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Abstract Monitoring water surface dynamics is essen-
tial for the management of lakes and reservoirs, espe-
cially those are intensively impacted by human exploi-
tation and climatic variation. Althoughmodern satellites
have provided a superior solution over traditional
methods in monitoring water surfaces, manually
downloading and processing imagery associated with
large study areas or long-time scales are time-consum-
ing. The Google Earth Engine (GEE) platform provides
a promising solution for this type of Bbig data^ problems
when it is combined with the automatic water extraction
index (AWEI) to delineate multi-temporal water pixels
from other forms of land use/land cover. The aim of this
study is to assess the performance of a completely
automatic water extraction framework by combining
AWEI, GEE, and Landsat 8 OLI data over the period
2014–2018 in the case study of New Zealand. The
overall accuracy (OA) of 0.85 proved the good perfor-
mance of this combination. Therefore, the framework
developed in this research can be used for lake and
reservoir monitoring and assessment in the future. We

also found that despite the temporal variability of cli-
mate during the period 2014–2018, the spatial areas of
most of the lakes (3840) in the country remained the
same at around 3742 km2. Image fusion or aerial photos
can be employed to check the areal variation of the lakes
at a finer scale.

Keywords Automatic water extraction index . Google
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Introduction

Modifications to surface water dynamics can result in
alterations to lentic and lotic water cycles (Wood et al.
2011). Monitoring is extremely important since any
modifications can alter water quality and quantity, water
availability, and the functional and physical processes of
ecosystem (Cann et al. 2013; Dang et al. 2016). It is,
therefore, important to have an accurate and precise
water surface mapping method to improve large-scale
water management. Before the remote sensing era, the
ground survey was the only method available. While
this traditional method was costly and time-consuming,
results were not always spatially accurate. Remote sens-
ing provides a spatial and temporal technique capable of
tracing a historical record; therefore, it is useful for
monitoring lake information over a time period in areas
not having a ground-based monitoring program. There
were extensive efforts to monitor the dynamics of water
surface by remote sensing, for example, McCullough
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et al. (2013), Feyisa et al. (2014), Gao et al. (2014), or
Fisher et al. (2016). Remote sensing was also applied
to help the assessment and management of water
quality, flood hazard, and damage identification, as
well as changes in surface water resources (Proud
et al. 2011; Prigent et al. 2012; Güttler et al. 2013;
Dang et al. 2016; Dang et al. 2018b). This technique
can act as an essential resource for policy- and
decision-makers on local, regional, and national
scales (Giardino et al. 2010, Nguyen et al. 2015,
Nguyen 2015). However, most of the existing stud-
ies were either implemented for a small study area
(i.e., 70 × 22 km in Proud et al. 2011) or a short
period of time (i.e., 2 years as in Dang et al. 2018b).
This was caused by the time-consuming problem of
the data downloading and processing procedures.

Different water indices (e.g., normalized differ-
ence water index (NDWI), modified normalized dif-
ference water index (MNDWI), water index 2006
(WI2006), and water index 2015 (WI2015)) can be
adopted to obtain information accurately and quick-
ly (Ouma and Tateishi 2006; Bai et al. 2011; Qiao
et al. 2012; Li et al. 2013; Feyisa et al. 2014).
Manual classifications based on satellite images are
reliant on human expertise, and, therefore, result in
relatively slow and subjective to bias due to misin-
terpretation. For optical imagery, water classification
methods use one or a combination of techniques
which include single-band thresholding, linear
unmixing, two-band spectral water indices, and the-
matic classification (Ji et al. 2009; Sun et al. 2012;
Pham and Brabyn 2017; Dang et al. 2018b). Differ-
ent indices (e.g., NDWI, MNDWI, WI2006, and
WI2015) were employed to mask water from other
types of land use/land cover (Pham et al. 2019;
Nguyen et al. 2019). Originally developed by
McFeeters (1996), NDWI is a relatively simple in-
dex using the input of two bands. However, the
difficulty of this index is to accurately discriminate
between water pixels and built-up areas. This led to
the invention of MNDWI which substituted the
middle-infrared band for the near-infrared band of
Landsat 5 TM (Xu 2006). MNDWI was used to map
surface water, land use change, and other ecological
applications (Hui et al. 2008; Duan and Bastiaanssen
2013). Another water index was WI2006 combining
five bands and enabling the masking of water pixels
(Danaher and Collett 2006). This was later updated
by Fisher et al. (2016)—using the WI2015 index.

With all these indices, a threshold is chosen whereby
water pixels are classified.

These water classification techniques using the
mentioned indices may contain uncertainties and re-
duce the accuracy in areas where surrounding land
covers are dominated by asphalt roads, shadows, and
other low albedo surfaces (Xu 2006; Verpoorter et al.
2012). This misclassification occurred because of the
similarity of reflectance between these land cover
pixels and water pixels. The misclassification was
also found when single or two-band threshold ap-
proaches were used to distinguish between water
pixels and non-water dark surfaces. Therefore, Feyisa
et al. (2014) proposed the automatic water extraction
indices (AWEI), which combined more than two
spectral bands for the improvement of water surface
identification. AWEI includes two types: an index for
images without shadow (AWEIno shadow) and an in-
dex for images with shadow from mountains, clouds,
or other objects (AWEIshadow) using four and five
bands respectively. The AWEI indices were then
applied in several case studies related to water sur-
face classification, and the overall accuracy (OA)
values were high (OA > 0.93) (Feyisa et al. 2014;
Feng et al. 2016; Fisher et al. 2016). In addition to
high percentage accuracy, only minor amounts of
variation were observed in optimum AWEI thresh-
olds when the AWEI index was derived from surface
reflectance images (Feyisa et al. 2014). This may
consequently allow the advancement of large-scale
automated mappings of land surface water, such as
lake surfaces on a national scale, instead of focusing
on a specific location or sensor. These studies, how-
ever, only focused on spatial distributions of water
surface at certain times. Intermittent monitoring
might result in misclassification because several
kinds of water surfaces which only appeared in a
certain area at a certain time. As a result, automatic
multi-temporal water surface detection is needed.

Google Earth Engine is a cloud-based platform,
which can be used to execute large-scale and long-
term geospatial analysis (Gorelick et al. 2017). This
public-domain platform utilizes the computational ca-
pacities of Google Servers, so it allows us to advance
our capabilities in earth exploration. This cloud comput-
ing platform has been applied in crop classification and
water extraction. Donchyts et al. (2016), Shelestov et al.
(2017), and Feng et al. (2016), however, used the single-
or two-band threshold approaches which might cause
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errors in automatic water extraction processes as
aforementioned.

The primary objective of this study is to examine the
use of combined AWEI and GEE in automating water
surface extraction for large-scale and long-term moni-
toring purposes. New Zealand was chosen as a case
study because this was an agriculture-based country
with large areas covered by water and accurate up-to-
date mapping is critical to its distinct biodiversity and
agricultural productivity.

Study area

In the center of the southern hemisphere, New Zealand
(location in Fig. 1) includes two main islands, the North
and South Islands. New Zealand is an agriculture/
forestry-based exporter, including dairy, wood, fruits,
and other animal-related products (New Zealand
statistics 2006). Because of its geographical isolation,
the country developes a unique biodiversity of flora and
fauna. Lake and reservoir management, therefore, plays

Fig. 1 Map of New Zealand, Landsat path and row, and lakes
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a crucial role in its economic development and biodi-
versity conservation.

New Zealand is located in a long and narrow region
along the north-south axis, which makes its climate
temperate maritime. Generally, the snow season lasts
from early June to early October in the eastern and
southern parts of the South Island and mountainous
regions.

New Zealand was, however, chosen to implement
this study not only because of the importance of water
dynamic monitoring to its ecological diversity and agri-
cultural productivity but also because of its diverse lake
system, ranging from glacial to volcanic lakes and from
shallow to deep lakes. Lowe and Green (1992), via field
surveys, listed various types of lakes in their research
such as tectonic, volcanic, glacier, artificial, peat, solu-
tion, barrier-bar, landslide, or riverine lakes. For exam-
ple, Rotorua lakes in the Bay of Plenty area include very
deep lakes such as Lake Tarawera, Lake Rotoiti, and
Lake Rotoma which have complex characteristics in
terms of water quality. Lake Tekapo and Pukaki in the
middle South Island, for example, have milky-turquoise
color from the fine rock-flour originated from glacial
ranges and suspended in water. There is also phyto-
plankton on blue-green algal bloom lakes, for example,

Lake Rotoehu (alga), Lake Okareka, and Lake Ngaroto
(aquatic vegetation). Figure 2 illustrates the difference in
water characteristics of lakes in New Zealand. This
complexity may be translated into errors in water sur-
face extraction if a proper classification method was not
chosen.

Materials and methodology

Landsat 8 OLI acquisition

Although there were several satellite products varying in
spatial, temporal, and spectral characteristics (e.g.,
MODIS, SPOT, or Sentinel), Landsat was used for this
study. Advantages of Landsat imagery are its free avail-
ability, and temporal (16 days) and spatial resolutions
(30m). Landsat sensors can spatially interpret lakes with
a resolution of 30 m with 16-day orbit to the same site.
Additionally, Landsat was one of the first remote sens-
ing imagery services (1972).

The advantages of Landsat 8 OLI over previous
versions such as Landsat 7 include improving radiomet-
ric resolution and reducing image noise and spectral
heterogeneity, which provides a more precise water

Fig. 2 Lake and reservoir boundaries with different sizes and
water characteristics generated from Landsat 8 images in natural
colors. Among of them, eutrophic lakes are enriched with nutrients

associated with land use; oligotrophic lakes, having low concen-
tration of vegetation, are found in glacier mountains; NZ has a lot
of active volcanoes and volcanic lakes
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surface extraction and water quality retrievals
(Lymburner et al. 2016). The OLI sensor collects data
in nine shortwave bands: eight spectral bands at 30-m
resolution and one panchromatic band at 15 m. OLI data
products have a 16-bit range, narrow spectral bands.

In this study, we mapped the water surface of lakes
and reservoirs with Landsat 8 OLI records of the period
from 2013 to 2017. Landsat 8 OLI data archived from
pre-collection from USGS Earth Resources Observation
and Science (EROS) Center Science Processing

Architecture (ESPA) on demand interface (https://eros.
usgs.gov/). Surface reflectance Tier 1 products of
Landsat can be also queried, visualized, and analyzed
on Google Earth Engine (GEE). Approximately 498
scenes with free-cloud imagery were acquired with cor-
rections for atmospheric scattering and aerosol absorp-
tions by using Landsat 8 Surface Reflectance Code
(LarSRC), including masking of clouds, shadows, and
per-pixel saturation (https://code.earthengine.google.
com/dataset/LANDSAT/LC08/C01/T1_SR).
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Fig. 3 Water boundaries derived from the automatic classification method. Lakes smaller than 1 ha were filtered in the later stage
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Water index calculation and Google Earth Engine

AWEIshadow is optimized for the use when shadows
result in a great reduction in accuracy and this index
enhances the separation of water pixels from non-water
sources. Detailed descriptions of formulation and equa-
tions can be found in Feyisa et al. (2014). In brief, an
equation was developed to eliminate non-water pixels
and then extract surface water by removing shadow
pixels to further improve accuracy. This equation uses
the reflectance values of five spectral bands of Landsat:
band 1 (blue), band 2 (green), band 4 (NIR), band 5
(SWIR), and band 7 (SWIR), with the coefficients based
on an empirical dataset of pure pixels varying in land
cover.

AWEIshadow ¼ ρband1 þ 2:5� ρband2−1:5

� ρband4 þ ρband5ð Þ−0:25� ρband7 ð1Þ
In which ρ is the reflectance values of Landsat 8 OLI.
GGE is then used to extract water surfaces for the

whole of New Zealand. For large-scale and long-term
applications of GEE, large amounts of data could be
processed directly on the platform without downloading
to the local computers, which did not require computa-
tional sources on local computers (Tang et al. 2016).
Such characteristics allow examining images and
changes over time and performing geospatial analysis
much faster. The processing and data analysis steps were
first run in GEE and included (1) choosing Landsat
images with the cloud cover less than 10%, (2) deriving
AWEIshadow raster images using the formula (1) by
calculating AWEIshadow with the Earth Engine API (in
JavaScript), (3) filtering water pixels which had the
AWEIshadow values higher than zero, and (4) converting
water polygons in KML format derived from GEE
outcomes to shapefile format in ArcGIS. In ArcGIS,
the GEE water polygons output was overlain over the
study period to calculate water surface changes. In ad-
dition, accuracy assessment was also calculated with
geospatial tools in ArcGIS.

Accuracy assessment

We only considered lakes larger than 1 ha because
according to Olmanson et al. (2011) the smallest
pixel size of inland water bodies could be seen
from space by Landsat was 1 ha (100 m × 100 m).
Overall accuracy (also called overall agreement,

OA), producer’s accuracy (PA), and Kappa (κ)
indices were used to measure the accuracy of
classification maps. As in Cohen (1960), Kappa
is defined as follows:

κ ¼ po−pe
1−pe

ð2Þ

pe ¼
1

N2 ∑
k
nk1nk2

ð3Þ

where po is called the relative observed agreement, pe
is the hypothetical probability of chance agreement,N is
the number of items, nki is the number of times rater i
predicted category k.

The classification results were compared with
ground-truth data collected at 1416 points in both the
North and South Islands using GPS during field surveys
in the years 2016–2017. Water boundaries derived from
this automatic framework were also compared with
water boundaries derived from the manual method
based on aerial photos with 0.5 m resolution available
at https://data.linz.govt.nz/. (LINZ.NZ).

Results

Model validation

Automatic water surface extraction with GEE and
AWEI with lakes larger than 1 ha exhibited an overall
good agreement between water pixels derived from this
framework and ground surveys (Figs. 1 and 3). Table 1
shows the accuracy assessment for this automatic water
extraction framework with Landsat 8 OLI and AWEI
index. Acceptable values of PA and OA indices (> 80%;
Table 1) allowed the application of this framework in
classifying water for large-scale management.

Table 1 Accuracy assessment for automatic water extraction with
GEE and AWEI

Class References UA (%)

Water Non-water

Water 1200 216 84.7

Non-water 250 1469 85.5

PA (%) 82.8 87.2

OA (%) 85.1

Kappa 0.7
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Fig. 4 Visual comparison between water boundaries derived from automated and manual methods (blue colors show the percentage of
water fraction of each edge pixel when yellow color with strips is non-water fraction of edge pixels)



In Feyisa et al. (2014), the Kappa coefficient for lakes
ranged between 0.93 and 0.98 which was higher than
the Kappa value in this study (κ = 0.7). This may orig-
inate from the samples in our study which were taken
from various sizes of lakes and at the edge of lakes. If
samples were taken in the center of large lakes, there
was a low probability that water pixels were
misclassified.

Relating to the size of lakes, a misinterpretation
of pixels was found for small lakes or reservoirs.
This may be a result of the coarse Landsat pixel
resolution (compared to the size of small lakes),
which caused mixed pixels of water bodies and
other forms of land use. Figure 4 shows the dif-
ference in edge pixels around Lake Ngaroto de-
rived from this automatic water boundary detection
method and the visual interpretation method using
the aerial photos. The boundary derived from the
automatic method was coarser than the manual
method with high-resolution images. However,
with this automatic method, the non-water fraction
of edge water could be negligible if comparing the
spatial resolutions of Landsat 8 (30 m) and the
aerial photos (0.5 m). For large lakes, the differ-
ences were minor. Even with different types of
lakes (e.g., shallow lake, deep lake, or volcanic
lake), water depth and water color did not influ-
ence the results of this method. The high-spatial
resolution of satellite images would allow us to

better separate water pixels from other types of
land use.

Spatial distribution of lakes

Although Landsat 8 OLI was equipped with sophisti-
cated and modern sensors for earth observation, it did
not have the cloud penetration capacity. Landsat 8 OLI
flyovers occurred on average of 10 times per years for
the period 2013–2017, and the total number of observa-
tions were less than 800. The number of lakes detected
by the remote sensing method and most recent national
field surveys (Leathwick et al. 2010) were similar
(Fig. 5a; at above 3800 lakes) for the number of lakes
and reservoirs with open water. A total area of 3742 km2

water surface was detected with around two-thirds of the
lakes in the southern part of the country. The lakes were
evenly distributed throughout the country, but large
lakes could be found more in the mountainous areas of
the South Island. However, shallow lakes and those with
a small footprint might be under reported.

Seasonal and inter-annual variability

Special inter-annual or intra-annual changes in water
boundaries of lakes and reservoirs during the study
period were not detected (Fig. 6). This may be
because of a result of the study period being short
(i.e., Landsat 8 was launched in 2013). Also of

Fig. 5 a Number of lakes and their relative distributions accord-
ing to field surveys, showing a dominated number of glacial lakes
compared to other types; b frequency lake observation per year

from Landsat 8 OLI; cloud coverage is the main reason of the
number of observations per year below 10
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interest is that the AWEI index could not distinguish
between different forms of water (liquid, ice, or
snow). Therefore, lakes, especially in mountainous
areas or southern parts of the country, could not be
detected in the winter (from June to August; e.g.,
Lake Tekapo in the North Island, Fig. 6). Although a
10% of cloud coverage was chosen as a threshold to
select images, data anomaly was detected in several
photos (Fig. 6; Lake Tarawera May 2015; Lake
Tekapo Feb 2015; Rotorua Mar 2016).

Discussion

The combination of AWEI and GEE resulted in a fast
and robust framework for automatic water body recog-
nition. This combination reduced the burden of manual
classification, and it increased productivity, accuracy,
and quality for macro water resource monitoring and
assessment. The AWEI index showed its capability of
distinguishing different types of lakes from other land
cover types with the OA of 0.85. However, this index

Lake Time

Waikare

(shallow

-riverine)

Feb 2014 Mar 2015 Apr 2015 Mar 2016 Oct 2017

Waahi

(shallow-

riverine)

Feb 2014 Sep 2014 Jul 2015 Feb 2016 Nov 2017

Tekapo

(Glacial)

Feb 2014 Feb 2015 Feb 2016 Feb 2017
Jan 2018

Rotorua

(Volcanic)

Feb 2014 Mar 2015 Nov 2015 Mar 2016 Nov 2016

Tarawera 

(Depth-

Volcanic)

Jan 2014 May 2015 Nov 2015 Nov 2016 Jan 2017
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Fig. 6 Water boundaries over years of sakes with different characteristics in New Zealand. The areas of Waikare, Waahi, Tekapo, Rotorua,
and Tarawera did not change over the study period, and it was impossible to estimate the areas of Tekapo (glacial lake) during the winter



should be used with care in snowy or icy regions. The
limitation of the equations was also shown in classifying
high albedo surfaces as in (Feyisa et al. 2014).

In terms of spatial distributions of lakes in New
Zealand, there were around 3840 lakes and reservoirs
larger than 1 ha. This was much greater than 775 lakes
with lengths of 0.5 km as reported in Lowe and Green
(1992). The difference, however, may originate from the
thresholds (0.5 km and 1 ha).

Overall, there was no trend in the total areas of water
surfaces (Fig. 6) in New Zealand’s lakes for the time of
this study, despite global climatic variation. The month-
ly average values of multivariate El Niño-Southern Os-
cillation Index (MEI) (suggested by Wolter and Timlin
1998) for New Zealand from 2013 to 2017 and monthly
average rainfall from 2013 to 2015 for the whole New
Zealand are shown in Fig. 7. The period from January
2015 to July 2016 was possibly a strong El Niño period
(Fig. 7), and rainfall reached its maximum amount in
August 2015 (219.2 mm) when the ENSO index was
2.368. This value was much higher than rainfall inten-
sity values in August 2013 (137.81 mm) and August
2014 (117.18 mm). Nevertheless, remote sensing data
analysis showed that areal surfaces of lakes and reser-
voirs were not different over the study period. It is also
worth to mention that although satellite data was highly
reliable, the spatial resolution of Landsat 8 OLI was
30 m which might be sometimes too coarse to detect
changes in surface areas if lake banks were steep.

Climate change and human disturbance have changed
hydrological regimes worldwide. While the impact of
human activities on hydrological regimes become larger
than climate change impacts, climate variability will still
be dominate in higher latitude and altitude areas (Gleick

1989). As a result, climate change will increase the pres-
sure on water flows around the world (Gleick 1989;
Christensen et al. 2004; Dang et al. 2018a). Since the
influence of both drivers on the hydrological cycle is
ongoing, the application of an automatic monitoring
framework as provided in this study will contribute sig-
nificantly to conservation programs.

There were several uncertainties related to this study.
Although the Landsat 8 OLI satellite has captured the
earth’s surface with a regular interval of 16 days, the
number of images acquired for each lakewas almost less
than ten times (Fig. 5b). This problem was dependent on
the local density of cloud coverage. Secondly, the spatial
resolution of Landsat reduced the accuracy of the clas-
sification results for small lakes because of the mixture
of water pixels and other types of land cover (Fig. 4).
Therefore, future research needs to have higher spatial
resolution satellite images to minimize the problem of
mixed pixels. Moreover, the integration of optical re-
mote sensing derived from frequent-return satellite data
with high-spatial resolution sensors, ground-truth, and
in situ data have the potential to improve accuracy
assessment and ultimately increase the predictive power
for monitoring management tools (Nguyen 2015). An-
other suggestion is using drones or unnamed aerial
vehicle systems (UAVs) for several small lakes that
may not have been identified by satellite, due to limited
access or cloud cover and other atmospheric influences.

Conclusion

This paper proved that the application of AWEI and
Landsat could be useful in water surface monitoring

Fig. 7 Multivariate ENSO index (MEI) for New Zealand in monthly, so the actual value shows the mean of 2 months (Source: NOAA)
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on the Google Earth Engine platform except for snowy
or icy regions. In the context of the current global water
crisis, further studies which analyze the variation of
water surface dynamics in a longer period and simulate
the impact of future climate change on water availability
are required. The framework implemented in this study
can be applied for water quality monitoring by combin-
ing with in situ data and spatial interpolation as in Dang
et al. (2018a). Therefore, it may then support stake-
holders and policy makers to improve water quantity
control and sustainable water management. Future
works can also consider object-based segmentation
methods combined with AWEI and GEE to enhance
the accuracy of water extraction. This technique will
benefit both water resource monitoring and manage-
ment and provide a vital framework with broad appli-
cability for ecosystem service values.

This study exhibited that intra- and inter-annual water
surface areas in most of the lakes in New Zealand did
not change over the study period. However, the spatial
resolution of Landsat and cloud coverage could reduce
the level of accuracy. Therefore, finer resolution satellite
products should be considered to further investigate
changes in lake areas.
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