the production areas to quantitatively analyze
forest change in different types of reserves for southern
Ghana. Land management of protected areas is often
defined locally in Ghana, because of the mostly private
land ownership. Reserve management goals can vary
from the protection of forests from logging and devel-
opment, to protecting particular tree species, to
protecting game and wildlife. Due to the variations in
land ownership and management goals, a local or re-
gional scale, such as the reserve and district levels used
in this study, is appropriate for analyzing patterns of
forest loss.

The data utilized in this study presented a few chal-
lenges, including Landsat and reference imagery avail-
ability, and census data quality. Few Landsat 4 and 5
TM images are available for the study area. We
experimented with a circa 1991 composite image that
yielded an overall forest mapping accuracy of 87%,
while the forest in the northern portion of the map was
commonly confused as open canopy and agriculture. A
circa 2010 image composite generated from Landsat 7
images included scan line anomalies, especially in dense
forest regions. The limited availability of high spatial
resolution imagery as reference data led to higher un-
certainty for accuracy assessment of land-cover and
land-use change products. The mapped land-use chang-
es were particularly difficult to verify, especially for the
earlier study period of circa 2003. As an additional
source of reference, we examined the Hansen Global
Forest Change product (version 1.5; Hansen et al. 2013).
The Hansen Change product indicated 1028 km2 of
forest loss in our mapping area between 2000 and
2017. This Change product defined forest as the bio-
physical tree coverage and excluded forest degradation
(e.g., thinning) in the forest loss category. In our study,
we mapped nearly 1500 km2 of forest loss as land-cover
type changes, and likely captured forest thinning as part
of forest loss. The Hansen Change product and our
change map depicted similar forest loss patterns in areas

that showed forest clearing for mining, built-up land,
and logging. Regarding the census data, EA boundaries
were generated so that each delineated area contains
similar populations. Following population increase, the
EA boundaries were modified by the Ghana Statistical
Services between the 2000 and 2010 censuses. Fortu-
nately, because of the mostly rural mapping area, the
discrepancies between the years were relatively minor.
EA boundaries were ensured to share similar spatial
extents. Because EA boundary files for 2010 are not
completed for all of Ghana, the analysis of the popula-
tion and forest change relationship was limited to the
eastern portion of the study area, where the boundary
files had been completed.

Google Earth Engine is open-access for education,
research, and non-profit users. It provides an image
library and a JavaScript coding platform for geospatial
data analysis. Users can interactively implement and
execute processes, and view results in an efficient man-
ner utilizing its powerful cloud-based computing re-
sources. The platform enabled dense time series of
Landsat images to be processed, images to be composit-
ed, and unsupervised classification to be efficiently and
effectively performed for this study, in just a few mi-
nutes. The image library eliminated the need for
downloading a large quantity of imagery data. Com-
pared with conventional image processing software, no
license or installation is required for Earth Engine. The
Earth Engine platform provides valuable resources for
land-use and land-cover monitoring in a timely manner.

Monitoring forest resources for conservation and
ecological purposes is critical, especially with the rapid
population and economic growth of sub-Saharan Africa
and Ghana. The mapping approach implemented on the
cloud-based Google Earth Engine using the median
value SVVI composite images was effective and effi-
cient for monitoring forest cover and other land-use
changes in the extremely cloud-prone southern Ghana.
Other forested and cloud-prone regions could also ben-
efit from this mapping approach. Future research should
focus on exploring other anthropogenic factors that are
potentially associated with deforestation to target man-
agement efforts. More frequent and extensive land-use
monitoring could provide valuable information for gov-
ernment agencies to regulate and enforce logging and
mining permits. Improved and updated land change
estimates, as demonstrated with the mapping methods
in this study, could also be used to support conservation
efforts.
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