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Abstract Solvent-terminated dispersive liquid-liquid
microextraction (ST-DLLME) as a simple, fast, and
low-cost technique was developed for simultaneous ex-
traction of Cd2+ and Cu2+ ions in aqueous solutions.
Multiobjective evolutionary algorithm based on decom-
position with the aid of artificial neural networks (ANN–
MOEA/D) was used for the first time in chemistry, envi-
ronment, and food sciences to optimize several indepen-
dent variables affecting the extraction efficiency, includ-
ing disperser volume and extraction solvent volume, pH,
and salt addition. To perform the ST-DLLME operations,
xylene, methanol, and dithizone were utilized as an ex-
traction solvent, disperser solvent, and chelating agent,
respectively. Non-dominated sorting genetic algorithm
versions II and III (NSGA II and NSGA III) as
multiobjective metaheuristic algorithms and in addition
central composite design (CCD) were studied as compa-
rable optimization methods. A comparison of results
from these techniques revealed that ANN-MOEA/D
model was the best optimization technique owing to its
highest efficiency (97.6% for Cd2+ and 98.3% for Cu2+).
Under optimal conditions obtained by ANN-MOEAD,
the detection limit (S/N = 3), the quantitation limit(S/N =
10), and the linear range for Cu2+ were 0.05, 0.15, and

0.15–1000 μg L−1, respectively, and for Cd2+ were 0.07,
0.21, and 0.21–750 μg L−1, respectively. The real sample
recoveries at a spiking level of 0.05, 0.1, and 0.3 mg L−1

of Cu2+ and Cd2+ ions under the optimal conditions
obtained by ANN–MOEA/D ranged from 94.8 to 105%.

Keywords Solvent-terminated dispersive liquid–liquid
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Multiobjective evolutionary algorithm based on
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Introduction

There are numerous sources of heavy metal contamina-
tions such as metal processing factories, mines, and
sewage sludge. They enter into the human body via air,
water, and food. Some of these metals such as copper
ions are essential micronutrient at low concentrations but
can be toxic at higher concentrations and others; for
instance, cadmium ions are toxic even at very low con-
centrations (Furini 2012). In water and food samples, the
concentration of heavy metals in trace levels can cause
serious health problems to humans, and therefore,
preconcentration of analyte was carried out before final
assay. Preconcentration of heavy metal ions was carried
out by using liquid–liquid extraction (Karadaş and Kara
2014) and solid-phase extraction (Mohammadi et al.
2016). The employments of these methods were limited
due to high consumption of organic solvent and high-cost
procedure (Shirkhanloo et al. 2010). To eliminate these
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problems, dispersive liquid–liquid microextraction
(DLLME) as an efficient miniaturized approach was
introduced in 2006 (Rezaee et al. 2006). The extraction
in this technique was restricted to the solvents with higher
density and also poisonous property which should be
isolated in solution using a centrifuge apparatus. Chen
and coworkers developed a solvent-terminated dispersive
liquid–liquid microextraction (ST-DLLME) with a lower
density solvent (H. Chen et al. 2010). The ST-DLLME
process can be completed by the injection of demulsifier
solvent like acetonitrile into the final turbid solution of
the aqueous sample, and as the extraction solvent elimi-
nates the emulsion and consequently, the centrifugation
step is not necessary (Mansour and Danielson 2018).
One of the issues that has always been of interest to
scientists is to optimize the experimental conditions and
obtaining the most appropriate response. Recently, scien-
tists have focused on the development of high efficiency
multiobjective metaheuristic optimization algorithms
such as non-dominated sorting genetic algorithm ver-
sions II and III (NSGA-II and NSGA-III) (Deb et al.
2002; Deb and Jain 2014) and multiobjective evolution-
ary algorithm based on decomposition (MOEA/D)
(Zhang and Li 2007). In comparison to NSGA versions
II and III, theMOEA/Dmethod uses a different approach
for optimization and lower computational complications.
MOEA/D decomposes a multiobjective problem (MOP)
into a number of single objective subproblems and solv-
ing them simultaneously with respect to pareto optimal
solutions (Neri and Tirronen 2010). This technique has
been applied in limited fields, and so, few reports have
been given in the literature in this regard (C.M. Chen
et al. 2010; Zhou et al. 2011).

In our previous works, DLLME technique was
employed for extraction of several analytes in various
samples (Moradi et al. 2017; Maham et al. 2014; Maham
et al. 2013c; Maham et al. 2013a; Maham et al. 2013b;
Kiarostami et al. 2014; Farajvand et al. 2018). So as far as
we are aware, practically no research has been carried out
on the simultaneous microextraction of Cd2+ and Cu2+

ions using ST-DLLME, and furthermore, a MOEA/D
approach has not been used in the field of chemistry,
environment, and food sciences. Therefore, this study
describes the employment of multiobjective evolutionary
algorithm based on decomposition with the aid of artificial
neural networks(ANN–MOEA/D) to optimize the ST-
DLLME of Cu2+ and Cd2+ ions with dithizone as a
complexing agent in water, wastewater, milk, tea, and
apple juice samples. In addition, the central composite

design (CCD), NSGA-II, and NSGA-III have also been
employed as comparable techniques for microextraction
optimization.

Materials and methods

Chemical and reagents

All laboratory reagents were analytical grade and pur-
chased from Merck and Sigma-Aldrich. Cadmium and
copper ion stock solutions with concentration of
1000 mg L−1 were made by dissolution of CdCl2 and
CuCl2 (Titrasol, Merck) in deionized water. Dilutions of
heavy metal stock solutions in deionized water were
carried out to prepare calibration solutions. Adjustment
of pH solution was controlled by adding HCl (0.1M) and
NaOH (0.1 M). The natural water (river and well water)
and wastewater were collected from agricultural areas
and a factory wastewater, respectively (Islamshahr, Iran).
The river samples were obtained directly from three
separate three sites separated from each other by 1 km.
They were thenmixed to prepare a bulk sample. The bulk
well water samples were prepared by collecting samples
of well water at an interval of 3 days from only one site.
The bulk wastewater samples were collected from a
factory wastewater over a 3-day period. One liter of the
laboratory sample was collected directly from the ho-
mogenized bulk sample. Additionally, all the other sam-
ples such as apple juice (Sunich Co, Iran), low-fat bottled
milk (Damdaran Co, Iran), black tea (Ahmad Co, En-
gland), and bottled mineral water (Vata Co, Iran) were
purchased from a local market and applied to study the
proposed ST-DLLME percentage recoveries.

Instruments

Atomic absorption spectrometer equipped with a deute-
rium background correction and an air-acetylene burner
(Varian spectra 240 fs (USA)) was employed for deter-
mination of copper and cadmium ions. pH meter
Jenway 3510 (United States of America) was used to
determine the solution pH.

Real sample preparation

A sample of tea drink was conventionally made by
putting 5 g of the tea leaves in 250 mL of boiling water.
The samples of wastewater, water, milk, and apple juice
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were stored individually in a sterile food container and
kept at 4 °C. Water and wastewater samples were acid-
ified with nitric acid to a pH 2. The aqueous samples
were centrifuged for 20 min at 4000 rpm, and after, the
supernatants were passed through a 0.45-μmmembrane
filter (Millipore Co, MA, USA). After filtration step, the
cleaned apple juice and milk were mixed with deionized
water for dilution in the ratio of 1:4. Lastly, the prepared
aqueous samples were used for ST-DLLME process.

ST-DLLME procedure

To perform ST-DLLME procedure, a 10 mL of deionized
water spiked with 0.5 mg L−1 Cd2+ and Cu2+ ions with
adjusted pH of 6 was transferred into a 10-mL glass
volumetric flask. Triple mix containing 250 μL xylene
as an extraction solvent, 100 μL dithizone (1 ×
10−4 mol L−1) as a complexing agent, and 550 μL meth-
anol as a disperser solvent was injected by a Hamilton
syringe (1 mL) into the above solution, in which a turbid
solution was formed. Then, with injection of a 500 μL
acetonitrile as a demulsifier, the phase separation was
resulted. A Hamilton syringe (100 μL) was used to
collect the upper phase which was evaporated using a
N2 gas gentle stream. After evaporation, 1 mL of nitric
acid (0.1 M) was added to the obtained residual and
finally nebulized into the flame atomic absorption spec-
trometer for ion determination.

Optimization methods

For optimization of three independent factors such as
extraction, disperser solvent types, and extraction time,
one variable at a time (OVAT) technique was applied.
Other four variables were optimized by multiobjective
evolutionary algorithm based on decomposition with
the aid of artificial neural networks (ANN–MOEA/D),
non-dominated sorting genetic algorithm versions II and
III, and response surface methodology (RSM) with re-
gard to the microextraction efficiency.

Central composite design

In this project, a CCD technique with four variables and
three levels as a response surface methodology with α = 2
including 30 treatment combinations with 16 factorial
points, eight axial points, and six replicates at center point
was tested using Design Expert (version 7.00, Stat-Ease
Inc., Minnea polis, MN). The low and high levels of four

independent variables in CCD such as the volumes of
extraction (V1) and disperser (V2) solvents, pH (V3), and
salt addition (V4) were 50 and 450 μL, 300 and 800 μL, 2
and 10, and 0 and 7.5%, respectively.

Artificial neural networks-multiobjective evolutionary
algorithm

The nonlinear relation between the independent factors
(input data) and the dependent factors (output data) was
obtained bymultilayer preceptrons (MLP) artificial neu-
ral network using MATLAB R2010a software. Training
of the network was performed by the levenberg
marquardt back propagation method. Tansig and
pureline were employed as activation functions in the
hidden and output layers, respectively.

A problem with multiobjective state (MOP) is intro-
duced as Eq. 1 (Ying et al. 2017).
n
minF vð Þ¼ f 1 vð Þ;:::;fm vð Þð ÞT
Subject to v∈π ð1Þ

where v∈ π is the feasible search region and v = (v1, v2,
…, vn)

T is the vector of decision factors.

F: Ω→ Rm, m is the objective function number and
Rm is the multi-dimensional space for objective.

By developing the multiobjective genetic algorithm
(MOGA), Srinvas and coworkers proposed the non-
dominated sorting genetic algorithm (NSGA) (Ying et al.
2017). The basis of this algorithm is based on the genetic
algorithm, but the process way of the selection operator is
different. The operators of mutation and cross-over remain
unchanged. Later, Deb and coworkers developed the
NSGA-II (Deb et al. 2002) as a fast non-dominated sorting
method for ranking results in selection procedure. The
NSGA-II was not very efficient for problems with many
objectives, and consequently, a new version of NSGA
called NSGA-III was developed (Deb and Jain 2014).
Zhang and Li introduced multiobjective evolutionary al-
gorithm based on decomposition (MOEA/D) in 2007
(Zhang and Li 2007). This technique degrades the
multiobjective problem into several sub-problems which
are optimized simultaneously through neighborhood sca-
lar methods. In all the generations, the population for
individual subproblem is composed of the best solution
obtained relative to the starting point of the algorithm. The
neighborhood relationships between the subproblems are
established upon the basis of the intervals among the
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vectors of their collection coefficients. For two subprob-
lems that are neighbors, the optimal solutions are similar.
In MOEA/D method, the information obtained from all
neighbor subproblems is used to optimize them. The
process begins with a population comprising N generated
random solutions and each particular solution is assigned
to an individual. vi is the solution of subproblem i. A
weight vector range λi is stated as the T nearest weight
vectors with λ1, λ2…, λN. B

i (T) is used to define the

collection for the T indices of neighboring subproblems of
item i. In the operation of recreation, two solutions are
selected from the range of the subproblem i for reproduc-
ing an offspring using the operators of genetic algorithm.
Next, the range of the subproblem i is renovated using the
previous generated offspring. Finally, the optimal solutions
for all subproblems are equal to the solutions in the pop-
ulation. The framework of MOEA/D is shown directly
below (Ying et al. 2017).
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Results and discussions

Optimization methods

The extraction solvent type

For studying the effect of extraction solvent type, sev-
eral low density solvents such as cyclohexane, toluene,
n-hexane, cyclohexanone, and xylene were investigat-
ed. Triplicate experiments of 10-mL sample were car-
ried out under conditions of 300 μL ethanol, 100 μL
extraction solvent, no salt addition, and pH 5.45.
Figure 1a reveals that the maximum efficiency was
acquired with xylene along with significant difference
(p < 0.05, single factor ANOVA). Thus, xylene was
chosen as the extraction solvent for further experiments.

The disperser solvent type

The disperser solvent type influences the viscosity of the
solvent, generation of the droplet, and efficiency of the
extraction. Methanol, ethanol, and acetone were studied
as disperser solvents. As indicated in Fig. 1b, methanol
gave the maximum efficiency with significant

difference (p < 0.05, single factor ANOVA). Moreover,
methanol had the minimum toxicity and price compared
to others and consequently, was selected as the disperser
solvent for the next experiments.

The time of extraction

The influence of time of extraction was investigated at the
time intervals between 2 and 10 min. Figure 1c illustrates
the percentage relative recovery of the extraction for Cu2+

and Cd2+ ions against the time of extraction. As can be
seen in Fig. 1c, the extraction time of 6minwas chosen as
the maximum extraction efficiency with significant dif-
ference (p < 0.05, one-way ANOVA).

Central composite design optimization

The CCD was utilized to optimize the extraction and
disperser solvent volumes, solution pH, and salt addi-
tion of ST-DLLME for Cu2+ and Cd2+ ions from aque-
ous solutions. The quadratic response surface models
were confirmed for parameters of regression by the
analysis of variance (ANOVA) as shown in Table 1.
Table 1 indicates the high F value and a low probability

Fig. 1 Effect of a type of the extraction solvent, b type of the dispersive solvent, c the extraction time on the ST-DLLME efficiency
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(p < 0.001) for models, and consequently, the models
were significant. According to the values of p, the V1,
V1

2, V3
2, and V4

2 for Cu2+ and V1, V1
2, V2

2, and V4
2 for

Cd2+ were significant. The rest of the variables and
interactions were insignificant. The lack of fit for both
metal ions was insignificant (p > 0.05). The coded qua-
dratic equations based on the CCD analysis for Cu2+ and
Cd2+ ions are given by Eqs. 2 and 3, respectively.

R ¼ 94:56þ 3:67V1 þ 0:97V2 þ 0:55V3−0:31V4

þ0:6V1V2 þ 0:37V1V3−0:28V2V3−0:33V3V4

þ 6:93V2
1−1:75V

2
2−1:75V

2
3−1:32V

2
4

ð2Þ

R ¼ 91:06þ 3:63V1 þ 0:59V2 þ 0:46V3−0:56V4

þ 0:61V1V2 þ 0:48V1V3−0:33V2V3−0:32V3V4

þ−5:69V2
1−1:36V

2
2−1:04V

2
3−1:06V

2
4

ð3Þ

Based on the optimal conditions acquired from the
CCD for multivariate optimization along with desirabil-
ity of 0.96 (550 μL methanol, 250 μL xylene, 3.75%
salt addition, and pH 6), the predicted response, exper-
imental response, and absolute error were 96.31%,
95.11%, and 1.2 for Cu2+ and 94%, 93.5%, and 0.5 for
Cd2+, respectively.

ANN–MOEA/D optimization

MOEAD with the aid of artificial neural networks
(ANN–MOEA/D) was utilized for optimizing the ST-
DLLME of Cu2+ and Cd2+ ions according to the non-
linear equations which were acquired from artificial
neural networks. Figure 2 shows the structure of multi-
layer artificial neural networks with a population of four
variables such as the volumes of disperser and extraction
solvents, salt addition, and pH that outlined by the CCD.
The values of bias and weight for each layer of ANN
model were computed, and corresponding equations for
Cu2+ and Cd2+ ions are obtained individually as Eq. 4.

Response

¼ Pureline K2 � tansig K1 � V 1ð Þ;V 2ð Þ;V 3ð Þ;V 4ð Þ½ � þ β1ð Þ þ β2ð Þ
ð4Þ

whereβ1 and K1 are the bias and weight of middle layer
with 10 neurons, respectively, and β2 and K2 are the
bias and weight of outer layer with one neuron, respec-
tively. The initial factors like the volumes of disperser
and extraction solvents, salt addition, and pH were
indicated by V (1), V (2), V (3), and V (4), respectively.

Table 1 The ANOVA of RSM quadratic model for Cu2+ and Cd2+ ions by ST-DLLME

Source Sum of squares
(Cu2+ and Cd2+)

df Mean squares (Cu2+ and
Cd2+)

F value
(Cu2+ and Cd2+)

P value
(Cu2+ and Cd2+)

Prob > F

Model 1518.00 1247.66 1 108.43 89.12 11.18 9.64 < 0.0001 < 0.0001 Significant

V1-solvent extraction volume 325.09 315.67 1 325.09 315.67 33 34.14 < 0.0001 < 0.0001

V2-dispersive solvent volume 43.89 8.26 1 43.88 8.26 4.5 0.89 0.0504 0.3596

V3-pH 7.56 5.06 1 7.5 5.06 0.7 0.55 0.3912 0.4709

V4-salt addition 0.43 7.53 1 0.43 7.5 0.044 0.81 0.8362 0.3812

V1V2 3.64 5.93 1 3.64 5.93 0.038 0.64 0.5494 0.5383

V1V3 0.03 3.6 1 0.032 3.67 3.2 × 10−3 0.4 09553 0.9553

V1V4 0.052 0.35 1 0.052 0.35 5.3 × 10−3 0.038 0.9427 0.6669

V2V3 3.25 1.78 1 3.25 1.78 0.33 0.19 0.5713 0.9304

V2V4 0.039 0.078 1 0.039 0.078 4.0 × 10−33 7.8 × 10−3 0.9503 0.6798

V3V4 0.47 1.64 1 1.64 0.47 0.049 0.18 0.8283 0.3674

V1
2 929.90 887.97 1 929.90 887.98 95.88 96.03 < 0.0001 < 0.0001

V2
2 11.64 50.53 1 50.53 11.64 1.20 5.64 0.2906 0.0337

V3
2 46.81 29.58 1 46.81 29.58 4.84 3.20 0.0442 0.0939

V4
2 330.52 30.73 1 330.52 30.73 34.08 3.32 < 0.0001 0.0883

Residual 145.48 138.70 15 9.70 9.25

Lack of fit 123.58 113.98 10 12.31 11.40 2.75 2.31 0.1381 0.1845 Not significant

Pure error 22.40 24.72 5 4.48 4.94

Cor total 1663.48 1386.36 29
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The weights and biases for Cu2+ and Cd2+ ions are
presented in Table 2. These data were used to obtain
an objective function for ANN–MOEA/D optimiza-
tion technique with 100 maximum iteration number of
iteration, subproblem number of 50, and neighbor
number of 8. The pareto fronts of two objectives for
NSGA (II), NSGA (III), and MOEA/D optimization
methods of ST-DLLME for Cu2+ and Cd2+ ions are
illustrated in Fig. 3. MOEA/D showed the best

homogeneity and the highest extraction efficiency as
stated in Fig. 3 and Table 3, respectively, and conse-
quently, it was proved to be the best technique for
optimization. Under the optimal conditions obtained
by ANN-MOEA/D (extraction solvent volume
260 μL, disperser solvent volume 500 μL, pH 6, and
salt addition 3%), the percentage relative recoveries
of ST-DLLME method for Cu2+ and Cd2+ ions were
98.30 and 97.6%, respectively.

Table 2 The weight and bias of each artificial neural networks layer for Cu2+ and Cd2+ ions

K1

(Cu2+ and Cd2+)
KT

2

(Cu2+ and Cd2+)

β1

(Cu2+ and Cd2+)
β2

(Cu2+ and Cd2+)

− 1.038 0.082 1.627 − 1.550 − 0.571 − 2.008 − 0.652 1.166 − 0.430 − 0.622 2.474 2.552 − 1.060 − 0.484
− 1.489 0.648 0.762 − 1.742 1.603 − 0.960 0.833 1.241 1.695 − 1.627 1.627 − 0.367
0.582 −0.095 − 0.045 − 2.472 − 0.633 − 1.836 − 1.991 − 2.472 − .0.387 0.235 1.658 − 1.721

− 0.239 1.711 0.801 − 1.819 − 1.939 0.682 − 0.572 1.059 0.041 0.597 − 0.890 1.122

− 1.326 0.467 1.212 − 1.749 0.460 − 1.355 1.636 – 1.838 0.193 0.395 0.105 − 0.771
2.552 0.018 1.018 − 1.402 0.090 − 0.006 − 2.340 0.503 − 0.308 0.057 0.130 0.377

1.031 1.795 − 1.153 − 0.257 − 1.304 1.158 1.008 – 0.762 0.098 − 0.470 0.546 1.401

− 1.657 −0.422 0.647 2.262 0.850 1.043 2.958 − 0.380 − 0.224 0.229 − 1.229 0.595

3.466 −0.119 0.261 0.339 3.428 3.428 0.620 − 0.103 0.991 0.698 1.745 1.906

− 0.656 −2.031 1.082 0.6568 1.064 − 0.730 − 1.128 0.714 0.316 − 0.100 − 2.513 3.103

k1, the weight matrix of hidden layer (10 × 5); k2, the weight vector of output layer (1 × 10); k2
T, the matrix transpose of w2,β1, the bias vector

of hidden layer (10 × 1); β2, the scalar bias of output layer
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Figures of merit

In accordance with ANN-MOEAD optimal conditions,
some important figures of merit in the ST-DLLME
method such as determination (S/N = 10) and detection
(S/N = 3) limits, regression line, linear range, and coef-
ficient of determination (R2) in spiked water samples
were acquired and the results are indicated in Table 4.

Study of real samples

Several real samples such as apple juice, milk, tea drink,
mineral water, river water, well water, and wastewater
were studied to get microextraction efficiency and ac-
curacy. To accomplish this purpose, the percentage rel-
ative recovery (R%) was calculated by the following
equation:

R% ¼ Cfounded−Creal

Cadded
� 100 ð5Þ

where Cfounded, Creal, and Cadded are the concentrations
of analyte after addition of a known amount of standard
in the real sample, the concentration of analyte in the
real sample, and the concentration of known amount of
standard which was spiked to the real sample,

respectively (Rezaee et al. 2006). Real samples were
tested individually with spiking levels of 50, 100, and
200 μg L−1 of Cu2+ and Cd2+ ions. As presented in
Table 5, the mean percentage relative recoveries with
three replicate experiments for each sample ranged from
94.6 to 105.1% for Cu2+ and 94.8 to 106.1% for Cd2+

which were in the acceptable range with standard devi-
ations of 0.12 to 0.43 for Cu2+ and 0.10 to 0.61 for Cd2+

ions. Therefore, the suggested ST-DLLME method can
be applied successfully for determination of the above
heavy metal ions in real samples.

Comparison with other methods

As presented in Table 6, several pretreatment methods
for Cd2+ and Cu2+ ions that included in the literatures
were compared to the proposed ST-DLLME based on
the figures of merit and type of optimization techniques.
Among the data that are shown in Table 6, the proposed
ST-DLLME method, in relation to other methods such
as solid-phase extraction, flow injection analysis, and
cloud point extraction (rows 1–5 of the Table 6), pre-
sents lower solvent and sample consumption, shorter
extraction time, more suitable determination, and detec-
tion limits and linear range. Unlike DLLME method
such as in situ DLLME using ionic liquid and

Table 3 Comparison of the ANN-MOEAD and other optimization methods for ST-DLLME of Cu2+ and Cd2+ ions

Method Extraction solvent volume% Disperser solvent volume % pH Salt addition Percentage recovery (%)
Cu2+ Cd2+

ANN-MOEA/D 260 500 6 3 98.3 97.6

CCD 250 550 6 3.75 94.2 92.5

NSCA (II) 350 550 6 3.75 92.3 91.8

NSCA (III) 323.6 490 5.4 3 85.2 97.28
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conventional DLLME (rows 6 and 7 of the Table 6), in
the ST-DLLME method, there is no need for centrifu-
gation step for phase separation, and consequently, the
extraction time is much shorter. In addition, there are
other advantages using ST-DLLME method; namely
rapidity, simple processing, and lower cost of operation.
One factor at a time (OFAT) method was employed in
the most comparable methods presented in Table 6
(rows 1–5 and 7). In the case of interaction between

some variables, OFAT method cannot provide the cor-
rect optimal conditions. Chemometric optimization
methods such as metaheuristic algorithm and experi-
mental design can be used successfully for solving these
difficulties. As compared to other methods except the
method in row 6 of Table 6, the proposed method
showed the suitable potential of ANN–MOEA/D and
CCD as multivariate methods to find the optimal
conditions.

Table 5 Percentage relative recoveries for Cu2+ and Cd2+ ions in the spiked real samples

Sample Initial concentration (μg L−1) Spiking (μg L−1)
(Cu2+ and Cd2+)

Found (μg L−1), means ± 3 s (N = 3)
(Cu2+ and Cd2+)

Relative recovery
(%)(Cu2+ and Cd2+)

Mineral water N.D 50 48.8 ± 0.14 48.9 ± 0.14 97.60 98.70

Mineral water N.D 100 99.8 ± 0.12 99.9 ± 0.18 98.80 99.90

Mineral water N.D 200 202.4 ± 0.43 202.8 ± 0.13 101.20 101.40

River water N.D 50 48.3 ± 0.15 49.6 ± 0.14 96.60 99.20

River water N.D 100 97.4 ± 0.12 98.4 ± 0.17 97.40 98.40

River water N.D 200 198.3 ± 0.16 197.3 ± 0.19 99.10 98.65

Well water 4 50 51.9 ± 0.14 51.7 ± 0.11 95.80 95.40

Well water 4 100 103.3 ± 0.16 102.2 ± 0.11 99.30 98.20

Well water 4 200 213.7 ± 0.23 211.7 ± 0.24 104.85 103.55

Wastewater 7 50 54.3 ± 0.56 54.4 ± 0.12 94.60 94.80

Wastewater 7 100 102.3 ± 0.21 102.5 ± 0.41 95.30 95.50

Wastewater 7 200 215.1 ± 0.15 217.1 ± 0.33 104.05 105.05

Milk N.D 50 48.7 ± 0.13 47.9 ± 0.10 97.40 95.80

Milk N.D 100 97.7 ± 0.15 97.2 ± 0.19 97.70 97.20

Milk N.D 200 212.2 ± 0.26 209.1 ± 0.21 106.10 104.55

Tea N.D 50 47.6 ± 0.26 47.6 ± 0.19 95.20 95.20

Tea N.D 100 97.1 ± 0.28 96.3 ± 0.17 97.10 96.30

Tea N.D 200 197.8 ± 0.21 197.9 ± 0.32 98.80 98.95

Apple juice N.D 50 48.6 ± 0.11 47.7 ± 0.12 97.20 95.40

Apple juice N.D 100 99.1 ± 0.21 97.6 ± 0.61 99.10 97.60

Apple juice N.D 200 196.3 ± 0.39 196.1 ± 0.12 98.15 98.05

Extraction conditions: extraction solvent and its volume, xylene, 260 μL, dispersive solvent and its volume, methanol, 500 μL, pH, 6,
extraction time, 6 min and 3.75% salt addition

S standard deviation (n = 3), N.D not detected

Table 4 Figures of merit of the ST-DLLME method for Cu2+ and Cd2+ ions under ANN-MOEA/D optimal conditions

Analyte Regression line R2 LOD (S/N = 3, μg L−1) LOQ (S/N = 10, μg L ( LDR (μg L−1)

Cu2+ y = 0.0003x + 0.0030 0.9995 0.05 0.15 0.15–1000

Cd2+ y = 0.0029x + 0.0032 0.9992 0.07 0.21 0.21–750

Extraction conditions: extraction solvent and its volume, xylene 250 μL, dispersive solvent and its volume, 550 μL methanol, pH, 6, extraction time, 6 min and 3.75% salt addition–
R
2

determination coefficient, LOD limit of determination, LOQ limit of quantitation, LDR linear dynamic range
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Conclusions

The presented ST-DLLME method for simultaneous
extraction of Cu2+ and Cd2+ ions can be regarded as a
safe method due to a very low consumption of hazard-
ous solvents (260 μL) and low volume of sample
(10 mL) with suitable figures of merit and acceptable
percentage relative recoveries. In addition, the proposed
method was performed with uncomplicated equipment
and lower solvent volume in a shorter time along with a
powerful multiobjective optimization algorithm. Thus,
the introduced ST-DLLME method can be recommend-
ed as an inexpensive, highly accurate, and fast method
for simultaneous analysis of Cu2+ and Cd2+ ions in
various laboratories.
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