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Abstract Understanding the spatiotemporal dynamics
of urbanization and predicting future growth is now
essential for sustainable urban planning and policy mak-
ing. This study explores future urban expansion in the

rapidly growing region of eastern lowland Nepal. We
used the hybrid cellular automata-Markov (CA-
Markov) model, which utilizes historical land use and
land cover (LULC) maps and several biophysical
change driver variables to predict urban expansion for
the years 2026 and 2036. Transitional area matrices
were generated based on historical LULC data from
1996 to 2006, from 2006 to 2016, and from 1996 to
2016. The approach was validated by cross comparing
the actual and simulatedmaps for 2016. Evaluation gave
satisfactory values of Kno (0.89), Kstandard (0.84), and
Klocation (0.89) which verifies the accuracy of the
model. Hence, the CA-Markov model was utilized to
simulate the LULC map for the years 2026 and 2036.
The study area experienced rapid peri/urban expan-
sion and sharp decline in area of cultivated land
during 1989–2016. Built-up area increased by
110.90 km2 over a period of 27 years at the loss of
87.59 km2 cultivated land. Simulation analysis indi-
cates that urban expansion will continue with urban
cover increasing to 230 km2 (8.95%) and
318.51 km2 (12.45%) by 2026 and 2036, respective-
ly, with corresponding declines in cultivated land to
1453.83 km2 (56.86%) and 1374.93 km2 (53.77%)
for the same years. The alarming increase in urban
areas coupled with loss of cultivated land will have
negative implications for food security and environ-
mental equilibrium in the region.
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Introduction

Urbanization is a global, complex, and dynamic process
(Fisk 2012; Nagendra et al. 2018) and is an indicator of
modernization, socialization, economic progress, and
power (Mountjoy 1978). The process of urbanization
is the outcome of a range of factors which vary accord-
ing to time and space (Asma et al. 2017). In the present
scenario, unprecedented urbanization has taken place
due to various socio-economic forces (Umar and Indo
2018) mostly in third world cities (Kaplan et al. 2004).
The world population totalled 7 billion in 2011 and is
expected to reach 8.6 billion by 2030, 9.8 billion by
2050, and 11.2 billion by 2100 (UNDESA 2017). Ac-
cording to the World Urbanization Prospects 2018 Re-
vision Report (UNDESA 2018), urban area accommo-
dates 55% of the world’s population in 2018. The cur-
rent level of urbanization in Asia and Africa is relatively
low, 50% and 43%, respectively, but with the global
urban population projected to reach 6.7 billion (68%) by
2050, 90% of the urban population increase will be in
Asia and Africa. The annual urbanization rate for the
Asia and Pacific region was 2.3% compared with the
average rate of global urbanization of 2%, and countries
with least-developed economies have the highest rates
of urbanization (UNESCAP 2015). For instance, the
annual urban growth rate of Nepal (6.6%) is the high
compared with that of other neighbor South Asian
countries such as Sri Lanka (2.2%), Pakistan (4.4%),
India (2.9%), and Bangladesh (5.3%) (Thapa and
Murayama 2010). Other South East Asian countries
with transitional economies have experienced similar
urban population increases between 1980 and 2012:
Cambodia 9% to 20%; Laos 12% to 32%; Myanmar
24% to 33%, and Vietnam 19% to 35% (Ouyang et al.
2016).

Nepal is one of the most rapidly developing South
Asian countries with urban population as a percentage
of the total population increasing from 2.9% in 1952/54
to 3.6% in 1961, 4.0% in 1971, 6.4% in 1981, 9.2% in
1991, 13.9% in 2001, and 17.1% in 2011 and the
number of urban centers increasing from 10 to 58
(CBS 2014). By 2017, urban centers totalled 292 and
contained more than 50% of the total population
(MoFALD 2017).

Most urbanization in the developing world takes
place without appropriate planning, and as a result is
subject to many challenges. The socioeconomic gap
between rural areas and highly urbanizing areas is

widening. Urban slum areas are deprived of adequate
access to basic services, including transportation, clean
water, sanitation, hospitals, suffering from traffic con-
gestion, urban poverty, urban unemployment, high ur-
ban costs, poor housing, and environmental degradation
(Zhang 2016). Meanwhile, rapid urbanization (Julius
Oluranti 2018) has led to conversion of prime farmland,
potentially threatening sustainability (Seto et al. 2012;
Yan et al. 2015), biodiversity, and economic function
(Wu et al. 2011). Pollution, energy inefficiency, inflated
infrastructure, and local and regional climate change are
additional challenges caused by urbanization (Asma
et al. 2017). Thus, understanding the spatiotemporal
dynamics of urbanization and LULC may contribute to
more effective planning, and may provide a sound foun-
dation for the formulation of sectoral plans, insure more
of sustainable urban futures, and maintenance of envi-
ronmental equilibrium. Geographical information sys-
tem (GIS) and remote sensing (RS) are used around the
world (Al-Quraishi 2013; Keshtkar et al. 2017; Rimal
et al. 2018d) for the assessment and simulation of spatial
and temporal analyses of Earth’s environment and land
resource dynamics (Cholhyok et al. 2018; Khudair et al.
2018; Rimal et al. 2018c; Sexton et al. 2013; Yadav et al.
2018). These are important tools as they help us to
understand the drivers and dynamics of LULC transfor-
mation (Meiyappan et al. 2017; Rai et al. 2018) and may
predict future environmental change (Campbell 1996;
Markus 2017; Thapa and Murayama 2012). Monitoring
the causes of and trends in land-use change and urban-
ization is essential to understand and simulate the
change dynamics at different temporal and spatial scales
(Keshtkar and Voigt 2015) and is a fundamental prereq-
uisite for the formulation of effective urban policies,
economic, demographic, and environmental plans to
ensure sustainable development (Feng et al. 2017; Li
et al. 2013; Wu et al. 2011).

Modeling and simulating spatial dynamics of urban
expansion and LULC change under different scenarios
are essential for urban planners and policy makers to
understand what urbanization may be like in the future.
They are the urban development models which simulate
the events and their spatiotemporal consequences
(Asma et al. 2017; Batty 2005). LULC change and
urban growth simulation models (UGSM) are used to
capture fundamental and compound relationships in
time and space. Many different models have been used
including the CA-Markov model (Corner et al. 2014;
Jokar Arsanjani et al. 2013; Keshtkar and Voigt 2015;
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Rimal et al. 2018a; Shafizadeh Moghadam and Helbich
2013; Traore et al. 2018; Wang et al. 2018a, b), logistic
regression (LR) (Jokar Arsanjani et al. 2013; Verburg
et al. 2004), SLEUTH (Clarke 2018), DINAMICA (Ro-
drigues and Soares-Filho 2018), CLUE (Verburg et al.
2015; Verburg 2004), SERGoM (Theobald 2005), and
LUCAS (Sleeter et al. 2017). Markov chain, the statis-
tical model, simulates the future state of LULC on the
basis of past evidence by calculating the transition prob-
ability matrix (Jokar Arsanjani et al. 2013) while cellular
automata, the spatiotemporal model, is capable of ex-
ploring the interrelationship among spatial cells (Han
et al. 2009). The CA-Markov model, by integrating the
advantages of CA-Markov effectively simulates the
spatiotemporal status of LULC (Keshtkar et al. 2017).

In this study, we aim to simulate the future change of
rapidly urbanizing eastern region of Nepal by 2026 and
2036 using the CA-Markov model. Previous studies
have evaluated the urbanization process of different
cities of Nepal including the entire Tarai region (Rimal
et al. 2018d). Continuous replacement of cultivated land
with new urban areas and rapid population growth have
become increasing concerns. However, no one has
attempted to explore future trends of urban expansion
of the rapidly urbanizing area of eastern Tarai and that is
the aim of the current study.

Method

Study area

In the study, we used the rapidly urbanizing area of
southeast part of Nepal which is geographically
enclosed between 26°21′43″ and 26°48′5^ North lati-
tude and 87°38′8″ to 88°12′00″ East longitude and
covers 2556 km2. It includes the rapidly urbanizing
Morang and Sunsari districts of eastern Nepal including
three large cities: Biratnagar metropolitan, Itahari sub-
metropolian, and Dharan sub-metropolitan (Fig. 1). The
area is experiencing rapid population growth; the total
population of the region was 1.1 million in 1991, in-
creasing to 1.5 million, in 2001 and 1.7 million in 2011
(CBS 2014).

Data

For the evaluation of LULC analysis and simulation of
the future change of the LULC, we used the LULC data

developed by Rimal et al. (2018d) (Table 1). These data
were prepared using freely available surface reflectance
Landsat images for the years 1989, 1996, 2001, 2006,
2011, and 2016 (TM, ETM+ and OLI; Path/row 139/41
and 42 and 140/41 and 42) with high accuracy (Rimal
et al. 2018d). A 30-m digital elevation model (DEM)
was prepared from the data collected from the shuttle
radar topographical mission (SRTM) (https://lta.cr.usgs.
gov). LULC transition rates for the different time
periods were explored using existing LULC data for
the study area. Additional sub-regional based data were
collected from the District Development Committee
(DDC) (e.g. www.ddcmorang.gov.np and www.
ddcsunsarigov.np). Administrative boundary data were
collected from the Department Survey of Government
of Nepal (GoN 2017).

The LULC classes identified include urban (built-
up), cultivated land, vegetation, sand, and water areas.
Population data were acquired from the Central Bureau
of Statistics (CBS) (CBS 2014).

Simulating urban expansion

The CA-Markov model was used to predict future
LULC change. This hybrid model predicts the future
transformation of LULC on the basis of past data
(Keshtkar and Voigt 2015; Rimal et al. 2018a). This
model runs land change predictions for a preordained
future time period through the historical transition
matrix, imported from MC analysis, and the produc-
tion of transition potential maps by multi-criteria
evaluation (MCE) (Wang et al. 2018b).

The process of modeling includes the following steps
(Keshtkar and Voigt 2016): (a) generating LULC maps
of equal time intervals (here, 1996, 2006, and 2016); (b)
exploring the magnitude of transition area CA-Markov
model; (c) preparing transition probability maps using
the MCE technique, analytic hierarchy process (AHP)
model, and fuzzy membership functions; (d) validating
the model by comparing actual maps (i.e., classified
images) and simulated maps; and (e) simulation of
future LULC maps (here, 2026, and 2036).

Transition potential maps

Based on historical LULC changes in the area (Rimal
et al. 2018d) (Table 2), several biophysical change
drivers were identified. These included distance to
built-up areas, forest, roads, water bodies, and slope

Environ Monit Assess (2019) 191: 255 Page 3 of 14 255

https://lta.cr.usgs.gov
https://lta.cr.usgs.gov
http://www.ddcmorang.gov.np
http://www.ddcsunsarigov.np
http://www.ddcsunsarigov.np


and data for each of these drivers were obtained from a
range of sources. Slope layer was derived from a digital
elevation model (DEM) with a horizontal grid size of
1 arc sec (30 m), obtained from shuttle radar topography
mission (SRTM) dataset. Distance to the road, water
bodies, built-up area, and vegetation and cultivated
lands were created based on the Euclidean distance from
existing land use maps. To regulate the weight of driving
factors, an analytic hierarchy process (AHP) model was
used. Before importing the driver maps to the AHP
model, they were rescaled to the range 0–1 using fuzzy
membership function (Table 3). Based on the CA-
Markov model, a transition potential matrix was com-
puted. This matrix records the number of cells of each
category that are expected to change to another category
in a given period in the future (Keshtkar and Voigt
2016). Here, transitional area matrices were generated
based on the historical LULC data from 1996 to 2006,
from 2006 to 2016, and from 1996 to 2016 (Table 2).

Finally, the LULCmap for the year 2026 and 3026 were
simulated using the CA-Markov model.

Model evaluation

Several Kappa variations were used to measure the
simulation success of the model. For this, the
LULC map of 2016 was compared with the sim-
ulated map of the same year. Above 80% of
achieved standard accuracy approved the model’s
potent prediction (Araya and Cabral 2010;
Keshtkar and Voigt 2016). Validation of the model
was performed using Kno, Kstandard, and
Klocation. Kno index is more reliable than
Kstandard index for assessing the overall accuracy
(Keshtkar and Voigt 2015). In addition, we
assessed the accuracy of the model through quan-
tity disagreement and allocation disagreement pa-
rameters as suggested by Pontius et al. (Pontius
and Millones 2011). Details of the Kappa indices

Table 1 Data types and sources

Data Source Date Format

LULC data Rimal et al. 2018d 1989, 1996, 2001, 2006, 2011,
and 2016

Raster

Administrative boundary Survey Department, Government of Nepal 2017 Vector

Population data Central Bureau of Statistics (CBS), Nepal 1981, 1991, 2001, and 2011 Text

District Profile and District Transport
Master Plan

District Development Committee (DDC)
(e.g.www.ddcmorang.gov.np and www.
ddcsunsari.gov.np)

Morang-2014, Sunsari-2014 Text
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and disagreement parameters are given elsewhere
(Keshtkar and Voigt 2015; Pontius and Millones
2011). After successful validation, simulation was
performed to predict the LULC of the study area
for the years 2026 and 2036.

Urban expansion and orientation analysis

Exploring the spatial direction and extent of urban
expansion is essential for the future urban plan-
ning. For the analysis, linings were generated in
every 2-km distance using Arc GIS 10.1 and the
study area was divided into eight equal subsections
through the straight waves drawn at 45° angles
from the assumed center. The subsections are
named as North, North-East, East, South-East,
South, South-West, North-West, and North

(hereafter, N-NE, NE-E, E-SE, SE-S, S-SW, SW-
W, W-NW, WN-N).

Urban growth rate

Urban growth rate refers to the average annual rate of
expansion in the corresponding years (Yin et al. 2011).
For this, the following formula was used:

AUER ¼ S2−S1ð Þ= T 2−T1ð Þ � 100 ð1Þ

where AUER refers to average urban expansion rate
(km2/year), S1, S2 are the settlement areas in km2 during
the time (years) T1 and T2.

Table 2 LULC statistics during 1989–2016 (area in km2 and percentage)

LULC 1989 1996 2001 2006 2011 2016

km2 % km2 % km2 % km2 % km2 % km2 %

Urban 29.20 1.14 41.29 1.61 60.41 2.36 76.23 2.98 111.33 4.35 140.10 5.48

Cultivated 1628.62 63.70 1617.38 63.26 1598.21 62.51 1590.64 62.21 1556.91 60.89 1529.79 59.83

Vegetation 727.96 28.47 713.41 27.90 710.48 27.79 702.63 27.48 712.51 27.87 714.39 27.94

Sand 100.06 3.91 104.09 4.07 106.49 4.16 116.81 4.57 111.56 4.36 87.66 3.43

Water 70.98 2.78 80.65 3.15 81.23 3.18 70.51 2.76 64.50 2.52 84.88 3.32

Total 2556.82 100 2556.82 100 2556.82 100 2556.82 100 2556.81 100 2556.82 100

Table 3 Control points and individual weights of driving factors

Factors Suitability Control points Functions Weights

Distance-roads High 0–500 m J-shaped 0.25
Medium 500–5000 m

Low > 5000 m

Distance-forests No 0–500 m Linear 0.12
Medium 500–5000 m

High > 5000 m

Distance-water bodies No 0–100 m Linear 0.12
Medium 100–7500 m

High > 7500 m

Distance-built-up areas High 0–100 m Linear 0.35
Medium 100–5000 m

Low > 5000 m

Slope High 0% Sigmoid 0.16
Medium 0–15%

No > 15%
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Result

Historical LULC change analysis 1989–2016

According to the historical LULC change analysis, con-
siderable changes in several LULC classes occurred dur-
ing 1989–2016. The overall changes include the gradual
increase of urban/built-up area, decline of cultivated land,
and fluctuations in areas of vegetation, sand, and water
bodies (Table 2, Figs. 2 and 3). Built-up area experienced

a large increase of 110.90 km2, from 1.14 to 5.48% with
an average annual growth rate of 14.06%. There was a
corresponding decrease in cultivated land area by
98.83 km2, from 63.70 to 59.83%, over the same period.

During 1989–1996, urban/built-up area exhibit-
ed a gradual increase from 29.20 km2 (1.14%)
area to 41.29 km2 (1.64%) with the average annual
growth rate of 5.91%. The cultivated land area that
covered 1628.62 km2 (63.70%) in 1989 declined
by 11.24 km2 and totalled 1617.38 km2 (63.26%)
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Fig. 2 Change of LULC from
1989 to 2016

Fig. 3 LULC change trend maps during 1989–2016
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area in 1996. In the following period (1996–2001),
average annual urban growth rate exponentially
increased to 9.26% by adding 19.12 km2 totalling
60.41 km2 (2.36%) of urban/built-up area whereas
cultivated land declined by 19.17 km2 or reached
to 1598.21 km2 (62.51%) in 2001.

In the subsequent period, 2001–2006, the urban
expansion trend continued, however, the annual
growth rate reduced to 5.23%. Urban/built-up area
increased by 15.82 km2, totalling 76.23 km2

(2.98%). Cultivated land area declined by
7.57 km2 totalling 1590.64 km2 (62.21%) in
2006. The largest urban expansion and the culti-
vated land loss occurred during 2006–2011. Urban
area increased by 35.1 km2 (4.35%) while to its
contrary, cult ivated land area declined by
33.73 km2 (60.89%) (Table 2). In 2011–2016,
urban area increased by an additional 28.77 km2

with an average annual growth rate of 5.16%
covering in total 140.10 km2 (5.48%) again at
the expense of cultivated land and vegetation cov-
er. Meanwhile, cultivated land area decreased by
27.12 km2 and totalled 1529.79 km2 (59.83%) by
2016 (Fig. 3).

LULC modeling and validation

To validate the results, the actual map of 2016 was
compared with the simulated map of the same year
and various kappa statistics were computed. The
evaluation showed that the value of Kno was 0.89,
Kstandard was 0.84, and Klocation was 0.89.Also,
the analysis of modeling in terms of allocation and
quantity parameters shows the allocation disagree-
ment (6%) which is slightly higher than quantity
disagreement (2.8%). Thus, according to the re-
sults acquired from Kappa indices and disagree-
ment parameters, the CA-Markov model was able
to predict urban expansion for the study region
with high accuracy. The transition probability ma-
trix 1996–2006, 2006–2016 (Table 4) and forecast-
ed LULC maps for 2026 and 2036 are displayed
in Fig. 4 (c) and 4 (d).

Simulation analysis shows that urban expansion will
continue to increase to cover 229.05 km2 (8.95%) and
318.51 km2 (12.45%) by 2026 and 2036, respectively,
with the corresponding declines in cultivated land to
1453.83 km2 (56.86%) and 1374.93 km2 (53.77%) for
the same years (Table 5, Fig. 4). In addition, the

Table 4 Transition probability matrix of LULC types for the periods 1996–2006, 2006–2016, and 1996–2016

LULC type Built-up Cultivated Forest Sand Water

1996–2006 Built-up 0.8430 0.1401 0.0056 0.0104 0.0008

Cultivated 0.0765 0.8659 0.0300 0.0189 0.0087

Forest 0.0051 0.0981 0.8619 0.0345 0.0004

Sand 0.0098 0.0652 0.0753 0.7387 0.1111

Water 0.0136 0.0932 0.0046 0.2357 0.6529

2006–2016 Built-up 0.8352 0.1496 0.0077 0.0033 0.0042

Cultivated 0.1093 0.8515 0.0283 0.0049 0.0060

Forest 0.0140 0.0777 0.8795 0.0263 0.0025

Sand 0.0329 0.0774 0.1142 0.5982 0.1773

Water 0.0299 0.0596 0.0016 0.0970 0.8119

1996–2016 Built-up 0.8456 0.1407 0.0047 0.0060 0.0029

Cultivated 0.1279 0.8323 0.0262 0.0058 0.0078

Forest 0.0167 0.0946 0.8633 0.0242 0.0012

Sand 0.0283 0.0701 0.1270 0.6100 0.1645

Water 0.0422 0.1016 0.0023 0.1326 0.7213
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resulting land use change will result in a reduction in
forest area from 714.39 km2 in 2016 to 689.81 km2 in
2026 and to 680.59 km2 in 2036. Average annual urban
growth rate, which was 6.36% during 1996–2016, could

increase to 11.96% during 2016–2036. Results also
show that urban area will expand in the periphery of
the existing city centers, adjacent to major highways
running east-west and north-south.

Table 5 Statistical information of LULC classes (in km2) and annual change rates for 2016–2036

Year Change in LULC Structure

2016 2026 2036 Δ% 2016–2026 Δ% 2026–2036 Δ% 2016–2036

Built-up 140.10 229.05 318.51 38.51 28.08 55.77

Cultivated 1529.15 1453.83 1374.93 − 5.18 − 5.73 − 11.21
Forest 714.39 689.81 680.59 − 3.56 − 1.35 − 4.96
Sand 87.67 116.47 93.27 24.72 − 24.87 6.00

Water 84.88 77.81 89.64 − 9.08 13.19 5.31
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Discussion

Continued growth of urban sprawl driven by increasing
population is predicted for the developing countries of
the South Asian region (UNDESA 2014). Previous
studies (Corner et al. 2014; Dewan and Yamaguchi

2009; Dewan 2013; Sahana et al. 2018; Shafizadeh
Moghadam and Helbich 2013) have examined
urbanization-driven LULC changes in various mega-
cities in this region. Many have used remote sensing
and GIS tools to evaluate LULC, to produce simulation
models, and to evaluate and predict future change for
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many of these cities including Mumbai (Shafizadeh
Moghadam and Helbich 2013), Dhaka (Corner et al.
2014; Dewan 2013), Kolkata (Sahana et al. 2018),
Shanghai (Han et al. 2009), and Foshan (Han and Jia
2017). Our results confirm what these previous studies
observed and predicted gradual spatiotemporal urban
expansion and continuing urban growth in cities and
other urban areas in the South Asian region.

Major urban hotspots and surrounding areas are al-
ways influenced by human-induced LULC change
(Ouyang et al. 2016). Ring-based analysis is generally
used to identify more precisely the spatial location of
urban expansion in urban centers (Jiao 2015; Rimal
et al. 2017a; Shi et al. 2016; Wu et al. 2013; Zhang
et al. 2016). Our ring-based analysis explored urban
expansion based on landscape orientation and direction
from the assumed center, which in this study is the
Itahari sub-metropolitan city. The city is assumed as
the center (Fig. 6) mainly due to three reasons: (a) it lies
as the juncture of the east-west and north-south high-
ways, the former extending from the eastern to western
borders of the country and the latter, the Koshi highway,
being the major road network connecting the hill dis-
tricts in eastern Nepal; (b) it is the major hub for the
socio-economic activities in the study area for the last
two decades; and (c) it is the core area for settling
migrants. Ring-based spatial analysis (Yin et al. 2011)
of the study area portrays that higher urban expansion
has occurred within 18-km distance from the assumed
center (Fig. 5 and Fig. 6). This is because of the inte-
gration of major urban centers: Itahari sub-metropolitan
city (the assumed center itself), Biratnagar metropolitan
city in the south, and Dharan sub-metropolitan city in
the north. The peripheral areas are newly urbanized and
the density of previous settlements has increased. New
urban centers are emerging adjacent to east-west high-
way (MOUD 2015) and the Koshi highway (Fig. 6).

Urbanization in Nepal is mainly driven by population
growth, political decisions, public service accessibility,
land market prices, economic opportunities, and gov-
ernment plans and policies (Muzzini and Gabriela 2013;
Pradhan and Perera 2005; Thapa and Murayama 2010).
Urban expansion is expected to continue to grow in the
city outskirts and the peripheral areas for various socio-
economic reasons with Urlabari, Belbari, Letang,
Pathari, and Inaruwa being the emerging cities of the
region. Higher expansion is expected to occur towards
E-SE and S-ES directions (Fig. 6). Simulation analysis
predicts that the urban area of 46.80 km2 area of the SE-

S sector in 2016 will expand to 93 km2 by 2036.
Meanwhile, the urban area of 22.53 km2 in the E-SE
direction in 2016 will more than double to 55.62 km2 by
2036 (Fig. 4c and d).

Withoutwell-defined plans/policies and effective public
administrations, urbanization generally results in unman-
aged urban sprawl (Rimal et al. 2018d). High population
(Güneralp and Seto 2013) concentration fosters the exploi-
tation of natural resources and causes complex changes in
LULC and overall natural environment (Zeba et al. 2017).
For instance, increasing population and urbanization can
cause increased food consumption (FAO 2018). Densely
populated urban areas demand plentiful natural resources
and food (Jacoby 2001) and so, when prime farm land
decreases (Seto et al. 2011), forests degenerate, surface
water quality becomes degraded impacting aquatic life
(Alqurashi et al. 2016; Li and Ma 2014; Liu et al. 2016;
Pires et al. 2015). Dense urban areas increase the risk of
formation of urban heat island and other natural hazards
(Dewan et al. 2012; Paudel et al. 2016; Rahman 2016;
Rimal et al. 2017b). In the case of our study area, the
northern Churiya (Siwalik) region is exploited for sand and
extraction requires for construction activities in urban de-
velopment and such extraction could lead to widespread
sediment accumulation in farmland downstream due to
floods during the monsoon season (Rijal et al. 2018).
Our simulations indicate that cultivated land in the periph-
ery of major cities such as Biratnagar, Dharan, and Itahari
are likely to decline. This could result in widespread
environmental disequilibrium, loss of farm land, and in
problems of future food security. Urban expansion and
related development activities could also result in the loss
of biodiversity and ecosystem services as seen in other
regions of Nepal (Sharma et al. 2019; Sharma et al. 2018).
The government proposes to develop 10 modern cities in
the BPostal highway zone^, which includes some part of
the current study area (https://www.onlinekhabar.
com/2018/12/724021). For this, it will need to have
appropriate planning prior to the development of these
new city centers since unmanaged and unplanned
development activities (Bhattarai and Conway 2010) tend
to result in the fragmentation in associated land uses and
decline in prime cultivated land.

Conclusion

Our study analyzed the spatiotemporal change in LULC
of eastern Tarai districts of Nepal during 1989–2016 and
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predicted the urban expansion scenario by 2026 and
2036 using the CA-Markov model. The spatial extent
of urban/built-up area in the region was found to have
aggressively increased from 29.20 km2 in 1989 to
140.10 km2 in 2016 and is expected to cover 318 km2

by 2036, strongly corroborating the over exploitation of
cultivated land. The cultivated land decline is likely to
continue in the future. According to the prediction anal-
ysis, the current trend of erratic urbanization will con-
tinue and expand to 229.05 km2 (8.95%) and
318.51 km2 (12.45%) by 2026 and 2036, respectively,
with the corresponding declines in cultivated land to
1453.83 km2 (56.86%) and 1374.93 km2 (53.77%) over
the same years. Urban area expanded with the average
annual growth rate of 6.36% during 1996–2016; how-
ever, the rate is expected to increase to 11.96% during
2016–2036. These findings suggest that this will result
in increasing food insecurity and environmental degra-
dation particularly since population growth is highly
predictable. There is limited implementation of planning
and policy to preserve cropland and urban expansion.
Similarly, some of the existing/emerging settlements
and prime farm lands are at the risk of flood hazard/
inundation (Rijal et al. 2018; Rimal et al. 2018b). This
indicates that there is an urgent need for sustainable
urban planning and preservation of prime farm lands.
Our findings are essential data for planners and
policymakers to use in making rational decisions mainly
due to two reasons: (a) obtaining spatiotemporal change
is strongly essential for effective land management and
sustainable rural-urban resilience and (b) our projections
indicate the spatiotemporal locations of future urban
sprawl and associated LULC. Our study affirms the
value of the CA-Markov model as a tool for projecting
future LULC changes as the evaluation showed the
satisfactory values of Kno (0.89), Kstandard (0.84),
and Klocation (0.89) which verify the accuracy of the
model.
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