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Abstract Accurately measuring and estimating trends
and variations in nutrient levels is a significant part of
managing emerging eutrophic lakes in developing coun-
tries. This study developed an integrated approach con-
taining Seasonal Trend Decomposition using Loess
(STL) and a dynamic nonlinear autoregressive model
with exogenous input (NARX) network to decompose
and estimate the nutrient concentrations in Lake Erhai, a
preliminary eutrophic lake in China. The STL decom-
position results indicated that total nitrogen (TN) con-
centration of Lake Erhai progressively descended from
2006 to 2014, except for some agriculture area. The total
phosphorus (TP) concentration showed an increasing

trend from 2006 to 2013 and then decreased in 2014,
but in the area near the tourist attractions, TP increased
continuously from 2011 to 2014. Seasonal variations in
TN and TP indicated that the lowest water quality of
Lake Erhai occurred from July to October. Based on
results obtained with STL, TP was selected as the sen-
sitive parameter, as it showed a significant deterioration
trend, and the area near the tourist attractions was se-
lected as the sensitive area. Three variables (DO, pH,
and water temperature) were selected as input parame-
ters to estimate TP using the dynamic NARX model.
The NARX modeling results demonstrated that it can
accurately estimate TP concentrations with low root-
mean-square error (0.0071 mg/L). The study establishes
a new approach to better understand trends and varia-
tions in nutrient levels and to better refine estimates by
identifying more easily accessible physical parameters
in a preliminary eutrophic lake.
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Introduction

Eutrophication is a worldwide environmental problem,
originating from the excessive accumulation of nutrients
in water bodies. The problem has drawn significant
attention since the 1970s (Bouwman et al. 2002; Smith
2003); however, the issue emerged much later in China,
along with the country’s economic growth in the 1990s
(Le et al. 2010). Things have become worse in the new
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century, with sudden algal bloom break-outs in several
important lakes, threatening ecological safety, and hu-
man health (Guo 2007; Goreau 2008). To face this
challenge, the Chinese government proposed a national
project in 2006, called the Major Science and Technol-
ogy Program for Water Pollution Control and Treat-
ment. The program was funded at a level of more than
12 billion RMB. Several rivers, lakes, and reservoirs
were selected, with the goal of obtaining specific resto-
ration experience in basins with different natural char-
acteristics and social economic conditions.

Of the studied water bodies, Lake Erhai was selected
as a representative preliminary eutrophic lake. Agricul-
tural non-point pollution was identified as the main
pollution source (Shang and Kong 2014).With the rapid
increase in population and economic development, the
water quality in Lake Erhai rapidly deteriorated after the
1990s. In 1996 and 2003, two severe algal blooms broke
out in part of the lake. After two consecutive BFive-Year
Programs^ involving integrated remediation, the water
quality of Lake Erhai has improved significantly in the
last decade. In 2015, its water quality was graded as
class II to III, according to the Water Environment
Quality Standard of China (GB3838-2002). This means
it meets the standard for a drinking water source (Wang
et al. 2015).

However, protecting preliminary eutrophic lakes in
developing countries often leads to conflicts with local
economic development. The eutrophication process
may accelerate during high-speed economic develop-
ment. In the Lake Erhai basin, the local gross domestic
product (GDP) growth rate in 2015 was 8.26%, which
was faster than the average level in China (6.9%) and in
the USA (2.6%). Thus, there remains a risk of future
water quality deterioration. Moreover, both the positive
and negative experiences in the management of the lake
over the past 10 years should be carefully considered.
Understanding the variations in water quality in Lake
Erhai can help inform reasonable eutrophication control
policies and environmentally friendly economic devel-
opment strategies.

Until now, trends and variations in water quality for
most lakes, especially in developing countries, have
been demonstrated directly using raw monitoring data.
The periodicity and stochasticity of variations in water
quality are generally not accounted for, inhibiting the
accurate assessment of its eutrophication state. Seasonal
Trend Decomposition using Loess (STL) (Cleveland
et al. 1990) has been demonstrated to be a reliable tool

for analyzing long-term trends and variations (Sellinger
et al. 2007; Shamsudduha et al. 2009;Wang et al. 2014a,
b). STL uses a locally weighted running-line smoother
to fit data, which can address nonlinear and local trends.
Qian et al. (2000) and Stow et al. (2015) analyzed long-
term and seasonal trends of nutrient concentrations and
loads of two rivers in USA, respectively. The results
indicate that STL method can exclude stochastic fluctu-
ations in raw data and can accurately decompose water
quality data into long-term and seasonal trends.With the
development of different modeling tools, the modeling
of variations in water quality has drawn increased atten-
tion. Of the well-developed techniques, (artificial neural
network (ANN) has been shown to be a useful water
quality modeling tool (Chebud et al. 2012; Khalil and
Adamowski 2014). With ANN, the complicated, labo-
rious, expensive, and time-consuming process of gener-
ating water quality data could be reduced by using more
easily collected hydraulic data (Chang et al. 2015;
Tomić et al. 2016). However, the previous researches
always use raw monitoring data to forecast the water
quality with ANN (Park et al. 2015; Xu et al. 2005). To
date, no work has modeled water quality using an ANN
method, which using STL composing data as input data.

This study analyzed Lake Erhai’s nutrient concentra-
tion data from 2006 to 2014, the longest time span seen
in the literature on this topic (Yin et al. 2011; Jiao et al.
2013). STL was applied to analyze long-term trends and
seasonal variations of TN and TP concentrations of 11
stations in Lake Erhai. Sensitive water quality parame-
ters and sensitive sampling sites were selected using
STL, revealing different long-term variations and pat-
terns compared to other indices. Finally, the most sensi-
tive parameter in the sensitive sampling sites was
modeled using an ANN method. The study established
a new approach to better understand and estimate trends
and variations in nutrient levels, using more easily ac-
cessible physical parameters in a preliminary eutrophic
lake.

Methods

Study area and data collection

Lake Erhai is in southwest China (25° 25′–26°16′N,
99°32′–100°27′E) and is the seventh largest freshwater
body in China. Its surface area covers approximately
250 km2, with an average depth of 10.2 m, and a storage
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volume of 28.2 × 108 m3 (Zhang et al. 2015). The north-
ern part of the basin is in an agricultural region. Three
primary rivers (Miju River, Yongan River, Luoshi Riv-
er) flow into the lake in that area, carrying many agri-
cultural pollutants (Wang et al. 2013). The western
region of the basin consists of a narrow plain between
Cang Mountain and Lake Erhai, where both agriculture
and tourism are highly developed. Eighteen rivers,
called the Cangshan Eighteen Creek, flow into the west
part of the lake. The east side of Lake Erhai consists of
sharp embankments. The southern part of the basin is
downtown of Dali City; there is significant domestic and
tourism pollution in this region (Fig. 1).

Figure 1 shows the distribution of sampling sites.
Each water sample was a mixture of water collected at
0.5 m below the water surface and water collected from
the bottom of the lake at 0.5 m above the sediment. In
the study period, the water samples were collected two
times a month (1st and 15th) from 2006 to 2014. Table 1
displays the preliminary statistics of the water quality
data and the data processing.

The analysis scheme

This study developed a systematic analysis scheme to
assess spatial-temporal water quality using artificial intel-
ligence and statistics techniques (Fig. 2). A STL analysis
was conducted to identify the sensitive water quality pa-
rameter and the sensitive area. In our research, the sensitive
water quality parameter was defined as the water pollutant
whose concentration value changed the most. The sensi-
tive area was defined as the area where the sensitive water
quality parameter changed the most. The nonlinear
autoregressive model with exogenous inputs (NARX) dy-
namic ANN was used to model the concentration of the
sensitive water quality parameter in the sensitive area and
the input parameters were selected using correlation anal-
ysis. The main method is described as follows.

STL

A time series of monthly environmental monitor-
ing data at a selected location is defined as the
sum of two components: one high-frequency sea-
sonal component and one low-frequency long-term
component (or trend component). Each individual
observation is decomposed as

Yyear;month ¼ Tyear;month þ Syear;month þ Ryear;month ð1Þ

In this expression, Yyear,month is the observed
value for a given year and month; Tyear,month is
the frequency of variation in the data, together
with non-stationary, long-term changes in the
levels. Syear,month is defined the variation in the
data at or near the seasonal frequency. The term
Ryear,month is the remaining variation in the data
beyond the seasonal and trend components. The
STL model applies one continuous loses line for
the smoothed, long-term component, and 12–
month specific loses lines for the seasonal compo-
nent. The method of choosing smoothing parame-
ters can be found in the reference (Cleveland et al.
1990). We chose window widths of 12 months and
48 months, respectively, in order to represent the
window widths of the seasonal and long-term
components. Periodic time windows were selected
to reveal trends. A detailed description of the
operational processes and parameter setting are
provided in Cleveland et al. (1990).

Correlation analysis

Selecting input parameters for the water quality estima-
tion model is an important part of the process. A larger
number of input parameters can improve prediction
accuracy; however, excess input data can lead to more
redundancy in computing, hindering the simulation
(Chang et al. 2015). The correlation analysis can reveal
the internal correlation relationship between water qual-
ity parameters. Because of this function, the correlation
analysis can be used to select the input parameters for
ANN model. This study used a correlation analysis
(Pearson correlation test) to select the input factors.
The trend data (decomposed by STL) was used for the
correlation analysis instead of the observation data,
which is different from other research.

NARX dynamic ANN

The NARX dynamic ANN is one of the most widely
used dynamic ANN. It retains data from a former oper-
ation and feeds it into the next data operation, giving it a
dynamic feature, while also keeping complete
information.

The NARX network contains input layers, hidden
layers, and output layers. Recurring connections
from the output may delay several unit times to form
new inputs. The mathematical structure of the
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Fig. 1 Map of Lake Erhai and the location of inflow rivers (Shang et al. 2012)
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NARX network is shown in the following Eq. 1
(Chang et al. 2015):

z tð Þ ¼ f z t−1ð Þ; :::; z t−dzð Þ;U tð Þ½ �

In this expression, U(t) and z(t) denote the input
vector and output value of the model at a discrete time
step t, respectively. The term f(·) indicates the nonlinear
activation function that needs to be approximated by a
learning algorithm.

The NARX network can be trained by two
modes. The first mode is the series-parallel (SP)
mode, where the output’s regressor in the input
layer is formed only by actual values of the sys-
tem’s output, d(t):

z tð Þ ¼ f d t−1ð Þ; :::; z t−dzð Þ;U tð Þ½ �

The second mode is the parallel (P) mode,
where estimated outputs are fed back into the

output’s regressor in the input layer and can be
mathematically represented as Eq. (1). The NARX
network can be trained in the SP mode to con-
struct the relationship between actual and estimat-
ed values of the target variable. Then the con-
structed NARX network in the P mode is applied
to the unrecorded period for improving estimation
performance with the recurrent information (the
estimated values derived from the model).

The performance of the NARX dynamic ANN
model is evaluated using common measures of
goodness of fit: RMSE (root-mean-square error)
and R (the correlation coefficient between the es-
timated value and observed value). The minimiza-
tion of RMSE and maximization of R between
experimental and modeled values was the target
of appropriate estimation model, shown as follows
(Young et al. 2015):

R ¼
1=Nð Þ∑N

i¼1 Ymð Þi−Ym

h i
Y 0ð Þi−Y 0

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nð Þ∑N

i¼1 Ymð Þi−Ym

h i2r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nð Þ∑N

i¼1 Y 0ð Þi−Y 0

h i2r

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nð Þ ∑

N

i¼1
Ymð Þi− Y 0ð Þi

� �2
s

Ym ¼ ∑
N

i¼1
Ymð Þi

� �
=N

Y 0 ¼ ∑
N

i¼1
Y 0ð Þi

� �
=N

In this expression, Ym is the estimated value, Y0 is
the observed value, and N is the number of data points.

Statistical analysis

For nitrogen long-term data, significant differences
among stations and years were evaluated through a
parametric one-way analysis of variance (ANOVA).
Significant (p < 0.05) differences were detected by a
multiple Tukey comparison test. Statistical analyses
were performed using the commercial software SPSS
version 19.0 (SPSS, Inc., Chicago, IL, USA) (Fig. 3).Fig. 2 Study flow of the proposed systematic analysis scheme

Table 1 Basic statistics of water quality data obtained from 11
monitoring stations along Lake Erhai (January 2006–December
2014)

Parameters Unit Min Max Mean SDa

Temperature °C 8.0 26.0 17.3 4.5

pH – 8.7 8.6 8.7 0.1

DO mg/L 7.43 7.28 6.60 0.86

COD mg/L 3.40 3.24 2.80 0.43

TN mg/L 0.455 0.741 0.533 0.135

TP mg/L 0.018 0.032 0.023 0.008

NH3-N mg/L 0.149 0.363 0.140 0.101
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Results and discussion

Long-term trends in nutrient concentrations
at the sampling sites

Long-term trends in total nitrogen (TN) concentrations
appear almost the same across all sites. Between 2006
and 2014, TN concentrations trended progressively
downward, with the exception of a sharp fluctuation in
2007–2008. The decreasing tendency of the TN con-
centration reflects the impacts of governance during
these years. Starting in 2003, the local government
initiated a water environment remediation project for
three main inflow rivers in the northern basin (Miju
River, Yongan River, Luoshi River). At the same time,
estuarine wetlands for these three inflow rivers and a
3.3-km2 lakeside zone were constructed. These mea-
sures effectively reduced the TN load from the inflow
rivers and agriculture production near the lake. Several

decentralized waste treatment systems were also built to
control rural domestic sewage from nearby villages.
According to a survey, by 2010, there were 45 soil
purification tanks in the basin (Zhang et al. 2013).

In 2007–2008, the TN concentrations at all sampling
sites reached their minimum values. The values then
increased to a new higher value that remained lower
than levels before 2007. This outcome was likely due to
the larger rainfall amount in 2007 (931 mm), which was
higher than the multiyear average value (673 mm). The
sudden change in river flow may have led to significant
improvements in river water quality and impacts on
ecosystems (Chang et al. 2015). This may have led to
a decline in the TN concentration.

For the spatial comparison, TN concentrations at site
1 were significantly higher compared to other sites
(Table S1; P < 0.05). This site was located near the
northern lakeshore of Lake Erhai, a traditional agricul-
tural and livestock rising area. This area includes 58% of
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Fig. 3 Spatial patterns of the long-term trends in TN and TP concentrations (in mg/L). Each column represents one sampling station
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the total farmland and 70% of the total livestock in the
basin (Zhang et al. 2014; Lu et al. 2015). As a result, the
northern region contributed the most agriculture non-
point pollution produced among the whole basin. It was
estimated that the three main inflow rivers (Miju River,
Yongan River, Luoshi River) in the northern basin cre-
ated approximately 47% of the TN load into the lake
(Yan et al. 2005).

Because of the many restoration measures listed
above, the TN concentration at the north stations (sta-
tions 1, 2, and 3) declined significantly between 2009
and 2014 (p < 0.05; Table S2). While TN concentrations
remained almost the same across most of the sites, the
trends in the TN concentrations differed at sites 4 and 5.
Unlike other sites, the TN concentrations at sites 4 and 5
remained stable, rather than declining after 2010. These
sites were near the northwest lakeshore of Lake Erhai,
near a large farming village (Xizhou Town). In this area,
rainfall, farmland irrigation water, and rural domestic
wastewater flow into the lake through rivers or overland
flow. This creates a large nutrient load. Our results
indicated that while much has been done, the measures
taken to prevent agriculture non-point pollution in the
north-western region have not been sufficient. Stricter
agricultural non-point pollution control policies should
be implemented in this area in the future.

The TP concentrations at sites 1–5, which are in an
agriculture and livestock region, progressively increased
from 2006 to 2013. Concentrations then decreased in
2014. Studies showed that in the Lake Erhai basin,
increased livestock and rural wastewater were the main
sources of TP, creating 60% and 19% of the total TP
load, respectively (Shang and Kong 2014; Wang et al.
2014a, b). From 2011 to 2014, livestock breeding in
Lake Erhai basin developed more rapidly than previous-
ly. In 2014, meat and milk production increased 9.2%
and 22%, respectively, compared to 2011 levels. How-
ever, livestock wastewater and animal dung were not
well treated. Livestock wastewater was discharged into
the lake without treatment, and the animal dung was
habitually stacked on the roadside. Nutrient elements
were then brought into the lake through rivers or over-
land runoff.

The inadequate governance of livestock pollution
appears, therefore, to have been the dominant factor
driving the increased TP before 2014. However, since
2013, there has been an increased exploration of live-
stock waste collection and recycling. In 2014, three
livestock waste collection points were put into use,

leading to the collection of 120,000 t of livestock waste.
As a result, TP concentrations have declined since then;
however, the TP concentrations at sites 9, 10, and 11
were higher than other sites (Table S1). This may be
related to the geographical position of these sites. Sites
9, 10, and 11 are located in the southern part of Lake
Erhai, which adjoins downtownDali City. The tail water
from the Xiaguan municipal sewage plant is the main
source of the TP load in this region. The modeling
indicates that in downtown Dali City, the treatment ratio
of urban sewage was 93.65% and the TP load of the tail
water was 48 t/a (Bai et al. 2015). This may help explain
the higher TP concentration in this area.

Unlike other sites, the TP concentration at site 6 rose
consistently between 2006 and 2014. Site 6 was located
near the west lakeshore of Lake Erhai, next to Dali
Ancient Town, a famous scenic spot. In recent years, as
tourism has developed, the number of tourists in Dali has
increased rapidly (from 6 million in 2010 to 9 million in
2014). This increase of tourists may have led to the
increased nitrogen and phosphorus in the water
(Thebault and Qotbi 1999; Karydis and Kitsiou 2012).
Thus, the government should promote ecological tour-
ism and strengthen wastewater treatment in this area.

Seasonal patterns of nutrient concentrations
at the monitoring stations

The former study showed that for spatial distribution,
the west part of Lake Erhai contains most TN and TP
contents, in percentages of 51% and 60%, respectively
(Bai et al. 2015). This is because of the higher popula-
tion density, more developed agriculture, and increases
in the livestock industry. In this study, the TN long-term
concentrations of stations in west part of Lake Erhai
(stations 1, 4, 6) were higher than those stations in the
center and east part of Lake Erhai (Table S1). Therefore,
we chose the stations 1, 4, 6, and 9 to do seasonal pattern
analysis. Thus, the addition of long-term trend data and
seasonal data from these sites were selected to analyze
the seasonal patterns.

In our research, TN concentration trends followed a
regular seasonal pattern, with the highest value occur-
ring from July to October (Fig. 4; Table S3). This
seasonal pattern may relate to the rainfall pattern and
crop rotation system in Lake Erhai basin. The climate of
the Lake Erhai basin is consistent with a typical low-
latitude plateau and is a subtropical and southwest mon-
soon type (Tang et al. 2012). Seasons alternate
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Fig. 4 Seasonal patterns in the long-term nutrient concentration
(in mg/L) trends at sites 1, 4, 6, and 9 for TN and TP. Each column
represents the long-term trend in a specific month (calculated as
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significantly between the dry and rainy seasons. Histor-
ical data indicate that 85–96% of the rainfall is concen-
trated between May and October, with a monthly peak
of 217 mm in August (Dearing et al. 2008).

A crop rotation system has been established in the
study region for more than 100 years. Spring crops,
including rice, maize, and tobacco, are planted from
June to September. Winter crops, including broad beans,
garlic, barley, and rape, are planted from September to
April of the following year (Shang et al. 2012). There-
fore, recently applied fertilizer is scoured by abundant
rainfall runoff (Chen et al. 2016), which finally con-
verges into Lake Erhai. This may be the dominant factor
driving the increasing trend in TN concentration from
July to September. For winter crops, fertilizer is applied
in October. Garlic needs more fertilizer than other crops.
More specifically, the amount of nitrogen fertilizer ap-
plied to garlic is four to five times the amount it takes up
(Tang et al. 2012). Therefore, although October is the
tail of the rainy season, the large amount of fertilizer
may induce a substantial TN load into Lake Erhai.

The TP concentration experiences a similar seasonal
pattern as TN. The TP concentration was significantly
higher from July to October, and lower in other months
(Fig. 4; Table S3). The seasonal variations in TP con-
centrations were also due to rainfall patterns in the basin.
However, unlike TN, the TP concentrations remained
high throughout the rainy season. Although the rainfall
leads to both scouring and dilution, an additional reason
explains this outcome. The P releasing from sediments
have become an important source of P loading in lakes
(Boström et al. 1988; Caraco et al. 1989). For example,
Liu et al. reported that the release flux of TP at the
sediment-water interface of Lake Erhai is estimated at
114.2 t/a (2015). Jin et al. indicated that the low DO
value of overlying water may cause anaerobic P release
at the sediment-water interface of the lake (2006). In this

study, Fig. 5 shows that oxygen concentrations in Erhai
Lake were higher than 5.5 mg/L, indicating aerobic
conditions, but from July to October, the DO concen-
trations were lower than other months. Considering that
the water sample was a mixture of surface water and
overlying water, there may be an anaerobic condition in
sediment-water interface, which may be the reason for
higher P in these months. The P release may also be
affected by stream and wind (Klein 2008). Therefore,
during the rainy season, disturbances from rainfall, river
discharge, and DOmay have led to phosphorus releases
and the high TP concentration from July to October
(Pant and Reddy 2001; Kim et al. 2003).

The TP concentration at site 6 increased persistently
between July and October, reaching its highest value in
October. This was different from other sites. This may
be due to the sudden increase in tourist population
between October 1 and 7, the National Day Holiday of
China. For example, during the National Day Holiday in
2014, Dali received approximately 450,000 tourists, an
average of 60,000 tourists each day. This was three
times the mean value for that year. These high numbers
of tourists may produce significant levels of domestic
wastewater and solid waste, resulting in a higher TP
concentration in October. This result indicated that,
despite agriculture non-point pollution, pollution caused
by tourism has become an emerging pollution source in
the Lake Erhai basin.

The relationship between TN and TP concentration
and rainfall can highlight nitrogen and phosphorus
sources (Duan and Zhang 1999). Non-point source pol-
lution is significantly affected by rainfall; however,
point source pollution is relatively stable. The seasonal
TN and TP concentration patterns in site 9 held at
steadier levels than at other stations. This may because
pollutants in the southern part of the Lake Erhai basin
mainly come from Boluo River and tailwater from
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WWTPs. The nitrogen and phosphorus concentrations
are simultaneously impacted by non-point and point
source pollution, making the effect of rainfall less clear.

Modeling of the long-term TP trends at site 6 using
an NARX-ANN approach

Long-term TN trends at all sites and long-term TP trends
at most sites decreased during the study period; howev-
er, TP at site 6 showed a significant increasing trend
across these years. Therefore, site 6 and its TP levels
were selected as the sensitive area and sensitive water
quality parameter, respectively. Afterward, a correlation
analysis was conducted before the ANN analysis to
select the input parameters.

We selected the input indicators by examining the
correlation between TP and other water quality

parameters at site 6. Trend data (decomposed by STL)
and observed data were used for the correlation analysis.
In the observed data analysis, TP was not significantly
correlated with other parameters. However, when
conducting the trend data analysis, TP was significantly
correlated with COD, DO, pH, and water temperature.
This may because trend-based data can reflect variation
tendencies more accurately than observed data. As such,
a correlation analysis based on trend data can more
clearly reveal the correlation between parameters
(Chang et al. 2015). Although TP was correlated with
COD, DO, pH, and water temperature, based on data
availability, we selected the more easily accessible phys-
ical parameters as input variables: DO, pH, and water
temperature (Table 2).

Using the previous three selected factors as input
variables and the TP concentrations as the output vari-
able, this study adopted NARX-ANN to estimate the TP
concentration at site 6. The neural network was trained
using 70% of the data (2006–2014), and the validation
and testingwas conducted using 15%of the data. Table 3
presents the model performance in the testing stages.
The RMSE was sufficiently low, and the R value was
sufficiently high, to demonstrate that the model per-
formed wells. Figure 6 shows the modeling time series
of TP concentrations associated with NARX-ANN. The
results demonstrated that (a) this model fit the time
series of TP well and (b) the model captures the peak
value during the rainiest season (June–September). This

Table 2 Correlation of water quality parameter pairs at site 6
(January 2006–December 2014)

Parameter pair Correlation coefficient

Trend data TP, TN 0.073

TP, NH3-N − 1.171

TP, COD 0.399**

TP, DO 0.570**

TP, pH − 0.716**

TP, water temperature − 0.206*

Observed data TP, TN − 0.079

TP, NH3-N − 0.133

TP, COD − 0.032

TP, DO − 0.085

TP, pH − 0.177

TP, water temperature 0.090

*θ < 0.05, significance level Sig(θ) (significant correlation); **θ
< 0.01, significance level Sig(θ) (highly significant correlation)

Table 3 Performance of TP concentration modeling at site 6 in
the testing stages

Model Node number RMSE R

NARX 3 0.0071 0.716
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Fig. 6 Performance comparison of regional TP concentrations
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is critical for water pollution control. In summary, the
NARX network coupled with the correlation analysis
can delineate TP concentrations using COD, DO, and
pH.

Conclusion

This study developed an integrated approach containing
STL and a dynamic nonlinear autoregressive model
with exogenous input (NARX) network to decompose
and estimate the nutrient concentrations in Lake Erhai, a
preliminary eutrophic lake in China. The outcome
shows the positive effects of integrated remediation over
the past 10 years, as well as deficiencies. From 2006 to
2014, TN was successfully controlled, as its concentra-
tion progressively descended in most part of Lake Erhai.
In the area near the tourist attractions, TP increased
continuously from 2011 to 2014, which means that the
government should not only strengthen the agriculture
wastewater treatment but also promote ecological tour-
ism. TP was successfully modeled to assess variations in
sensitive parameters at sensitive sites, facilitating the
modeling of nutrient concentrations using more easily
obtained physical parameters.
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