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Abstract Human health is Bat risk^ from exposure to
sub-lethal elemental occurrences at a local and or re-
gional scale. This is of global concern as good-quality
drinking water is a basic need for our wellbeing. In the
present study, the Bprobability kriging,^ a geostatistical
method that has been used to predict the risk magnitude
of the areas where the probability of dissolved mercury
concentration (dHg) is higher than the World Health
Organization (WHO) permissible limit. The method
was applied to geochemical data of dHg concentration
in 100 drinking groundwater samples of Lucknow mon-
itoring area (1222 km2) located within the Ganga

Alluvial Plain, India. Threefold (high to extreme risk)
and twofold (moderate risk) higher dHg concentration
values than theWHOpermissible limit were observed in
all of the groundwater samples. The generated predic-
tion map using the probability kriging method shows
that the probability of exceedance of dHg is the highest
in the northwestern part of the Lucknowmonitoring area
due to anthropogenic interferences. The hotspots with
high to very high probability are potentially alarming in
the urban sector where 32.4% of the total population is
residing in 6.8% of the total area. Interpolation of local
estimates results in an easily readable and communica-
ble human health risk map. It may help to consider
substantial remediation measures for managing drinking
water resources of the Ganga Alluvial Plain, which is
among the anthropogenic mercury emission–dominated
regions of the world.

Keywords Dissolvedmercury (dHg) . Drinking
groundwater . Ganga alluvial plain . Riskmagnitude .

Probability kriging . Human health riskmapping

Introduction

Human health risk assessment is a process intended to
estimate the exposure and harm caused by a toxic sub-
stance to a given population. It requires hazard identifi-
cation, hazard characterization, exposure assessment,
and risk evaluation (IPCS 2004). Mercury is a persistent
globally distributed pollutant that can spread widely (~
1000 km) through the atmosphere (Wang et al. 2003). It
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is considered as one of the top ten chemicals posing a
major human health concern. This is because of the
highest degree of mobility of mercury, immortal prop-
erty, and superlative toxicity even at low concentration
in the natural environment. Once existed only in natural
environments, mercury thoroughly circulated in a vari-
ety of forms ranging from elemental metal (Hgo), dis-
solved form in water (dHg), cinnabar (HgS), and oxi-
dized form (HgO) to organo-metallic compounds such
as methylmercury (Fernández-Martínez et al. 2005).
Atmospheric deposition in the form of rainfall precipi-
tate, evapotranspiration, and anthropogenic discharge
results in infiltration and accumulation of inorganic
mercury in aquatic ecosystems where it bioaccumulates
in fish and shellfish. Food is the main source of organic
mercury in non-occupationally exposed populations.
The famous BMinamata^ incidence is a significant ex-
ample of the lethal impact of organic mercury exposure
to human health. The incidence received worldwide
attention and raised awareness towards the intake of
bioaccumulating mercury (Weiner 2000). Excessive
concentration of mercury is objectionable in potable
water as it induces harmful effects on the central and
peripheral nervous system, digestive and immune sys-
tems, and lungs and kidneys, and may be fatal (Houston
2014). Therefore, mercury undoubtedly poses a poten-
tial threat to ecology and human health and as a result,
the assessment of mercury contamination has been ad-
dressed in some recent publications worldwide
(Richardson 2014; Stahl et al. 2014; Raj et al. 2017).

India is one of the fastest growing economies of the
world and the demands and supply for the ever-
increasing consumption of mercury classify India as a
potential Bhotspot^ in the global environmental scenar-
io. In India, coal is primarily used as a source of fuel for
energy production due to unavailability or inadequate
supply of any alternatives. Coal combustion represents
the most important anthropogenic source of mercury
released to the atmosphere annually, accounting for
about 53% (120.85 tons/year) of the total emission of
mercury in the atmosphere (Mukherjee et al. 2009). In
2008, total mercury emission from Indian coal-based
thermal power plants was estimated to be 38.54 metric
tons/year (Das et al. 2015). The spontaneous in situ
burning of the coal seam (Raju et al. 2016) and anthro-
pogenic coal combustion in thermal power plants con-
tribute to about 53% of the total global mercury emis-
sion in the atmosphere and are followed by solid 31%
municipal and 3% medical waste (Chakraborty et al.

2013). Coal burning thus introduces mercury into the
atmosphere that gets discharged to groundwater re-
sources as wet or dry precipitate and ultimately causes
risks to the environment and human health (Pacyna et al.
2010; Amos et al. 2014). Unavailability of adequate
analytical laboratory facilities and lack of proper water
purification techniques for dHg in drinking water re-
sources has induced a potential threat to human health
in Indian subcontinent (Bhowmik et al. 2015; Raj et al.
2017). Rural areas are spatially scattered and often ex-
hibit fewer population counts in comparison to urban
areas in terms of population distribution. Consequently,
rural areas are often neglected and are not taken into
much consideration by administrative authorities for
water quality management where health risk from expo-
sure to contaminant water is more severe. At United
Nations Minamata Convention 2013, India agreed on
the abatement of mercury emission and its related prod-
ucts in the environment. At present, there is no firm
monitoring, planning, or technique for decontamination
of dHg in drinking water resources. In the northern part
of India, the Ganga Alluvial Plain provides drinking
water resource to nearly 50 million of human population
and hence, dHg contamination in drinking water re-
sources is a matter of great concern. Therefore, it is
crucial to identify the potential Bhotspots^ and to quan-
tify the population of human health at risk from expo-
sure to the higherdHg concentration in drinking ground-
water resources.

Mapping of health risk assessment: a brief review

Since last decade, health risk assessment due to contam-
inated water consumption has been studied worldwide
(Kavcar et al. 2009; Muhammad et al. 2011; Törnqvist
et al. 2011). As the pollutant concentration values are
rarely available for every possible location,
geostatisticians have focused on predicting the pollutant
concentrations at unsampled locations (Adhikary et al.
2011). Geographical Information System (GIS)–based
geostatistical interpolation techniques visualizes the
continuity and variability of unsampled data by creating
a continuous prediction surface onto a geographical
space. Kriging, one of the widely accepted interpolation
techniques, has the advantage of considering the spatial
structure of the variable, i.e., known spatially correlated
distance or direction biases in the data points. It also
estimates the error of interpolation (Childs 2004).
Kriging is an interpolation tool, defines a Bstochastic^
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theory for the study of spatial behavior of territorial
variables. In recent years, a nonparametric approach–
based geostatistical kriging or cokriging estimator (in-
dicator or probability kriging) has been widely practiced
to predict the probabilistic information of an unsampled
point Z[x, y] from unconditional data (Juang and Lee
2000; Passarella et al. 2002; Goovaerts et al. 2005).
Adhikary et al. 2011 estimated the performance of indi-
cator and probability kriging and suggested that the
probability kriging method, which incorporates the in-
formation about order relations, can improve the accu-
racy of the probability of point Z[x, y] being higher than
a threshold value. Kriging-based prediction models
when integrated with other parameters, like geochemi-
cal data and population data among others, could pro-
vide meaningful regional-scale visuals of the area and
human population count at risk (Webster et al. 1994;
Oliver et al. 1998; Berke 2004; Bhowmik et al. 2015).
However, studies on quantitative assessment of the spa-
tial extent and total human population at risk from
exposure to trace element concentration in drinking
water are limited. In the present study, probabilistic
information of dHg higher than the threshold in the
groundwater of Lucknow monitoring area is predicted
from the regional count data and it has been integrated
with the human population dataset for human health risk
mapping of Lucknow monitoring area in the central
Ganga Alluvial Plain, northern India (Fig. 1).

Material and methods

Study area

Lucknow monitoring area (80° 45′–81° 05′ E, 26° 40′–
27° 00′ N, 123 m above mean sea level) is situated on
both banks of the Gomati River in the central part of the
Ganga Alluvial Plain as shown in Fig. 1. Out of the total
monitoring area of 1222 km2, Lucknow city is spread
over an urban area of nearly 400 km2. The monitoring
area is further divided into three land use–based promi-
nent sectors, named Burban (central),^ Brural
(southeastern),^ and Bmixed farming (northwestern)^
sectors. The area corresponding to three subsets are de-
marcated on standard 3–2-1 color standard False Color
Composite (FCC) of Advance Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) image of
the study area (Lucknow monitoring area as shown in
Fig. 1. The idea of dividing study area into three land use–

based prominent sectors was to indicate the possibility of
regional and local (point) geogenic or anthropogenic
source for dHg contamination that may be independent
of rural-urban processes operating in the alluvial plain.
Geologically, sub-surface part of the monitoring area is
composed of unconsolidated alluvial deposits originated
through the weathering and erosion of the Himalayan
region. These deposits are made up of interlayered 1–2-
m thick fine sand and silty mud (Fig. 2; Singh 1996).

Based on the hydrological studies, a five-tier aquifer
system exists in the Lucknowmonitoring area where the
Gomati River is directly connected to the first aquifer
group (CGWB 2009). The upper unconfined aquifer
comprises of a sandy layer occurring 8–35 m below
ground level and ranges in thickness from 15 to 25 m.
This aquifer supports all the hand pumps and shallow
tube wells and acts as a primary source of drinking water
in the Lucknowmonitoring area. Presently, ~ 70% of the
drinking water supply of the urban area and 100% of the
rural area depends on this groundwater resource (Singh
et al. 2015). Table 1 represents a five-tier aquifer system
of the study area. The identification of regional and local
mercury sources is a simple tool to provide useful in-
sights for more focused assessment of mercury contam-
ination in drinking water resources. Thermal power
plants located in and around the Ganga Alluvial Plain
act as a prominent regional source (Rai et al. 2013). Dry
deposition of mercury from these thermal power plants
and abundance of brick kilns could act as a regional
source for mercury emission in the environment
(Fig. 3a). Mercury is also released from local point
sources such as from chemicals used in mixed farming,
from municipal solid wastes, petroleum combustion,
and e-wastes containing compact fluorescent lamps,
fluorescent tube lights, mercury vapor lamps, mercury-
based cosmetics (skin lightening soaps/creams, mas-
cara, and eye makeup cleansing products), and medical
wastes (thermometers, sphygmomanometers, and dental
amalgam, etc.) (Singh et al. 2014). The agro-chemicals
used in combined mango-cum-poultry farming could be
the possible reason of high dHg in the groundwater of
mixed farming sector which indicates high human inter-
ference in the northwestern part of Lucknowmonitoring
area (Fig. 3b). Municipal solid wastes (Fig. 3c), Elec-
tronic wastes containing fluorescent lamps-tube lights
(CFLs), Hg-based cosmetics (Fig. 3d), and medical
wastes could be the local point source. These local
mercury sources may be strongly linked with high
dHg contamination in the ambient groundwater as well
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as in biotic components such as fishes and lichens of the
region (Agarwal et al. 2007; Saxena et al. 2007)

Sampling techniques and analytical procedures

A total of 100 groundwater samples (L1–L100) have
been collected from a regularly spaced lattice of a sys-
tematic 2′ × 2′(2 min × 2 min) grid during the pre-
monsoon season (May and June 2010) to find the dHg
concentration in drinking water resources of the Luck-
nowmonitoring area (Fig. 1). The sample locations have
been chosen in such a way as to give the best represen-
tation of the entire Lucknow monitoring area. Drinking
groundwater samples have been collected in dried, pre-
cleaned 250 ml polyethylene bottles. In the laboratory,

samples were filtered through a < 0.45-μm membrane
filter and were analyzed for dHg by an Inductively
Coupled Plasma-Mass Spectrophotometer (ICP-MS,
ERAN DRC II Perkin Elmer SCIEX Instrument) with
a detection limit of < 0.5 ng/l. The accuracy of the
chemical analysis was verified by calculating the ion-
mass balance, which was seen to be within the accept-
able limit (± 3%). The descriptive statistics of dHg con-
centrations in all drinking groundwater samples are
presented in Table 2.

Data source and analysis

In Lucknow monitoring area, dHg concentrations in
all groundwater samples (n = 100) vary from 9.74 to

Fig. 1 [Upper left] Map showing spatial extent of the Ganga
Alluvial Plain along with the location of Lucknow in the northern
part of India. [Lower left] Rectified subset of standard 3–2-1 color
standard False Color Composite (FCC) of Advance Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) image of
the study area (Lucknow monitoring area) showing the rural
(marked southwestern part), urban (marked central part), and
mixed farming (marked northwestern part) sectors used for the
mapping of Human Health Risk assessment. Color variations in

red and cyan are attributed to rural and urban parts, respectively of
the Lucknow monitoring area. [Right] Lucknow monitoring area
showing selected sampling locations (L1–L100) used for the anal-
ysis of dHg concentration in drinking Groundwater. It also dis-
plays three classified sectors, namely rural, urban, and mixed
farming which are presently used for the assessment of human
health risk due to mercury in drinking groundwater. The line
(represented in yellow) from point A-H corresponds to the cross-
sectional line of the fence diagram as indicated in Fig. 2
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61.42 μg/l. All these values exceed the threshold
limit (6 μg/l) of inorganic dHg in drinking water
as per WHO norms (WHO 2011). The average dHg
concentrations in the rural, urban, and mixed farming
sectors were 14.3 μg/l, 14.6 μg/l, and 27.8 μg/l,
respectively. Figure 4 displays box and whisker plot
showing the distribution of dHg concentrations in
urban, rural, and mixed farming sector of the Luck-
now monitoring area. The mixed farming sector has
the highest dHg concentration with > 50% of values
being above 24.8 μg/l. The values are distributed in
the ranges of 10–15 μg/l and 15–20 μg/l, which
accounts for about 66% and 26% of total ground-
water samples, respectively. The dHg concentrations
are more pronounced in the northwestern part, i.e.,
the mixed farming area of the Lucknow monitoring
area with concentrations > 20 μg/l. Seven percent of

total groundwater samples have dHg concentrations
> 20 μg/l as shown in the frequency distribution
graph in Fig. 5. These high concentrations of dHg
(> 20 μg/l) in the monitoring area are especially
noticeable at Baruwa (L-01, 31.30 μg/l), Bazidnagar
(L-02, 27.70 μg/l), Gopramau (L-21, 61.42 μg/l),
and Kankarabad (L-22, 35.17 μg/l).

Analysis indicates that the urban and rural sectors
have a relatively uniform dHg concentration (12–15 μg/
l). This indicates the presence of a local source of
mercury which is independent of rural and urban pro-
cesses. The high dHg concentrations (> 16 μg/l) in the
mixed farming sector may be linked with anthropogenic
interferences.

The exceedance of dHg in the groundwater
samples at different locations (i = 100) is reflected
in terms of risk magnitude(Rm). It represents the

Fig. 2 Fence diagram of Lucknow city (CGWB 2009). The uppermost unconfined aquifer comprises a sandy layer and lies between 8 and
35 m below ground level depth
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scale of risk to human health and is computed as a
function of the mercury values above prescribed
WHO threshold limit (WHOt = 6 μg/l) for drinking
water using Eq. 1.

Rm ¼ dHgið Þ
WHOtð Þ ð1Þ

Table 1 Details of the aquifer system in the Lucknow monitoring area (CGWB 2009)

Aquifer group Depth range (mbgl) Characteristics

First aquifer group 0–150 Fine- to medium-grained sand with intercalation of clays. Tube wells constructed in this
aquifer group yield 1000 to 1500 l per minute (lpm) at draw down up to 10 m.

Second aquifer group 160–240 The aquifer material of this group is silty, resulting in poor discharge of 500 lpm at high
draw down more than 20 m.

Third aquifer group 260–370 Highly intercalated with clays and sand which is finely to very finely grained in texture.
Tube wells in this aquifer group can yield a discharge of 1200 to 1500 lpm at high
draw down about 30 m.

Fourth aquifer group 340–480 Silty sand with hard and compact sand stone chips. Discharge up to 1500 lpm can be
obtained at very high draw down up to 33 though a piezometric head rest between
10 to 13 mbgl.

Fifth aquifer group 483–680 Very fine sand and silty in nature. The yield up to 2000 lpm can be obtained by
cumulative tapping of aquifer group down to a depth of 480 m.

mbgl, meters below ground level; lpm, liters per minute (Source: CGWB)

Fig. 3 Field photographs showing the regional, local point
sources of dHg in Lucknow monitoring area: a widespread exis-
tence of brick kilns in (marked by an open arrow onGoogle image)
Alamnagar (L-35) at the rural-urban fringes of Lucknow. The
Ganga Alluvial Plain accounts for 65% of total brick production
and nearly 263 brick kilns were in Lucknow alone (Pangtey et al.
2004). b Mango orchard along with poultry farming structure at
Mohan [photo credit: Jitendra Kumar Yadav]. c Dumping site of

municipal solid waste located near right bank of the Gomati River
(foreground) at sampling site L34. Lucknow city presently gener-
ates approximately 1.5 × 105 kg/day municipal solid waste
(Archana et al. 2014). d Temporary dumping ground of electronic
wastes (tube lights and compact fluorescence lamps are visible) in
backyards of the Works Department of Lucknow University (old
campus) at sampling site L55 [photographed on 7th June, 2016].
[refer Fig. 1 for location of L34, L-35, and L55]
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It has been observed that all groundwater sam-
ples are much above the prescribed threshold limit
of the WHO limit. The dHg concentration values
over onefold of WHOt (Rm > 1) indicate potential
risk to human health from exposure to contaminat-
ed drinking water in the area of concern. Rm is
classified as low risk (1–2), moderate risk (2–3),
high risk (3–4), very high risk (4–5), and extreme
risk (> 5) with magnitudes representing two-,
three-, four-, five-, and more than fivefolds ex-
ceedance in dHg concentration values, respectively.
The regional Rm database has been interpolated
using best-fitted semivariogram function to predict
the probable areas of health risk in Lucknow mon-
itoring area. Subsequently, the probability of ex-
ceedance of dHg concentration in drinking ground-
water where it is higher than the threshold value
(Rm > 1) has been also mapped. All statistical anal-
yses were done using ArcGIS 10 Geostatistical

Analysis package. The overall methodology
adopted in this study has been shown in Fig. 6.

Geostatistical modeling

Kriging technique and semivariogram function

To interpolate the estimates of random variables [Z(xi);
i ∈ {1… n}] from a regional Rm database onto a
smoothed continuous surface, spatial dependency, i.e.,
spatial autocorrelation between the random variables
has been determined. The spatial variation of the ran-
dom variable (Z) can be expressed within the framework
of a linear model as a sum of structural components
having trend or constant mean surface [μ(xi)], stationary
regionalized (spatially autocorrelated) variable [δ(xi)],
and spatially uncorrelated random noise (δ’)

Z xið Þ ¼ μ xið Þ þ δ xið Þ þ δ’ ð2Þ

Table 2 Summary statistics of dHg concentration (μg/l) in drinking groundwater samples collected from the IndiaMark II hand pumps (n =
100) in the Lucknow monitoring area

Sample location No. of samples
(n = 100)

Altitude dHg (μg/l) Skewness Kurtosis

(Meter
amsl)

Minimum Maximum Mean Median Standard
deviation

Rural 12 116–123 1.77 2.44 2.21 2.24 0.17 − 1.43 3.25

Urban 12 110–123 2.08 2.79 2.40 2.35 0.18 0.54 0.81

Mixed farming 12 116–127 2.46 10.24 4.14 3.21 2.23 2.10 5.01

Total Lucknow
monitoring area

100 110–127 61.42 9.74 15.58 14.11 5.87 5.57 38.93

Fig. 4 Box and Whisker plot
representing the distribution of
dHg concentration (in μg/l) in
drinking groundwater of the rural,
urban, and mixed farming sectors
of Lucknow monitoring area.
Refer Fig. 1 for all sample
locations and sectors sites
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For geostatistical modeling, the structure of spatial
correlation between random variable is estimated
through the semivariogram (Berke 2004). The differ-
ence in the values of the spatially auto-correlated

random variable is a function of distance (h) between
them and can be expressed as:

E Z xið Þ−Z xi þ hð Þf g2
h i

¼ 2γ hð Þ ð3Þ

Here,γ(h) is defined as the Bsemivariance^ depicted
in empirical Bsemivariogram^ that allows us to model
the structure of the random variable for appropriate
spatial prediction at unknown locales using the
Bsemivariogram function^ (Carrat and Valleron 1992).
This function has been depicted below.

γ hð Þ ¼ 1

2n hð Þ ∑
n hð Þ

i¼1
Z xið Þ−Z xi þ hð Þf g2 ð4Þ

Here, n is the number of pairs of sample point
Z(xi) separated by distance h at points(xi) and (xi +
h). The observed empirical semivariogram estimate
model is fitted by the weighted least squares tech-
nique. The close f i t t ing of the empir ical
semivariogram to the model indicates that an ap-
propriate model choice for spatial prediction of
unknown variables has been made (Berke 2004).
The derived value of semivariance (γ) from
semivariogram model is substituted into Eq. 3 to
obtain weights (λi) by introducing the Lagrange
Multiplier (ε) (Carrat and Valleron 1992).

∑
n

i¼1
λiγ xið Þ þ ε ¼ γ xið Þ ð5Þ
Finally, spatial prediction (Z’) at a point can be esti-

mated from observed values [Z(xi); i ∈ {1… n}][Z(x0)
by putting the weight λi in Eq. 5.

Z
0
x0ð Þ ¼ ∑

n

i¼1
λi Z xið Þ ð6Þ

Likewise, spatial prediction of the regional count data
(Rmderived from dHg concentration using Eq. 1) has
been mapped and further interpreted.

Probability kriging Probability kriging assumes
cokriging estimates to have indicator values I(xi;
zth) and uniform value U(xi) assigned as the main
and the auxiliary variable, respectively. Indicator
values are the binary codes (0 or 1) transformed
from random variables [Z(xi); i ∈ {1… n}] (regional
Rm database) through a desirable threshold using
the indicator function. The indicator functions are
derived from the structure of spatially auto-

Fig. 5 dHg concentration (in μg/l) in groundwater samples (n =
100) collected from Lucknow monitoring area. Refer Fig. 1 for all
sample locations

Fig. 6 Schematic diagram showing data processing and method-
ology adopted in the present study for the mapping of human
health risk from exposure to dHg in drinking water resources of
Lucknow monitoring area
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correlated indicator values best fitted to the indi-
cator semivariogram model (Eq. 7).

γi hð Þ ¼ 1

2n hð Þ ∑
n hð Þ

i¼1
I xi; zthð Þ−I xi þ h; zthð Þf g2 ð7Þ

The uniform value represents the order relation of
observed values and is defined as:

U xið Þ ¼ r
n

ð8Þ

Here, r denotes the rank of the rth order statistic z(r)
located at xi and n is the total number of observations
(Goovaerts 1997; Adhikary et al. 2011). Similarly,
semivariance is depicted from the best-fitted uniform
value U(xi) to the semivariogram model as given by
Eq. 9.

γu hð Þ ¼ 1

2n hð Þ ∑
n hð Þ

i¼1
U xið Þ−U xi þ hð Þf g2 ð9Þ

Probability kriging estimates the autocorrelation be-
tween each variable, i.e., the indicator I(xi; zth) and uni-
form value U(xi) and their cross-correlation is depicted
by cross-semivariogram given in Eq. 10.

γiu hð Þ ¼ 1

2n hð Þ ∑
n hð Þ

i¼1
I xi; zthð Þ−I xi þ h; zthð Þf g � U xið Þ−U xi þ hð Þf g½ �2

ð10Þ
Finally, the binary variable, i.e., I’(x0; zth) is spatially

predicted through a desirable threshold indicator (zth) at
point (x0) by putting up on weight λi and λui i associated
with indicator I(xi; zth) and uniform value U(xi), respec-
tively by Eq. 11.

I
0 x0;zthð Þ ¼ ∑

n

i¼1
λiI xi; zthð Þ þ ∑

n

i¼1
λuiU xið Þ ð11Þ

Results and discussion

Spatial distribution of risk magnitude

The Rm derived from Eq. 1 reflects the locales of
potential Bhotspots^ of health risk from exposure to
dHg contamination in drinking groundwater of Luck-
now monitoring area. Regional Rm data is used as a
point data for direct interpolation of the degree of
risk. An empirical semivariogram function derived

from the spatial structure of Rm is best fitted to the
spherical model using the weighted least squares
method. The semivariance and its corresponding
values of the nugget, sill, and range obtained from
the best-fitted model were noted. The theoretical
model indicates nugget effect (C0 = 0.33) with a sill
(C0 + C1) and range of influence (C2) of 2.52 (Rm)

2

and 18.1 km, respectively (Fig. 7). The Rm variable
showed a strong spatial dependence within a range of
18.1 km. The measure of the unexplained variability
or nugget (13%) is low compared to the total variance
or sill (2.52) suggesting > 87% {[(Sill − Nugget) ×
100]/Sill} of the semivariance of the Rm could be
modeled by the variogram over a range of 18.1 km.
Small nugget effect indicate geostatistically small
uncontrolled variability associated with Rm provides
ordinary kriging as appropriate prediction method for
direct interpolation of the original values of the re-
gional Rm data. The semivariogram parameters were
used to generate thematic spatial distribution map of
Rm by ordinary kriging method with predicted aver-
age standard error of 0.48. Figure 8 represents the
spatial distribution of risk magnitude (Rm) in Luck-
now monitoring area. A major portion of the area
falls under the moderate risk (Rm ranges from 2 to
3), indicating a regional source of dHg concentration
independent of rural and urban processes. The north-
western part of Lucknow monitoring area has been
classified under the high to extreme risk magnitude

Fig. 7 Best-fitted spherical semivariogram estimated from region-
al Risk Magnitude (Rm) data to generate thematic Rm map of
Lucknow monitoring area
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(Rm ranges from 3 to > 5), and this part has a spatial
extent of 131.68 km2 (10% of the total monitoring
area). About 1045.25 km2, which is 85% of the total
monitoring area, is at moderate risk (Table 3).

Human health risk probability

Riskmagnitude (Rm) is used as an empirical test variable
for probability kriging estimates to predict the areas in

Fig. 8 Spatial distribution of risk magnitude (Rm) in Lucknow
monitoring area. Rm is classified as low (1–2), moderate (2–3),
high (3–4), very high (4–5), and extremely high (> 5) representing

2, 3, 4, 5, and > 5 folds exceedance of dHg concentration. Note
that the northwestern part of Lucknowmonitoring area is classified
as above high risk magnitude

Table 3 Classified degree of risk magnitude (Rm) due to the
exposure of dHg in drinking water of the Lucknow monitoring
area. Note that over 10% of the area occupying the NW part has
been classified as being under the high to extremely risk

magnitude (with Rm ranging from 3 to > 5). Most of the urban as
well as rural human population fall under the moderate health risk
(Rm ranges from 2 to 3). Refer Fig. 7 for spatial distribution of risk
magnitude (Rm)

Risk magnitude (Rm)

Index Risk magnitude (Rm) class Area (in km2) Area (in %)

Extreme risk magnitude > 5 42.51 3.48

Very high risk magnitude 4–5 27.93 2.28

High risk magnitude 3–4 61.24 5.01

Moderate risk magnitude 2–3 1045.25 85.48

Low Rrisk magnitude 1–2 45.82 3.75
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which the probability of exceedance of risk to human
health is higher. The best-fitted semivariograms of the

indicator values and uniform values transformed from
regional (Rm) database are shown in Fig. 9a, b,

Fig. 9 The best-fitted semivariograms of a indicator values and b
uniform values transformed from regional Rm database. The pa-
rameters derived from semivariogram model have been used in

probability kriging for generation of health risk probability map of
the Lucknow monitoring area
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respectively. The corresponding semivariogram param-
eters (nugget, sill, and range) of the indicator and uni-
form value evaluate the probability of higher health risk
than the threshold value (Rm = 1) with the predicted
average standard error of 0.44 (Table 4). The generated
prediction map indicates all area at risk and shows a
variable degree of health risk probability from low to
extremely high. The probability of exceedance of dHg
from the threshold value is the highest (0.8–1.0) in the
north-western parts and gradually decreases to lowest

(0.0–0.2) towards the east and south-eastern parts of the
Lucknow monitoring area (Fig. 10). The decrease in
health risk probability in the southeastern direction
may be linked with the regional slope of the Lucknow
monitoring area and/or regional flow of the groundwa-
ter. The predicted probability data were further integrat-
ed with the population count data (Census of India
2011) of Lucknow monitoring area to map the human
population count at risk. The result showed that 60% of
the human population counts residing in about

Table 4 Semivariogram parameters (nugget, sill, and range) derived from best-fitted theoretical models of the indicator and uniform value

Transformed variable Best-fitted model Semivariogram parameter

Nugget (C0) Sill (C0 + C1) Range (C2)

Indicator value Exponential 2.54 23.35 2.39

Uniform value Exponential 3.92 27.28 5.41

Fig. 10 Health risk probability map of the Lucknow monitoring
area showing the places where the probability of exceedance of
dHg concentration in drinking groundwater is higher than the
threshold value. The probability of exceedance of Hg from the

threshold value is highest (0.8–1.0) in the northwestern part and
gradually decreases to lowest (0.0–0.2) towards east and southeast
of the Lucknow monitoring area
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706.6 km2 area (58% of the total area) and occupying
the western half of the Lucknow monitoring area are
above high health risk probability (Table 5; Fig. 11).

With the help of the present study, the understanding
of variation in health risk probability of urban (central),
rural (southeastern), and mixed farming (northwestern)

parts of the Lucknow monitoring area is significant to
investigate the possible contamination source of dHg
that may be independent of rural-urban processes oper-
ating in the alluvial plain. The estimates of the risk
probability and corresponding human population count
at risk in three different sectors, i.e., the rural, urban, and

Table 5 Mapping of the human health risk assessment in the
Lucknow monitoring area from exposure to dHg in drinking
groundwater. Refer Fig. 11 for predicted probability data and

human population counts in the study area. Note that over 60%
of human population irrespective of their urban or rural locations
are above high health risk probability

Total
area/population

Probability
class

Human health risk probability
index

Affected area Human population at
risk

Human population at risk
(in %)

(in km2) (in %)

1222.75/2,216,400 0.8–1.0 Extreme risk probability 114.09 9.33 95,937 4.33

0.6–0.8 Very high risk probability 321.43 26.29 720,645 32.51

0.4–0.6 High risk probability 271.14 22.17 526,036 23.73

0.2–0.4 Moderate risk probability 198.19 16.21 349,500 15.77

0.0–0.2 Low risk probability 317.9 26.00 524,282 23.65

Fig. 11 Human health risk map showing the spatial overlay of
predicted probability data over the dispersion of human population
counts at the ward or village level. Contours show the spatial
distribution of probability of risk to human health. The figure

indicates that 60% of the human population counts reside in about
706.6 km2 area (58% of the total area) which occupies the western
half of the Lucknow monitoring area and is above the probability
of high health risk
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mixed farming sectors are given in Table 6. Results
show that mixed farming (NW) part of the Lucknow
monitoring area has very high to extreme risk probabil-
ity of dHg contamination. The contaminated area oc-
cupies 147 km2 affecting only 4.68% of the total popu-
lation which is mainly rural. Rural sector is at low to
moderate risk probability occupying 147 km2 affecting
only 5.66% of the total population. Health risk from
exposure to dHg contamination is potentially alarming
in the urban sector where 32.4% of the population
residing in 6.8% of the total Lucknow monitoring area,
especially in the western parts, is at high to very high
risk probability. Therefore, high and low risk probability
in the northwestern and southeastern part is represented
by mixed farming and rural parts, respectively. It indi-
cates the possibility of regional and local (point) non-
geogenic source for dHg that may be independent of
rural-urban processes operating in the alluvial plain.

Conclusions

In northern India, Lucknow monitoring area of the
Ganga Alluvial Plain experienced high to very high
probability risk to human health from the exposure of
dHg through drinking water resource. The results indi-
cate that nearly two-thirds of the human population
residing in about 58% of the total area was classified
above the probability of high health risk. The Ganga
Alluvial Plain is one of the densest congregations of the
human populations in the world. Therefore, mapping

human health risk from dHg exposure plays a significant
role in the sustainable environmental development of
the region on a global scale. It is important to note that
the present study is based on a single chemical data
source (mercury in drinking water resource) and does
not refer human health risk assessment by the mercury
exposure in other environmental components (such as in
soils and in air). Moreover, population figures by sex,
age, and area were not considered for the present study.
With the help of these datasets, health risk assessment
could be more reliable in the future studies. This seems
to be more important in further research because the real
risk value of total mercury exposure could be much
higher, and the mapping of human health risk could be
more productive by considering more robust parameter
as mentioned above to take substantial remediation
measures on a long-term basis.
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