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Abstract Groundwater resources are facing a high pres-
sure due to drought and overexploitation. The main aim
of this research is to apply rotation forest (RTF) with
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decision trees as base classifiers and an improved ensem-
ble methodology based on evidential belief function and
tree-based models (EBFTM) for preparing groundwater
potential maps (GPM). The performance of these new
models is then compared with three previously imple-
mented models, i.e., boosted regression tree (BRT), clas-
sification and regression tree (CART), and random forest
(RF). For this purpose, spring locations in the Meshgin
Shahr in Iran were detected. The spring locations were
randomly categorized into training (70% of the locations)
and validation (30% of the locations) datasets. Further-
more, several groundwater conditioning factors (GCFs)
such as hydrogeological, topographical, and land use
factors were mapped and regarded as input variables.
The tree-based algorithms (i.e., BRT, CART, RF, and
RTF) were applied by implementing the input variables
and training dataset. The groundwater potential values
(i.e., spring occurrence probability) obtained by the BRT,
CART, RF, and RTF models for all the pixels of the study
area were classified into four potential classes and then
used as inputs of the EBF model to construct the new
ensemble model (i.e., EBFTM). At last, this paper imple-
mented a receiver operating characteristics (ROC) curve
for determining the efficiency of the EBFTM, RTF, BRT,
CART, and RF methods. The findings illustrated that the
EBFTM had the highest efficacy with an area under the
ROC curve (AUC) of 90.4%, followed by the RF, BRT,
CART, and RTF models with AUC-ROC values 0f 90.1,
89.8, 86.9, and 86.2%, respectively. Thus, it could be
inferred that the ensemble approach is capable of improv-
ing the efficacy of the single tree-based models in GPM
production.
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Introduction

Iran is located in arid and semi-arid areas and is exposed
to water scarcity (Chezgi et al. 2016). Water scarcity is
considered as the lack of adequate obtainable water
resources, which are required to supply water require-
ments in an area. Water scarcity could be a result of
excessive population growth, climate change, and inap-
propriate water resource management (Asia and
Richman 1991). People’s influence on water resources
could be changed by using better water resource man-
agement plan leading to mitigation of the impact of water
scarcity on their lives. One important aspect of water
resource management is groundwater (GW) resource
management. In general, different hydrogeological
mechanisms impact the location and discharge of the
water springs in an area. Modeling GW potential by
different technical methods could be useful to gain a
deeper apprehension of GW resources leading to better
GW management strategies.

Recently, several types of approaches and techniques
have been employed in different countries for generating
GPMs. For example, frequency ratio is calculated in some
works to generate GPMs (Manap et al. 2014; Naghibi
et al. 2015; Mousavi et al. 2017). Weights-of-evidence is
another method, which has been employed for this pur-
pose by Ozdemir (2011a). Similarly, Ozdemir)2011b) and
Pourtaghi and Pourghasemi (2014) implemented logistic
regression for producing GPMs in two basins in Turkey
and Iran, respectively. Evidential belief function (EBF) is
another bivariate approach, which has been implemented
for producing GPMs (Naghibi and Pourghasemi 2015;
Rahmati and Melesse 2016; Tahmassebipoor et al. 2016;
Ghorbani Nejad et al. 2016; Kordestani et al. 2018). More
recently, a number of machine learning models including
tree-based algorithms, i.e., boosted regression trees
(BRT), classification and regression tree (CART), and
random forest (RF); discriminant analysis models; and
neural network and support vector machines have been
employed for obtaining GPMs in several areas regarding
different environmental features (Naghibi and
Pourghasemi 2015; Naghibi and Moradi Dashtpagerdi
2016; Hong et al. 2016a, b; Rahmati et al. 2016; Zabihi
et al. 2016; Naghibi et al. 2017b, 2018a, b; Hong et al.
2018; Golkarian et al. 2018; Rahmati et al. 2018). The
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mentioned machine learning models have proved to pro-
duce reliable outputs. Rotation forest is another tree-based
algorithm, which has been implemented in other applica-
tions such as a breast cancer recognition study (Alickovi¢
and Subasi 2017), an image classification study (Xia et al.
2017), a gene expression data classification study (Lu
et al. 2017), and landslide studies (Pham et al. 2017,
2018a; Hong et al. 2018). All those researchers have
approved the acceptable efficacy of the RTF in classifi-
cation issues. In addition, some other researchers have
implemented data mining models in landslide, flood, and
groundwater studies (Chen et al. 2017a, b; Pham et al.
2018a, b, ¢, d, e; Pham and Prakash 2018; Pham 2018;
Khosravi et al. 2018a, b; Chen et al. 2018a, b, ¢c; Hong et
al. 2019).

A complete investigation of the published articles in
spatial modeling fields such as landslide susceptibility
modeling, flood susceptibility mapping, and ground
subsidence hazard mapping reveals that ensemble
methods are frequently being used, and their outputs
are more reliable than single methods. In a paper, Park
et al. (2014) employed frequency ratio, logistic regres-
sion, and artificial neural network in ground subsidence
hazard mapping. In the next stage, outputs of the men-
tioned models were employed as input of the fuzzy logic
model to create a novel ensemble model. The findings of
their research showed that the ensemble model produced
more accurate results. Lee et al. (2012a, b), Umar et al.
(2014), Althuwaynee et al. (2014), Youssef et al. (2015),
and Aghdam et al. (2016) introduced new ensemble
models in the field of landslide susceptibility mapping
and reported better performance of the ensemble models.
On the other hand, Tehrany et al. (2013, 2014) employed
ensemble models in the field of flood susceptibility
assessment. Tehrany et al. (2013) proposed an ensemble
algorithm by mixing bivariate and multivariate models,
whereas in Tehrany et al. (2014), the outputs of weight of
evidence and support vector machines were mixed
together to build a new ensemble model. Both of those
papers addressed better efficacy of the ensemble
algorithms vs. the single ones. In the field of GW
potential assessment, Naghibi et al. (2017a) used several
data mining methods such as AdaBoost, Bagging, gen-
eralized additive model, and Naive Bayes for determin-
ing GW potential. They combined the outputs of those
models by frequency ratio model and subsequently built
a new ensemble model. The result of this new ensemble
method was reported acceptable. Ensemble models are
reported to give better outputs than single methods since
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ensemble models overcome the weakness of single
models (Wan et al. 2012; Naghibi et al. 2017a).

By investigating the literature, it can be obviously
seen that a shift from statistical models to more sophis-
ticated ensemble models has been occurred in the recent
years. However, a limited number of studies have been
done on ensemble models in groundwater modeling,
which can take the advantages of both statistical and
data mining algorithms. With this in mind, the main
novelty of this study is the application of a new ensem-
ble model (EBFTM) through a combination of the BRT,
CART, RF, and RTF algorithms by the EBF method in
GW potential mapping. Another novelty of this research
is the application of the RTF in producing GPMs. In
general, the objectives of this study are (i) application of
two new models i.e., RTF and ensemble model
(EBFTM) in producing GPMs, and (ii) defining the
importance of the GCFs in modeling GW potential.

Study area

The Meshgin Shahr area is stretched between 38° 38’ 26"
and 38° 13’ 14"N latitudes, and 47° 21’ 11” and 48° 11’
25"E longitudes in Iran (Fig. 1). The study region covers
an area of about 2032 km?. The altitude changes between
800 and 4117 m a.s.l. with a mean value of about
1556 m. The average annual precipitation was estimated
as 361 mm. Most of the precipitation occurs in winter
and spring seasons. The annual average humidity in
Meshgin Shahr is measured as 63%. The area comprises
six land use classes of agriculture, forest, orchard, range-
land, residential area, and water body. Most of the area is
covered by rangeland. Geologically, the area comprises
16 different lithological units ranging from andesite to
basaltic volcanic to granite to diorite (Table 1).

Material and methods

Figure 2 represents flowchart of the methodology
employed in the current research.

Spring inventory

The location of the springs in the Meshgin Shahr area was
prepared by importing them into GIS environment from a
report by Khorasan Razavi Regional Water Authority
(2015). The spring inventory map contains 279 springs.
The average discharge of the springs is measured as 2.2 L/

s. Additionally, the average pH of the springs is measured
as 6.64. In modeling a phenomenon, it is essential to
separate training and validation datasets. The ratio of these
datasets is very important in such studies. This study
followed Oh et al. (2011), Naghibi et al. (2017a), and
Pradhan et al. (2014) in selecting the ratio. According to
the mentioned papers, springs were segregated into train-
ing (70% of locations) and validation (30% of locations)
datasets. It needs to be mentioned that most of the springs
are located very close to each other in the west and
southwestern parts of the Meshgin Shahr area. Those
datasets were implemented in training the models and
obtaining the tuned parameters and validating the pro-
duced GPMs (Fig. 1).

Construction of the conditioning factors

In this study, considering the hydrogeological and topo-
graphical conditions of the basin and literature (Ozdemir
2011a, b; Naghibi et al. 2016), several GCFs including
hydrogeological, topographical, and land use factors
were mapped as input variables and employed for the
modeling process.

Topographical factors

The topographic parameters, which include slope, as-
pect, altitude, plan curvature, profile curvature, and
slope length (LS), were generated implementing a dig-
ital elevation model (DEM) with a spatial resolution of
30 x 30 m extracted from the topographic maps at a
1:50,000 scale (ASTER-DEM). For those functions,
ArcGIS and system for automated geoscientific analysis
(SAGA) were used.

The infiltration status is majorly controlled by slope
angle of the area, and this factor has a high importance
in GW potential mapping (Adiat et al. 2012). In rough
slope sections, the overland flow is fast and there is not
adequate time for the flow to infiltrate (i.e., an inverse
relationship exists among infiltration rate and slope
degree) (Prasad et al. 2008). In the studied region, slope
angle varies from 0 to 68.79° with an average value of
9.69° (Fig. 3a). Slope aspect impacts the sunlight dura-
tion in a given area (Kordestani, et al. 2018), and con-
sequently influences the snowmelt and infiltration rates.
This factor was classified into nine categories including

! Advanced Spaceborne Thermal Emission and Reflection Radiometer
Digital Elevation Model
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Fig. 1 Location of the study area in Iran (a) and location of the training and validation springs in the study area (b)

main and sub-main categories (Fig. 3b). Altitude deter-
mines the level of drainage system development in an
area in a way that normally lower areas have more
developed drainage systems. This factor was produced
by employing the DEM of the study region and was

Table 1 The lithological characteristics of the study area

Class Lithological characteristics
Group 1 Andesite to basaltic volcanic
Group 2 Andesitic subvolcanic

Group 3 Andesitic tuff
Group 4 Andesitic volcanic tuff

Group 5 Andesitic volcanic
Group 6 Basaltic volcanic rocks
Group 7 Coarse-grained fanglomerate

composed of volcanic lastic
materials locally with intercalation
of lava flows

Group 8 Dacitic to andesitic tuff

Group 9 Granite to diorite

Group 10 Gypsiferous marl

Group 11 High-level piedmont fan and valley terrace deposits
Group 12 Low-level piedment fan and valley terrace deposits
Group 13 Pliocene andesitic subvolcanic

Group 14 Polymictic conglomerate and sandstone

Group 15 Rhyolitic to rhyodacitic tuff

Group 16  Rhyolitic to rhyodacitic volcanic tuff

@ Springer

regarded as an important reported factor in GW potential
(Naghibi et al. 2015) in this work (Fig. 3c).

Plan and profile curvatures were calculated from
a DEM using SAGA software. These two curva-
tures influence the speed of water flow over the
surface and subsequently impact the infiltration
rate. Negative plan curvature depicts concave, pos-
itive curvature depicts convex, and zero curvature
shows flat (Fig. 3d). Profile curvature is parallel to
the slope and clarifies the direction of maximum
slope (Fig. 3e).

LS as a sign of soil loss potential is a mixture of two
factors of slope steepness and slope length (Fig. 3f). A
higher value of LS shows higher accumulation of water
and erosion, and influences infiltration rate. This factor
can be presented mathematically as below (Moore and
Burch 1986):

0.6 . 1.3
LS — Bs sin (1)
22.13 0.0896

where Bs shows the specific catchment area (m?).

Hydrogeological factors

TWI has been implemented as a topographical indicator
of saturated sources location in a given area (Beven
1997). TWI shows the water tendency to accumulate
at any point in the basin and can be represented mathe-
matically as below (Moore et al. 1991; Fig. 3g):
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Groundwater conditioning factors

Modelling procedure

Slope angle
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Fig. 2 Flowchart of the methodology implemented in this study

TWI = In(oc/tanf3) (2)

where « is the accumulative upslope area draining to a
point and tan B is the slope angle at the point.

Streams, which reflect slope, infiltration rate, and flow
direction, were derived from a DEM using ArcGIS. It is
known that streams are one of the main sources of
groundwater recharge in semi-arid areas such as Iran.
Therefore, distance from rivers could show the impact
of this recharge source. River density shows the develop-
ment of the drainage system and impacts groundwater
recharge. Distance from rivers was computed by
employing the river layer and Euclidean distance module
implemented in ArcGIS 10.5 (Fig. 3h). In addition, river
density was calculated using ArcGIS 10.5 and line den-
sity module (Fig. 3i). In this study, distance and density
layers of the faults were built and regarded as GCFs (Fig.
3j, k). Lithology impacts porosity and infiltration of water
into the ground (Rahmati et al. 2014). The lithology layer
was produced by implementing a 1:100,000 scale geo-
logical map (GSI 1997). It was then categorized into 16
groups (Fig. 31 and Table 1).

Land use factor

Landsat 7/ETM images in 2015 were downloaded from
USGS (http://earthexplorer.usgs.gov/), and the land use

|| cart || RF || RTF [ [ validation
Probability of spring
occurrence
l Evaluation of
the models
Classified GPMs
I N
Selection of
the best
EBF model
!
EBFTM

layer of Meshgin Shahr region was generated by
implementing a supervised maximum likelihood
algorithm in Idris software (Fig. 3m). This map contains
six land use classes of agriculture, forest, orchard, range-
land, residential area, and water body.

Methodology

This section presents the methodological steps to
obtain the final GPM by the EBFTM. In the first
stage, tree-based models, i.e., BRT, CART, RF,
and RTF, are explained. It should be noted that
these models were applied using the training
dataset and produced four GPMs. Then, these
maps were classified into four classes of GW
potential according to a previous research by
Naghibi et al. (2017a). The groundwater potential
values (i.e., spring occurrence probability) obtained
by the BRT, CART, RF, and RTF models for all
the pixels of the study area were classified into
four potential classes. These values were used as
inputs of the EBF model to construct the new
ensemble model (i.e., EBFTM). In other words,
probability classes obtained by the BRT, CART,
RF, and RTF were extracted for the training
dataset and used in the EBFTM to calculate the
belief values for each class.

@ Springer


http://earthexplorer.usgs.gov

248 Page 6 of 20 Environ Monit Assess (2019) 191: 248

o 190000 208000 226000 244000 o| o 190000 208000 226000 244000 -
g S ] 1 1 L 1 g
Y | £ =
S g 8 (b) |8
(=3 =3 (=3 =3
=3 =3 =3 =3
S LS| 2 LS
= = = =
o o (> Q
- - - -
g gl g g
=1 FS >4 FS
w uw w w)
S < <
Slope angle 3 g
¥ High: 68.7 48 ki Slope aspect
- s g s I East 7] South s
g . 2| 8 Flat South 2
2 Ll Low: 0 LS| 2 [JFa [ southeast -2
P . Q a
S - — KM - Training springs | §| < o 3 10 zé(m I North  [[7] Soughtwest | &
0 5 10 20 [ INortheast Il West
Northwest . Training Springs
T T T
190000 208000 226000 244000 190000 208000 226000 244000
- 190000 208000 226000 244000 I . 190000 208000 226000 244000 -
) 1| £ | £
> o *™ >
§ (¢ (g § 9
= =3 = =
£ 2| 2 ]
£ 2| &1 IS
~ =] ~ (=}
- - - -
= = 3 =)
= =3 = =3
= =3 =3 =]
=4 = =4 re
& q| & &
- - - 4 -
Altitude (m) Plan curvature
High : 4052 I Concave
= ! 2| = [ Convex s
=] Low: 775 12| =2 [ | Flat -
& o . & b1 i
L T — K + Training Springs | ¥ | & - — < Training Springs | =
0 5 10 20 0 5 10 20
T T T T T T T T
190000 208000 226000 244000 190000 208000 226000 244000
- 190000 208000 226000 244000 . - 190000 208000 226000 244000 -
4 1 | \ | g 8 1 L | | e
S S| 24 LS
> > > >
§ () (g § 9
= =3 = =
(=1 = (=3 =3
= =3 = =
= e = e
= Bl 8 g
8 Sl 8 8
- - - -
3 (=3 3 =
3 =3 =
=3 =3 = 8
=4 = =4 3 re
7 ] &
- - - Slopc length -
Profile curvature 020
B <(-0.001) I 20-40
= [ (-0.001)-(0.001) s = [ 40-60 s
z I >(0.001) LE| = . 60 -3
S - — K « Training Springs | ¥ 9 - — K - Training Springs S
0o 5 10 20 o 5 10 20
T T 7 T T y T T
190000 208000 226000 244000 190000 208000 226000 244000

Fig. 3 Groundwater conditioning factors implemented in the modeling process
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Fig. 3 (continued)

Application of the tree-based models in GW potential
modeling

GW potential modeling by boosted regression tree BRT
is fundamentally different from classical regression al-
gorithms, which generates a single best choice. It uses
boosting feature as a combiner of a large number of
comparatively simple trees adaptively for optimizing the

predictive efficacy (Elith et al. 2008). Adapting several
trees in this algorithm conquers the major issue of single
tree methods, which is their comparatively weak predic-
tive efficacy (Aertsen et al. 2010). Elith et al. (2008)
clarified that the final model could be considered as an
additive regression algorithm with simple trees, adapted
in a forward, stepwise form. In the BRT, three factors
need to be tuned: number of trees; interaction depth,

Table 2 Importance of groundwater conditioning factors in GPMs using BRT model

GCFs Relative Influence ~ GCFs Importance in CART ~ GCFs Mean decrease
(%) in BRT Gini in RF
Land use 39.6 Land use 73.73 Distance from faults ~ 22.23
Altitude 15.77 Distance from faults ~ 63.13 Land use 22.12
Distance from faults 11.09 Lithology 60.25 Altitude 19.54
TWI 7.72 Altitude 55.6 Lithology 14.12
LS 5.35 TWI 28.97 TWI 14.06
Distance from rivers 473 Aspect 17.44 Slope angle 11.13
Slope angle 4.49 Distance from rivers ~ 13.55 Distance from rivers ~ 10.89
Lithology 4.15 Profile curvature 9.92 Plan curvature 10.13
Plan curvature 2.74 Slope angle 7.21 Profile curvature 9.98
Profile curvature 2.68 Fault density 6.57 LS 9.51
Aspect 1.07 Plan curvature 6.44 River density 5.38
Fault density 0.55 LS 2.79 Aspect 4.61
River density 0 River density 0 Fault density 2.64
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which defines the size of trees; and shrinkage as a
representative of the tree’s contribution in the model
(Elith and Leathwick 2013). It needs to be stated that
parameter optimization in the BRT was applied by grid
search. The implemented grid included interaction depth
of 1 to 9 and number of trees of 0 to 1500 with 100
intervals. This algorithm was applied in R statistical
software by employing the gradient boosting method
(gbm) and caret packages (Naghibi et al. 2016). It needs
to be mentioned that a ten-fold cross-validation was
employed to define the parameters of this algorithm
(Naghibi et al. 2016).

GW potential modeling by classification and regression
tree CART is a famous tree-based model as it shows
information in such a way that is simple to figure out.
CART model is a binary recursive separation process,
which is able to process continuous and nominal fea-
tures as outputs and inputs. Each node (or split) is
determined by an easy rule based on a single variable,
classifying the data into two classes. In each one of the
classes, the response factor has to maximize the homo-
geneity, intending to minimization of the total deviance
(Vorpahl et al. 2012). The estimated amount of a
“terminal node” clarifies the mean of the response
amount in that node (Breiman et al. 1984). McKenney
and Pedlar (2003) stated that classification tree should
be pruned for selecting only the most contributing fac-
tors, which refers to the nodes explaining the largest
amount of deviance. It needs to be clarified that CART
was applied in R statistical software using the rpart
script (Ripley 2015).

GW potential modeling by random forest Random for-
est (RF) is a nonparametric technique derived from
CART. Each tree is generated on a bootstrapped
subset of the dataset implementing CART method-
ology, with an accidental subspace of factors,
which have been chosen for every node
(Micheletti et al. 2013). The number of factors is
larger than the size of the factors in the input
space. The varied trees are decorrelated because
of the accidental picking of the characteristics at
each node, which enhances the strength of the
ensemble model by decreasing the variance with
no enhancing effect on the bias (Breiman 2001).
The RF tunes two parameters of the number of
trees called ntrees, and the number of factors,
which is stochastically selected from the accessible

set of characteristics called mtry (Micheletti et al.
2013). One of the capabilities of RF is its effec-
tiveness in defining the contribution of input fac-
tors by two indices of mean decrease accuracy and
Gini (Pardo and Sberveglieri 2008). It needs to be
explained that the RF was carried out in R statis-
tical software employing randomForest and its in-
ner tuning function.

GW potential modeling by rotation forest with decision
trees as base classifier Rotation forest draws upon
RF idea. RTF ensemble could be implemented to
strengthen the performance of weak classifiers
such as data mining models (Chen et al.
2017c; Pham et al. 2018a). In RTF, the training
set is randomly classified into K sets and a rota-
tion sparse matrix is built by extracting features
from each set. RTF implements principal compo-
nent analysis for extracting features for building
sub-training data space to learn base classifiers
(Koyuncu and Ceylan 2013). In RTF, every tree
is trained using all data with a rotated feature
space; however, the base classifiers are separately
constructed decision trees (Rodriguez and
Kuncheva 2007). Since the algorithm constructs
the classification districts implementing hyper-
planes parallel to the feature axes, a small rotation
of the axes could result in a totally distinct tree.
RTF directs to create correct and different classi-
fiers (Rodriguez and Kuncheva 2007). Bootstrap
samples are regarded as the training data for sep-
arate classifiers, like in bagging. The major heu-
ristic is to conduct feature exploitation and to
successively rebuild a complete feature set for
each classifier in the ensemble. RTF was applied
in the R statistical software employing
rotationForest and caret scripts.

EBFTM ensemble approach

In this section, first, EBF model is described and then
procedure of the ensemble modeling in this study is
explained.

Description of evidential belief function model EBF is
constructed on the basis of the Dempster-Shafer the-
ory (Dempster 1968; Shafer 1976). This model com-
prises degrees of belief, disbelief, uncertainty, and
plausibility as Bel, Dis, Unc, and Pls, respectively
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(Nampak et al. 2014). EBF regards two different
relationships in data including the relationship
among a GCF and incidence of the springs as well
as the relationship between the classes of each GCF
(Pradhan et al. 2014). Degree of belief changes from
0 to 1 (Carranza et al. 2008; Pradhan et al. 2014). In
this method, the generalized Bayesian lower and
upper probabilities show the belief and plausibility
values, respectively. The Unc can be computed from
subtraction of the Bel from Pls, which would always
be a positive value. The Unc could be determined as
the doubt, which the incident supports a preposition
(Pradhan et al. 2014). Finally, the Dis could be com-
puted as 1-pls or 1-Unc-Bel (Tien Bui et al. 2012;
Pradhan et al. 2014).

GW potential modeling by the new ensemble model
EBFTM To construct the ensemble model (i.e., EBFTM)
in this work, first, the tree-based models were carried out
and their corresponding GPMs were built. In the next
stage, the GPMs were grouped into four categories of
potentiality (i.e., low, moderate, high, and very high).
Afterward, the EBF degrees were computed for each class
of the GPMs produced by the tree-based models. Then,
Bel values were assigned to the classes of the GPMs, and
the EBFTM values were obtained as follows:

EBFTM = BCIBRT + BelCART + BCIRF + BelRTF (3)

where the EBFTM shows the final value for each pixel in
the ensemble model; Belgrt shows Bel values calculated
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Fig. 4 Groundwater potential maps produced by a BRT, b CART, ¢ RF, d RTF, and e EBFTM
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Fig. 4 (continued)

for different classes of the BRT model; and BelcarT, Belrp,
and Belgrr represent the same value for the CART, RF,
and RTF models, respectively.

Validation of the GPMs

The last stage is to evaluate the created GPMs and
determine which one provided the best efficiency. In
this investigation, receiver operating characteristics
(ROC) curve analysis was used for this purpose (Chen
etal. 2017a, b; Sangchini et al. 2016). The ROC curve is
a plot according to specificity, and sensitivity with

diverse cut-off thresholds (Tien Bui et al. 2016). To
compare quantitatively, the area under the ROC curves
(AUC), which is regarded as a statistical brief of the total
efficacy of the implemented algorithms, was employed.
An AUC value of one depicts an excellent algorithm
that accurately classifies all the spring and non-spring
pixels, whereas a value of 0.5 depicts a weaker algo-
rithm (Hong et al. 2016b, 2017a). Additionally, Wilcox
signed rank test was conducted in order to define the
significance of difference between the new ensemble
model, EBFTM, and its elements (i.e., tree-based
models such as BRT, CART, RTF, and RF).

Table 3 The distribution of the

spring potential values and arcas Model/class Low Moderate High Very high
with respect to the groundwater
spring potential zones BRT Range 0.04-0.21 0.21-0.40 0.40-0.64 0.64-0.94
Area % 44.34 27.11 15.65 12.9
CART Range 0.15-0.17 0.17-0.26 0.26-0.71 0.71-0.89
Area % 55.44 15.39 17.35 11.82
RF Range 0.002-0.21 0.21-0.39 0.39-0.61 0.61-0.98
Area % 36.15 32.14 18.21 13.51
RTF Range 0.09-0.22 0.22-0.42 0.42-0.65 0.65-0.89
Area % 43.99 26.51 15.21 14.29
EBFTM Range 0.02.0.34 0.34-1.11 1.11-2.03 2.03-3.39
Area % 72.51 9.93 6.58 10.99
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Results
Boosted regression tree model

The BRT was tuned by implementing the caret script,
and the final BRT model included the number of trees of
100, an interaction depth of 1, a shrinkage of 0.1, and an
interaction depth of 1 having accuracy and kappa values

CTWI<127:

of0.78 and 0.57, respectively. The results of the variable
importance are shown in Table 2. Based on the results,
land use, altitude, distance from faults, and TWI were
the most important GCFs, while river density, fault
density, and aspect had the lowest relative influence
values. The GPM generated using the BRT algorithm
is represented in Fig. 4a and Table 3. Low moderate,
high, and very high categories of this GPM included

FaultDist >= 9612

Aspect =2,5,6

8747
0 0 1 0 0 0 1 1
91 .0 .84 1 25 .7 .87 1 1.00 .0 .75 .25 .14 .86 .
26% 10% 2% 4% 2% 2% 4% 11%

24 .76

0 1
.58 .42 13 .87
5% 35%

CART Plot

Fig. 5 Pruned classification tree by CART model
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4434, 27.11, 15.65, and 12.90% of the study area,
respectively.

Classification and regression tree model

The CART method was trained and pruned by the rpart
script in R software having total classified error of
20.4% (Fig. 5). Also, the contribution of the GCFs
was determined and displayed in Table 2. The findings
showed that land use, distance from faults, and lithology
had the highest contributions, while river density and LS
had the least contribution in the modeling procedure.
The GPM obtained by the CART model is shown in Fig.
4b and Table 3. According to the results, the area allo-
cated to low, moderate, high, and very high categories of
the GPM by this algorithm are 55.44, 15.39, 17.35, and
11.82% of the studied area, respectively.

Random forest model

The final model was fitted with a node size of 6, a mtry
of 2, and the number of trees of 1000. The “node size” is
the minimum size of the nodes. The “mtry” is the
number of factors randomly sampled as candidate at
each split. Besides, the mean decrease Gini was reported

Fig. 6 The results of cross-

to show the contribution of the GCFs in the concluding
model (Table 2). The findings of the mean decrease Gini
showed that distance from faults, land use, and altitude
had the highest contribution, while fault density and
aspect had the least contribution in the modeling proce-
dure. The GPM produced by the RF model is shown in
Fig. 4c and Table 3. Low, moderate, high, and very high
categories of this GPM cover 36.15, 32.14, 18.21, and
13.51% of the study area, respectively.

Rotation forest model

The RTF model was tuned and fitted using the
caret and rotationForest packages in the R soft-
ware. The final model included a K of 4 and an
L of 9 resulting in a ROC value of 0.80 (Fig. 6).
K refers to the number of variable subsets and L
determines the number of base classifiers. It can
be observed that when variable sets range from 1
to 3.5, changes in the number of base classifiers
do not have a dramatic effect, while for variable
subset of 4, a very distinct result is obtained. The
GPM obtained by the RTF algorithm is displayed
in Fig. 4d. Considering Table 3, low, moderate,
high, and very high categories of this GPM
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Table 4 Belief values obtained from EBF for different classes of
the tree-based models

Class Evidential belief function (Bel values)

BRT CART RF RTF
Low 0.003 0.014 0.002 0.010
Moderate 0.029 0.038 0.015 0.032
High 0.112 0.174 0.086 0.101
Very high 0.856 0.774 0.897 0.857

include 43.99, 26.51, 15.21, and 14.29% of the
study region, respectively.

EBFTM results

The findings of the EBFTM are listed in Table 4. Ac-
cording to the table, Bel values for the BRT classes
range from 0.003 to 0.856 for low and very high classes
of potentiality, respectively. In the case of the CART
algorithm, low class has a Bel value of 0.014, while
0.774 is assigned to its very high potential class. In the
respect of the RF, it can be observed that low, moderate,
high, and very high categories have Bel values of 0.002,

0.015, 0.086, and 0.897, respectively. The findings of
the RTF depicted that belief values range from 0.010 to
0.857 for low and very high classes of potentiality,
respectively. In addition, the GPM produced by the
EBFTM is shown in Fig. 4e and Table 3. It can be
observed that a high percent of the area is assigned to
the low class (72.51%), whereas a low percent is
assigned to the very high potential class (10.99%).

Validation of the models

The AUC-ROC for the models are presented in
Fig. 7. As it can be observed, area under the curve
of ROC for the implemented methods varies be-
tween 86.2 and 90.4%, which shows different pre-
diction capabilities of the methods. The findings
showed that the EBFTM, RF, BRT, CART, and
RTF algorithms had AUC-ROC values of 90.4,
90.1, 89.8, 86.9, and 86.2%, respectively. The
results of the Wilcox signed rank test also showed
that there are significant differences between the
results of the new ensemble model, EBFTM, with
the results of the single tree-based models, i.e.,
BRT, CART, RF, and RTF (Table 5).

Fig. 7 Prediction rate of the 1.0
curve for the GPMs produced by
tree-based and ensemble models

True Positive Rate

Area under the ROC curve

RTF=86.2%
——CART=86.9%
—BRT=89.8%
—RF=90.1%
—EBFTM=90.4%
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Table 5 The Wilcox signed rank test results between the accuracy of EBFTM and BRT, CART, RTF, and RF algorithms

Pairwise comparison BRT vs. EBFTM CART vs. EBFTM RTF vs. EBFTM RF vs. EBFTM
z value —5.749 —6.298 —5.565 —5.656

p value 0.000 0.000 0.000 0.000
Significance Yes Yes Yes Yes
Discussion more data. This finding is in agreement with the results

GW potential as a hydrogeological phenomenon deals
with a wide variety of uncertainties due to the complex
nature of GW resources in different areas (Ozdemir
2011a). What makes the situation more complex is the
overfitting problem related to the modeling techniques
that have been employed in this field of study. Tree-
based models face a high amount of uncertainty as they
are fitted to datasets as much as possible. The high
complexity of GW resources accompanied with differ-
ent sources of uncertainty in the modeling procedures
make the outputs and methodologies regional and
reduces the possibility to generalize them. Bartels
(1997) recommended model averaging as a recom-
mended solution for this problem. However, there are
some more mathematically appropriate methods such as
the application of ensemble models. With this in mind,
this study applied the EBFTM as a new ensemble model
in order to reduce the over fitting issue in each of the
tree-based models (i.e., BRT, CART, RF, and RTF algo-
rithms). The results depicted the higher efficacy of the
EBFTM comparing with the single models. The find-
ings also clarified that the BRT and RF had similar
AUC-ROC values and higher performance capabilities
than the CART and RTF models. The findings also
depicted that all the tree-based algorithms provided
GPMs with higher AUC values than 70%, which shows
their acceptable efficacy (Naghibi et al. 2016). The
EBFTM produced a more accurate GPM than all the
other models since it works as a model averaging
technique and could be implemented as a method to
reduce the variance. It is known that error could be
classified into bias and variance. Naghibi et al. (2017a)
stated that ensemble models are believed to combine
several weak learners and create a new powerful model.
This procedure is regarded as boosting technique in
statistical viewpoint. As a matter of fact, since the
EBFTM used the same data as the tree-based models,
it can be inferred that implementing the ensemble ap-
proach could enhance the prediction efficacy with no

obtained in Lee et al. (2012a, b) in the field of landslide
susceptibility mapping.

In the respect of the BRT model, there are some
strong characteristics that could result in its high
efficacy in classification problems. For instance,
BRT can keep important GCFs, detect the interac-
tions, and also it is able to delete the variables with
large number of missing values (Elith et al. 2008;
Carty 2011). RF algorithm has been reported to
have acceptable efficacy in different fields of study
(Peters et al. 2007; Vorpahl et al. 2012; Chen et al.
2018d; Hong et al. 2017b, 2018). In this work, RF
showed acceptable results. There are some advan-
tages in RF algorithm such as the low aptitude to
overfitting, and the capability to support high-
dimensional datasets (Caruana and Niculescu-Mizil
2006). In the case of interpreting, it can be seen
that among all the tree-based algorithms, which are
employed in this research, the CART has the
highest interpretability. This kind of information
could be very helpful for water resource planners
and managers who are not very familiar with the
modeling procedures. Breiman et al. (1984) men-
tioned that CART is able to be conducted on non-
linear data and has no requirement to factor trans-
formation. Furthermore, outliers do not have a high
influence on the results (Strobl et al. 2008). Be-
sides, another positive feature in CART is that it
does not have adverse impact on numerical calcu-
lations. In the respect of the RTF algorithm, it
produced a GPM with lower accuracy than the
other three tree-based models; however, its AUC-
ROC is 86.2% and this confirms that the RTF is an
appropriate GW predictor especially under the un-
certain condition of GW resources and lack of data.
The main limitation of this work like other works
applied on spatial sciences such as groundwater
potential mapping is that the scientists need to
investigate the results of their models in more than
one study area to make sure that the results are
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general. Therefore, the authors suggest the future
works to work on two or more study areas to
achieve this goal.

This research also investigated the importance of the
GCFs in modeling GW potential. It was seen that land
use was the most important factor in the BRT and
CART, and the second most important factor in the
RF. Regarding the land use classes of the study area, it
can be seen that most of the springs have occurred in
agriculture and orchard categories. This accumulation of
the springs could be mentioned as a reason of its impor-
tance in the modeling process. Distance from faults,
altitude, and lithology were the following most impor-
tant GCFs in this study. An investigation of the distance
from faults layer shows that most of the training springs
are occurred in far distances. This shows a direct rela-
tionship between GW potential and distance from faults.
In another word, springs are not occurred at the location
of the faults. Altitude has an inverse influence on spring
occurrence as it impacts slope angle, river system de-
velopment, and agricultural and industrial development.
All these factors influence GW potential in an area. An
investigation of the location of the training springs re-
garding the altitude shows that some altitude ranges do
not have any spring occurrence. Lithological character-
istics of a watershed impact its hydrological as well as
hydrogeological features including soil permeability,
transmissivity, and river system development. It can be
seen that the springs are concentrated in piedmont fan
and valley terraces with high amount of permeability.
On the other hand, river density, and fault density were
the least important GCFs.

In fact, one important characteristic of a classification
model could be regarded as how precise it is in deter-
mining the very high class of potentiality. The finding of
this work depicted that the very high class of potentiality
in the GPMs generated by the BRT, CART, RF, RTF,
and EBFTM algorithms were calculated as 12.9, 11.82,
13.51, 14.29, and 10.99%, respectively. This finding
explains that the new ensemble model (i.e., EBFTM)
in addition to its higher performance can determine the
very high potential class more precise than the other
models.

Conclusions

Water resource-related issues are growing and this fact
enhances the necessity to gain a better understanding of

@ Springer

these important natural resources. Thus, investigating
different aspects of water including surface and GW
resources has a high priority. This paper made an at-
tempt to generate a new methodology (i.e., EBFTM
method) to model GW potentiality as a useful guideline
for water resource managers. Performance of the
EBFTM was validated by using ROC curve and accu-
racy index. The findings of this investigation represent-
ed that the EBFTM had better efficacy than all the tree-
based models implemented in this work. Another nov-
elty of this study was application of the RTF algorithm
in producing a GPM for the first time, and its perfor-
mance was compared to other data-mining algorithms
(i.e., BRT, CART, and RF). The findings depicted that
although the RTF had weaker efficacy than the other
tree-based models, it gave acceptable efficacy based on
area under the ROC curve. Model averaging techniques
such as the one implemented in this research (i.e.,
EBFTM) could be implemented with less uncertainty
resulting in more general outputs. Regarding this fact,
this study suggests the application of ensemble models
like the EBFTM in cross-application studies. These
kinds of general models could be more applicable in
situations where the managers deal with a larger area
with a high variety of hydrogeological, climatic, and
topographical features. The outlook of this research in
companion with other papers applied on ensemble
models could be to lead the research community to work
on more advanced ensemble models and obtain better
results in order to solve complex geospatial issues.
Overall, considering the five constructed GPMs in this
study, the authors can suggest west central parts of the
study area for water extraction for different water uses.
A smaller area at the eastern part of the watershed can
also be conservatively considered for water extraction.
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