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Abstract Approximately 50 million Americans have
allergic diseases. Airborne plant pollen is a significant
trigger for several of these allergic diseases. Ambrosia
(ragweed) is known for its abundant production of
pollen and its potent allergic effect in North Amer-
ica. Hence, estimating and predicting the daily atmo-
spheric concentration of pollen (ragweed pollen in
particular) is useful for both people with allergies and
for the health professionals who care for them. In this
study, we show that a suite of variables including mete-
orological and land surface parameters, as well
as next-generation radar (NEXRAD) measurements
together with machine learning can be used to esti-
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mate successfully the daily pollen concentration.
The supervised machine learning approaches we used
included random forests, neural networks, and support
vector machines. The performance of the training is
independently validated using 10% of the data par-
titioned using the holdout cross-validation method
from the original dataset. The random forests
(R=0.61, R2=0.37), support vector machines (R=0.51,
R2=0.26), and neural networks (R=0.46, R2=0.21)
effectively predicted the daily Ambrosia pollen,
where the correlation coefficient (R) and R-squared
(R2) values are given in brackets. Three inde-
pendent approaches—the random forests, correla-
tion coefficients, and interaction information—were
employed to rank the relative importance of the avail-
able predictors.

Keywords Pollen · Machine learning ·
Environmental parameters · NEXRAD measurements

Introduction

Pollen is known to be a trigger for allergic diseases,
e.g., asthma, hay fever, and allergic rhinitis (Oswalt
and Marshall 2008; Howard and Levetin 2014). It
is interesting that a variety of non-respiratory issues
such as strokes (Low et al. 2006; Matheson et al.
2008), and surprisingly, even suicide and attempted
suicide (Postolache et al. 2005; Stickley et al. 2017)
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have an association with the daily concentration of
atmospheric pollen and particulates in general. How-
ever, so far, there is no defined threshold amount of
pollen known to trigger allergy for sensitive individu-
als (Voukantsis et al. 2010). One of the factors for the
lack of knowledge of the threshold amount of pollen
is the absence of an accurate estimation on a fine spa-
tial scale of the hourly, bi-hourly, or daily amount of
pollen. Individual differences among sensitive people
such as gender and age also adversely affect in know-
ing the threshold amount of pollen in the surroundings
(Britton et al. 1994; Ernst et al. 2002).

Of all plants, weeds, and particularly those of the
Ambrosia species, e.g., Ambrosia artemisiifolia (com-
mon ragweed) and Ambrosia trifida (giant ragweed),
are major producers of large amounts of pollen. For
example, common ragweed can produce up to about
2.5 billion pollen grains per plant per day (Laaidi et al.
2003). Ambrosia artemisiifolia and Ambrosia trifida
together can produce more allergens than all other
plants combined (Lewis et al. 1983). Grasses (e.g., rye
grass) are also known to trigger an allergic response.
Following Ambrosia artemisiifolia, grass pollen are
known for their high allergic potency compared with
other weeds (Esch et al. 2001; Lewis et al. 1983). Tree
pollen can cause an allergic response, but one that is
typically less than that of weeds and grasses, although
in some regions tree pollen can trigger a significant
allergic response. For instance, the airborne concen-
tration of mountain cedar pollen grains can reach tens
of thousand of pollen grains per cubic meter and trig-
ger a significant allergic response in central Texas
during winter, known as cedar fever (Andrews et al.
2013; Ramirez 1984).

Both global climate change and air pollution affect
the abundance of airborne pollen, and consequently,
its allergic impact (Kinney 2008; Wayne et al. 2002;
Voukantsis et al. 2010). For example, the abundance of
pollutants such as CO2 (Wayne et al. 2002) and NO2

(Zhao et al. 2016) can affect the extent of growing
region of major pollen-producing plants, and thereby
also affect the airborne pollen concentration as well as
altering the onset and end dates of seasonal allergies.
Overall, more people are exposed to pollen and sen-
sitive individuals become exposed to large amount of
pollen for longer period of time over larger areas.

Globally, millions of people are affected by sea-
sonal allergies, and the number of people affected
is increasing each year. In North America alone, as

of 2008, about 50 million adult Americans and 9%
of children aged below 18 have experienced pollen-
caused allergies (Howard and Levetin 2014). Simi-
larly, in Europe, about 15 million people are affected
by hay fever, asthma, and rhinitis (D’amato and
Spieksma 1991). Hence, pollen allergies are becom-
ing an increasingly significant environmental health
issue. Thus, just as accurate daily weather forecasts
are of significant use, accurate daily pollen forecasts
are likely to become increasingly important.

Remote sensing has been employed to study atmo-
spheric pollen concentrations. For example, the polar-
ization of LIDARs has been used to observe the air-
borne tree pollen abundance at Fairbanks, AK (Sassen
2008). In this case, the pollen produces a depolar-
ization of the LIDAR backscattering signals from the
lower atmosphere. The light scattering properties of
pollen are also manifested in the shape of the solar
corona they create. The shape of the solar corona asso-
ciated with pollen depends on the shape of the pollen
grains and their atmospheric concentration (Tränkle
and Mielke 1994). However, this approach can be
complicated as atmospheric light scattering is also
caused by other airborne particulates.

Common pollen estimation techniques, particularly
those made in Europe, stress the importance of meteo-
rologic variables (Kasprzyk 2008). Usually, forecast-
ing the amount of airborne pollen is based on the
interaction of atmospheric weather and pollen (Ariz-
mendi et al. 1993). Meteorologic variables such as
the daily mean, maximum, and change in temperature,
dew point, wind speed, and wind direction show posi-
tive correlation with the pollen concentration, whereas
atmospheric humidity and rainfall are negatively cor-
related to the increase in the pollen concentration
(Kasprzyk 2008). Other studies show that daily tem-
perature, precipitation, and wind speed are significant
meteorologic parameters in estimating pollen concen-
tration (Stark et al. 1997).

Most of these meteorologic variable-based fore-
casting techniques employed statistical methods such
as linear regression, the polynomial method (non-
linear regression in which the relationship between the
input and response variables is modeled to a degree
of polynomial n), and time series analysis (Sánchez-
Mesa et al. 2002). Only few studies used advanced
machine learning methods such as neural networks
(Csépe et al. 2014; Sánchez-Mesa et al. 2002;
Rodrı́guez-Rajo et al. 2010; Puc 2012; Voukantsis
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et al. 2010) and random forests (Nowosad 2015) for
pollen forecasting and support vector machines are
applied for related environmental studies (Voukantsis
et al. 2010; Osowski and Garanty 2007). Liu et al.
(2017) used 85 meteorological variables along with up
to 30 days of lagging and machine learning methods
to estimate ambrosia pollen.

To the best of our knowledge, no one has so
far estimated atmospheric pollen abundance using
machine learning and meteorological data provided by
NEXRAD measurements: wind direction and speed
vertical profiles, reflectivity, Doppler velocity, and
spectral width nor the recently upgraded polarimet-
ric measurements: differential reflectivity, differential
phase, and correlation coefficient. Detailed descrip-
tion of the NEXRAD parameters is given by Doviak
and Zrnic (2014). A combination of the readily avail-
able meteorological and environmental data such as
the daily temperature, humidity, rainfall, and land sur-
face greenness fraction and measurements made by
the NEXRAD (e.g., reflectivity, wind direction and
speed, spectral width) can provide the potential to pre-
dict allergenic pollen using advanced regression and
machine learning methods.

This study contributes an advance by using both the
NEXRAD parameters and advanced machine learn-
ing methods for forecasting the daily Ambrosia pollen
in the atmosphere. The objective of this paper is,
therefore, to use machine learning (neural networks,
random forests, and support vector machines) together
with a suite of NEXRAD and other environmental
parameters to forecast the daily pollen concentration.

Materials and methods

Data description

Environmental and NEXRAD parameters

After pollen is produced in plant anthers, its emission,
dispersion, and deposition are influenced by mete-
orological variables such as the temperature, wind
speed and direction, and pressure (Kasprzyk 2008;
Csépe et al. 2014; Howard and Levetin 2014). Other
meteorologic parameters such as dew point, humidity,
rainfall, and sunshine duration are also known to affect
pollen emission and distribution (Kasprzyk 2008).

In this study, we used a set of environmental and
NEXRAD parameters (Table 1) in our machine learn-
ing training. Environmental parameters such as veg-
etation greenness fraction, roughness length (sensible
heat), energy stored in all land reservoirs, displace-
ment height, and leaf area index are selected. The
other sets of data we used are the NEXRAD mea-
surements which consist of the reflectivity, Doppler
velocity, and spectral width which represent, respec-
tively, the amount of backscattered signals from a
scattering volume, the velocity of the scatterers along
the radar line of sight and the width of the power
spectrum. All NEXRAD measurements are taken at
the lowest elevation, 0.5◦ from the surface of the
Earth. Additionally, the NEXRAD provides measure-
ments of the vertical profile of the direction and speed
of the wind starting from 50 m from the surface
of the Earth. The dual polarization measurements—
differential reflectivity, differential phase, and cor-
relation coefficient—use the horizontal and vertical
polarization signals and are particularly suited for par-
ticle identification. However, we do not use the dual

Table 1 Name and type of predictors (input variables) used for
our machine learning training. Parameters consist of environ-
mental (Env.) and NEXRAD measurements

Parameter Unit Type

Vegetation greenness fraction Fraction Env.

Leaf area index m2 Env.

Roughness length, sensible heat m Env.

Displacement height m Env.

Energy stored in land Jm−2 Env.

Mean reflectivity dB NEXRAD

Mean doppler velocity ms−1 NEXRAD

Mean spectral width ms−1 NEXRAD

Reflectivity [−10 to 10 dB] dB NEXRAD

Velocity [−10 to 10 dB] ms−1 NEXRAD

Spectral width [−10 to 10] dB ms−1 NEXRAD

Reflectivity [−20 to 20 dB] dB NEXRAD

Velocity [−20 to 20 dB] ms−1 NEXRAD

Spectral width [−20 to 20 dB] ms−1 NEXRAD

Reflectivity [−40 to 40 dB] dB NEXRAD

Velocity [−40 to 40 dB] ms−1 NEXRAD

Spectral width [-40 to 40 dB] ms−1 NEXRAD

Wind direction at altitude 50 m Degree NEXRAD

Wind speed at altitude 50 m ms−1 NEXRAD
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polarization (polarimetric) NEXRAD measurements
as we have only few days of the measurements in con-
trary to the ideal high-dimensional data requirement
for machine learning.

Daily pollen data

Description of the pollen data used to train the
machine learning in this study is given by Howard
and Levetin (2014). The pollen grains were collected
using a Burkard volumetric spore trap (Hirst 1952)
at the University of Tulsa. The spore trap appara-
tus is placed at the top of a building 12 m from
the surface of the ground. The Burkard trap is a
classical, manual-intensive method in which air con-
taining pollen is directed into the sampler through
a small orifice and deposited on to a sticky slide
attached to a rotating drum. The drum rotates at 2 mm
per hour. After a weekly sampling period, the tape
is changed and the sample carefully cut into strips
for each day (24 h) period. After drying and apply-
ing the necessary solution, the slides are observed
under a microscope at ×400 magnification for
counting.

Observation of Ambrosia pollen at the University
of Tulsa, OK, started in 1987. Howard and Levetin
(2014) made an analysis of the first 27 years of the
pollen data. They found that the mean annual start and
end dates are August 22 and October 20, respectively,
and that the mean peak date of Ambrosia pollen in
Tulsa is September 10. We use the same pollen dataset
in this study. Due to lack of NEXRAD data from 1987
to 1994, the pollen data in this period are not included
in our study. Figure 2 shows the actual pollen obser-
vations made for 20 years from 1995 to 2014 for the
high Ambrosia pollen season (mid August to end of
October).

Machine learning methods

Machine learning is a mathematical approach that
allows computers to “learn by example” and extract
information from data, often very large amounts of
data. It has been applied to various fields in geo-
sciences and remote sensing, agriculture, banking,
etc., for code acceleration and detection of diseases
in crops (Lary 2010; Lary et al. 2018), and predic-
tion of atmospheric gases such as CO2 (Gardner and

Dorling 1998) and ozone (Yi and Prybutok 1996; Pry-
butok et al. 2000). Beyond geosciences, it is used
very widely for applications such as for spam filter-
ing (Guzella and Caminhas 2009), credit scores, fraud
detection, and image processing.

Machine learning methods can learn the behavior
of the system and retrieve the necessary information if
they are provided with data spanning as many param-
eters as possible in the training. It can “learn” the
behavior of the system even in the case the relation
between the information and the parameters is non-
linear and multivariate (Lary 2010). We do not need
to know a priori the functional form relating the input
variables to the parameter(s) being estimated.

Some commonly used machine learning approaches
that include neural networks, support vector machines,
decision trees, and random forests (an ensemble of
decision trees). The applications of these methods can
be put into two broad categories, regression and classi-
fication. Some methods, for example, the random forest,
neural network, support vector machines, can do both
regression and classification. Although there are dif-
ferent types of machine learning algorithms currently
used, there is no single method that always will perform
better than the rest for all problems. The best machine
learning method to apply depends on the problem
and the available training data (Kotsiantis 2007). The
following subsections briefly describe the various
machine learning approaches that we have employed.

Neural networks

Neural networks are “learning” algorithms ”inspired
by interconnection and information flow among neu-
rons in the human brain (Haykin 1994; Haykin et
al. 2001, 2009). A neural network employs a system
of interconnected processing units called “artificial
neurons.” The basic idea in a neural network is to
model the response variable (output) based on a non-
linear combination of the input variables (Friedman
et al. 2001). Information in a neural network is rep-
resented by the interaction strengths of the neurons
(the weights). A neuron (node) receives information
from another neuron or an external input variable.
The weighted linear sum of the input signals repre-
sents the body of the neuron. The weight associated
with the input can be modified to imitate the synaptic-
learning. The neuron computes a function f based on
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the weighted sum of the inputs. The output of the neu-
ral network structure shown in Fig. 1 can be written as:

Q = b2 +
4∑

i

w2
i f

⎛

⎝b1
i +

N∑

j=1

wijxj

⎞

⎠ (1)

The function f is called the activation or transfer func-
tion and can be linear or non-linear. xj , wij , and
b, respectively, represent the inputs, the weight from
neuron j to neuron i, and the biases. The activation
function uses the input values and determines the out-
put activity of the neuron. Different neural network
structures may have different types of activation func-
tions but the basic inherent structure of the neuron,
linear sum of the inputs followed by an activation func-
tion, is the standard to all networks. Linear, threshold
functions and non-linear Gaussian and sigmoid func-
tions are common examples of activation functions.
The sigmoid activation function is given by Eq. 2

f (y) = 1

1 + exp(−y)
(2)

The neural network connection can be feed-forward
or feed-backward showing the flow of information.
Figure 1 shows a schematic diagram of feed-forward

bb i

wij

w i

Fig. 1 The neural network architecture consisting of the input,
hidden and output layers consisting respectively N, four and one
neuron

neural network consisting of the N inputs, 4 hid-
den and a single output layers. The arrows show the
direction of flow of information in the network.

Random forest

Another important ensemble approach machine learn-
ing method is the random forest introduced by
Breiman (2001). A random forest works based on ran-
dom sampling of data to form ensemble of decision
trees. Each tree will provide its “vote” to make a deci-
sion. When the number of trees in the forest gets
larger, the generalization error gets smaller (Breiman
2001). After a number of trees are grown, internal esti-
mates are made for regression and to calculate variable
importance. Random forests can perform prediction
and outlier detection (Friedman et al. 2001; Verikas
et al. 2011). Random forests also provide a useful
facility to rank the relative importance of the input
variables. However, the presence of highly correlated
variables in the training results in the reduction of the
value of variable importance (Genuer et al. 2010).

Support vector machines

Support vector machines were introduced by Vap-
nik (2013, 1998). Support vector machines employ
hyperplanes that define decision boundaries separat-
ing the data into two classes. The best hyperplane
is the one that separates the data into two classes
with a large marginal distance between the hyperplane
and the classes. The simplest example is the linear
classifier that separates the data into their respective
classes using a line. In the general case, the data
cannot be separated by a straight line and complex
structures are needed to separate the data leading to
a non-linear classifier. For regression, an important
non-linear function is learned in a high dimensional
space that maps the input variables (Basak et al.
2007). Mathematical analysis of the linear and non-
linear support vector machines is given by Smola and
Schölkopf (2004).

Procedure

Measurements of different input parameters are made
on different scales. Hence, it is a common machine
learning process to normalize all parameters to lie
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between 0 and 1. The normalization can be carried out
using the simple technique of dividing each parame-
ter by its corresponding maximum value. The support
vector machines highly depend on normalized data
whereas the random forest works well independent of
normalization. However, unnormalized output values
of the support vector machines can be estimated by
applying the normalization parameters after training.

The entire dataset consisting of a combination of
environmental parameters, NEXRAD measurements,
and the response variable for several days of obser-
vation are separated into training and validation sets
using the holdout cross-validation partitioning tech-
nique (Kohavi and et al. 1995). Only 10% of the data is
holdout for independent validation and the remaining
90% is used for the training process. The proportion to
split the data into training and validation can be done
in many ways depending on the amount of data we
have. In ideal situations, we train the machine learning
on big data and validate on another big data (Witten
and Frank 2005).

Table 1 presents the environmental variables and
NEXRAD measurements used as predictors. We pro-
cessed the NEXRAD data into different signal to noise
ratio (in dB) levels to optimize the performance of the
machine learning. Spatial and mean values of the scat-
tering in the signal to noise ratio from −10 to 10 dB,
−20 to 20 dB, and −40 to 40 dB are used as sepa-
rate predictors. The separation of the NEXRAD data
into different signal to noise ratio levels is important
as we do not know a priori the amount of scatter-
ing coming from biological scatterers such as pollen,
clouds, precipitation, dust, or even insects (Vivekanan-
dan et al. 1999; Hannesen and Weipert 2003; Wilson

et al. 1994). In clear air mode, the NEXRAD moves
slowly and is able to detect small objects such as
pollen, dust, and smoke (Gali 2010). Hence, using
clear air NEXRAD data in the training will improve
the quality of the data for the machine learning.

The daily pollen count (shown in Fig. 2) is used
as the target parameter to train the neural network,
random forest, and support vector machines. A total
number of 19 variables are used for training the three
machine leaning algorithms. The generalized regres-
sion neural network (Specht 1991) in the function
approximation sense is applied to train the neural net-
work. The random forest machine learning is trained
using 200 decision trees. The support vector machine
is trained using a Gaussian kernel function to map the
19 predictor data.

Results

As mentioned in Section 2, in order to evaluate the
performance of the machine learning methods inde-
pendently, we applied the holdout cross-validation
partitioning technique (Kohavi and et al. 1995) to split
the data into the training (90%) and validation (10%)
sets. The three machine learning models are developed
using the the 90% training data and are tested using
the 10% independent validation dataset. The indepen-
dent validation dataset roughly corresponds to the last
2 years of the data measured from 1995 to 2014 in
the sense that the dataset from 1995 to 2012 is used
to develop the machine learning models and predic-
tions are made for the 2013 and 2014 pollen seasons.
The results are shown in Fig. 3. Panels (a), (b), and (c)

Fig. 2 Actual pollen data
observed from 1995 to 2014
for the peak Ambrosia
pollen season at Tulsa, OK
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Fig. 3 Scatter plots of actual and predicted pollen for the sup-
port vector machine, SVM (panel a), neural network, NN (panel
b), random forest, RF (panel c). Panel (d) Plots of independent

validation results using the random forest (red line), neural net-
work (green line), and support vector machine (blue line). The
actual pollen shown by the black curve

in Fig. 3 show scatter plots of prediction made by the
support vector machine, neural network, and random
forest machine learning methods, respectively, using
the training data (black circles) and the independent
validation data (red squares).

From the top three panels of Fig. 3, we observe
that the neural network and random forest methods
produced better predictions than the support vector
machine. The random forest method produced the best
independent validation results (R=0.61, R2=0.37) of
all the three methods. The high correlation value of
neural network found using the training data (R=0.98,
R2=0.96) is not reproduced in the independent valida-
tion test which had an R and R2 values of only 0.46
and 0.21, respectively.

Panel (d) in Fig. 3 shows comparisons of the pre-
dicted pollen using the regression models developed
by the training dataset for the three methods. The val-
idation predictions are made using the 10% of the pre-
dictors data (test set) that is not employed to develop
the model. It consists of about 130 days (roughly cor-
responding to the 2013 and 2014 pollen seasons) of
predictors and target data we withhold before training
the model. The black curve shows the actual pollen

data for those number of days and the other curves
show predictions made by the random forest (red
curve), neural network (green curve), and support vec-
tor machines (blue color). The results indicate superior
performance of the random forest method followed
by the neural network and support vector machines.
However, a technique that combines the three methods
together is expected to show a robust performance as
indicated by Voukantsis et al. (2010).

Another important application of machine learning
methods is the selection of the best features (variables)
that contribute most to the prediction and ranking
them in order of their importance. In this way, we
can determine the most important predictor variables
and estimate the output leaving features that contribute
less. The random forest provides such a ranking based
on criteria attributed to the splitting variable in the data
sampling to form decision trees (Genuer et al. 2010;
Kotsiantis 2007; Friedman et al. 2001).

In addition to the random forest method of variable
ranking, we used the correlation coefficient and inter-
action information methods to sort the input variables
in order of their importance. The correlation coeffi-
cient method sorts based on the relation between the
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Fig. 4 Variable importance sorted using the random forest (top
panel), correlation coefficient (middle panel) and interaction
information (bottom panel) methods

predictors and the pollen data, whereas the interac-
tion information method implements a generalization
of the mutual information technique (Darbellay et al.

1999) by calculating for each predictor (and sorting
based on) a value called information gain (Brown
2009). The results of variable importance selection is
given by Fig. 4. The top panel in Fig. 4 shows the vari-
able sorted using the random forest machine learning
method. The middle and bottom panels show the rank
of variable importance sorted using correlation coeffi-
cient and interaction information values, respectively.
From the three methods, we found that the environ-
mental parameters—leaf area index, vegetation green-
ness function, and displacement height—took the top
rank and from the NEXRAD predictors, the mean
reflectivity in signal to noise ratio from −10 to 10 dB
and from −20 to 20 dB constitute among the top pre-
dictors as seen in the random forest and correlation
coefficient methods. Additionally, the direction of the
wind measured by the NEXRAD at the lowest altitude
(about 50 m) from the Earth’s surface is the top pre-
dictor following the environmental variables. These
agree with the finding of Palacios et al. (2000) and
Rojo et al. (2015), which showed the direction of the
wind highly influences the concentration of pollen in
the surrounding.

Discussion

This study employs advanced machine learning
methods (random forest, neural network, and sup-
port vector machine) regression to predict daily
Ambrosia pollen concentration at Tulsa, OK (location,
36.1511◦N, 95.9446◦W). In these advanced machine
learning methods, we used a combination of environ-
mental parameters and NEXRAD radar measurements
as predictors. The combined parameters are listed in
Table 1. Successful application of advanced machine
learning methods and meteorologic variables mea-
sured in highly allergic pollen polluted areas would
help to predict and notify the public in advance. This
will help allergic susceptible individuals and health
workers to take the necessary precaution.

Previously, the support vector machine, neural net-
work, and random forest machine learning methods
are rarely applied for pollen prediction. Over the past
decade, the neural network has been applied to study
pollen of different species over the European region.
For example, Csépe et al. (2014) used different com-
putational intelligence (CI) methods to predict the
Ambrosia pollen at two different places in Hungary
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and France. Castellano-Méndez et al. (2005) and Puc
(2012) have employed the neural network to predict
Betula pollen over Spain and Poland, respectively.
Recently, Nowosad (2015) used the random forest
method to forecast different tree pollen species.

Of all the three machine learning methods, we
found that the random forest method produced bet-
ter performance (R = 0.61, R2=0.37) when tested
with independent dataset that is not used to develop
the model. The neural network contrarily produced
lower correlation when tested with our independent
test data (R = 0.46, R2=0.21) as shown in Fig. 3b
despite its high correlation (R = 0.98, R2=0.96) when
tested using the training data. The discrepancies can
be explained in terms of the robustness of the random
forest against overfitting (Breiman 2001; Liaw et al.
2002). However, another version of neural network,
the multi-layer perceptron, has been applied by Csépe
et al. (2014) to forecast Ambrosia pollen in different
locations in Europe and has produced robust results
compared to other tree-based methods. The support
vector machine produced competitive performance but
outperformed by the random forest and neural net-
work machine learning methods. This agrees with the
finding of Meyer et al. (2003) who compared the sup-
port vector machine with other methods including the
neural network and random forest.

Most pollen forecasting studies applied environ-
mental parameters as input parameters. For example,
Howard and Levetin (2014) used minimum tempera-
ture, precipitation, dew point, and phenology as pre-
dictors. Csépe et al. (2014) used a total of eight mete-
orological parameters and different computational
intelligence methods to predict the concentration of
Ambrosia pollen and alarm levels for the future 7
days at two locations in Europe. Our variable impor-
tance and ranking using the random forest, correlation
coefficient, and interaction information methods show
the dominance of these environmental parameters.
Among the NEXARD parameters, the reflectivity and
direction of wind are among the top predictors. How-
ever, using only environmental parameters alone can
affect the spatial resolution of the pollen forecasting
region (Prank et al. 2013).

This research applies the NEXRAD weather mea-
surements to forecast allergic pollen for the first time.
The NEXRAD has large spatial coverage (Maddox
et al. 2002). The use of only NEXRAD measurements
and robust machine learning method would lay the

foundation to forecast allergic pollen at a fine spatial
scale over the USA (Zewdie et al. 2019).

Conclusion

In this paper, we implemented advanced supervised
machine learning methods—random forest, neural
network, and support vector machine—to predict the
daily Ambrosia pollen in the atmosphere of Tulsa. To
supervise the learning process, we used pollen data
measured using the Burkard’s pollen trap apparatus at
the University of Tulsa, OK.

We use a combination of environmental parameters
and NEXRAD measurements as predictors. We imple-
mented the random forest, interaction information,
and correlation coefficient methods to rank these vari-
ables in their rank of importance. We observe that the
most useful parameters in estimating Ambrosia pollen
were displacement height, leaf area index, vegetation
greenness fraction, and NEXRAD measurements of
reflectivity at low signal to noise ratio and direction of
wind. These parameters standout as top predictors in
the measure of variable importance.

Among the three machine learning methods, the
random forest showed superior performance and also
provided a ranked list of the relative importance of
the input variables. The neural network and support
vector machine methods also provided comparative
prediction using independent data.
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