
Spatial variability of urban climate in response
to quantitative trait of land cover based on GWR model

Xisheng Hu & Hanqiu Xu

Received: 13 October 2018 /Accepted: 19 February 2019 /Published online: 27 February 2019
# Springer Nature Switzerland AG 2019

Abstract Land surface temperature and moisture are
central components of the Earth’s surface heat budget.
China has experienced substantial land use/cover
change that has led to deterioration of the urban micro-
climate, thus affecting global climate change. Under-
standing the spatial non-stationarity in the relationships
between climate and land cover across a highly hetero-
geneous surface of urban landscapes is important for
improving urban planning and management. This study
used Landsat-8 OLI/TIRS data to explore the relation-
ship of the three components (index-based built-up in-
dex (IBI); bare soil index (SI); and normalized differ-
ence vegetation index (NDVI)) with the urban climate
(land surface temperature (LST) and land surface mois-
ture (LSM)) using both a global model (ordinary least
squares (OLS)) and a local model (geographically
weighted regression (GWR)) for a megacity in

Southeast China. The global regression results showed
that there were significant positive correlations between
the LST and the IBI and SI, while significant negative
correlations were observed between the LST and the
NDVI; opposite results were observed for the LSM.
The IBI is the factor having the greatest impact on the
LST, while the SI is among the most important factors
for the LSM. The local regression results showed that
the response of urban climate to land surface is affected
greatly by water areas, but the role of the water areas is
impacted by their size and surrounding landscape pat-
terns. Moreover, the effects of vegetation and built-up
land on the urban climate vary across locations with
different wind patterns.

Keywords Global climate change . Geographically
weighted regression . Land surface temperature . Land
surface moisture . Land use/cover change . Fuzhou

Introduction

Land use/cover change (LUCC) is one of the main
driving forces for global climate change and has become
a global environmental issue (Stocker et al. 2013;
Hereher 2017), particularly in developing countries (Li
et al. 2009). Though climate change may be a global
phenomenon, its effects are borne out at local scales
worldwide (Dickinson et al. 2017). At local scales,
microclimate patterns are shaped by physical character-
istics, such as the properties of underlying surfaces
(Pielke et al. 2011). This phenomenon and the
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underlying mechanisms have been well documented in
the urban heat island (UHI) literature (Lowry 1977; Oke
1982; Stewart 2000), where cities have been found to be
warmer than their surrounding areas. In this context, a
growing body of research has focused on predicting and
analyzing the local impacts of LUCC on climate change
(Barros et al. 2014). Previous studies typically use time
series analysis at selected locations experiencing LUCC,
comparing the climate change (e.g., land surface tem-
perature (LST)) for each location before and after the
change (Hereher 2017). Although LUCC may signifi-
cantly affect local climate, the magnitude of its effects is
controversial. Little is known about how this relation-
ship is affected by high landscape heterogeneity. The
impacts of LUCC on local climate are poorly under-
stood and warrant further study.

LST is a common proxy for representing the heat
budget of the Earth’s surface and the trends of climate
change at different spatial scales (Srivastava et al. 2009;
Amiri et al. 2009; CWT et al. 2014). Hence, LST has
been employed as an indicator in numerous studies to
understand the complex processes of land surface
change, such as drought monitoring (Cai et al. 2017);
greenhouse effects (Nes et al. 2015); hydrological sim-
ulation (Mo and Lettenmaier 2014); urban heat island
analysis (Weng 2009; Rajasekar and Weng 2009;
Pichierri et al. 2012); epidemiological modeling
(Goetz et al. 2000); and snowpack investigation
(Shamir and Georgakakos 2014). Another measurement
metric, soil moisture, plays a key role not only in heat
budgets but also in hydrological processes at the Earth’s
surface (Kerr et al. 2001; Zhuo et al. 2015). Specifically,
land surface moisture (LSM) has been widely recog-
nized as an essential measure in many environmental
studies. For example, Wanders et al. (2014) found that
the parameters related to land surface processes can be
identified accurately when incorporating satellite-
retrieved LSM into large-scale hydrological models
(Wanders et al. 2014). In this context, LST and LSM
were employed in this study as indicators of the urban
climate.

Previous studies have revealed that the features of
LUCC can be identified by applying the normalized
difference vegetation index (NDVI) (Hereher 2017);
this index has been regarded as the most commonly
used spectral transform (Fung and Siu 2000;
Muttitanon and Tripathi 2005; Sahebjalal and
Dashtekian 2013) and has been applied extensively to
observe LUCC in many cases (Fuller 1998; Waylen

et al. 2014; Eckert et al. 2015; Nguyen et al. 2015). It
is well known that the effect of vegetation on the reduc-
tion of LST is clearly due to the process of evapotrans-
piration (Yuan and Bauer 2007). On the other hand, the
LUCC from vegetation to built-up areas has a great
impact on the energy budget by altering the permeability
of the land surface, leading to an increase in LST (Guo
et al. 2012). In general, the features of the underlying
surface in a region have a great impact on the distribu-
tion of water and heat, thus determining the climate.
Quantifying the relationship between vegetation
(NDVI) and temperature (LST) has attracted much re-
search attention (Weng et al. 2004; Xu et al. 2009). Most
of these studies are based on global regression models,
and understanding of the spatial variations in the asso-
ciations between vegetation and climate is still insuffi-
cient; moreover, the other key components of the urban
ecosystem, the built-up area and the bare surface area
associations with urban climate, have not been quanti-
tatively analyzed in detail due to the lack of a suitable
index (Xu et al. 2009). Recently, Xu et al. (2009) pro-
posed a thematic-oriented index (index-based built-up
index (IBI)) to delineate built-up areas based on the
three commonly used indices, including the soil-
adjusted vegetation index (SAVI); the modified normal-
ized difference water index (MNDWI) (Xu 2006); and
the normalized difference built-up index (NDBI) (Zha
et al. 2003). The IBI can enhance the built-up land
features effectively because the subtraction of the SAVI
and MNDWI bands from the NDBI band produces
positive values for built-up area pixels only. In addition
to built-up areas, a bare soil index (SI) was employed to
delineate patches of bare land or sparsely vegetated land
occurring in deforested areas or in abandoned locations
across the study area (Hu and Xu 2018). Thus, NDVI,
IBI, and SI were all selected here to represent land
surface features in this study.

Fuzhou city is located in the estuary lowland area of
the Minjiang River in Fujian province of southeastern
China, which has experienced very rapid economic
development over the past three decades. Its GDP ranks
29th in the top 100 of China’s cities in 2016 (http://gov.
finance.sina.com.cn). With economic development, the
built-up area of the city has changed rapidly from very
small, isolated population centers to large, interconnect-
ed urban centers over the past three decades, and this
city has experienced continuous warming during the
past decade, becoming a new Bstove^ in China. There-
fore, this region presents a particularly interesting
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laboratory for studying spatial patterns of urban climate
and land cover. The spatial distribution of the climate
factors (LST and LSM) varies depending on the land
cover type (Voogt and Oke 2003; Ali and Shalaby 2012
). However, the challenge of capturing the high spatial
heterogeneity in urban areas exists when employing
global regression models. To overcome the limitations
of previous studies, which are discontinuous in space by
comparing the microclimate change intra- or inter-loca-
tions, we employed a local regression model (geograph-
ically weighted regression (GWR)) to explore the spatial
non-stationarity in the relationships between climate
(LST, LSM) and land cover (NDVI, ISI, and SI) across
a continuous land surface in urban landscapes of high
heterogeneity; then, we identified areas with strong
coupling of vegetation to climate anomalies. This study
can serve as another example of using remote sensing to
study the LUCC under an urban climate and provide a
scientific basis for urban planning to mitigate urban
climate change.

Methods and materials

Study area

Fuzhou city is the capital and the largest prefecture-level
city in Fujian province, China, located in southeast
China. There were 7.66 million residents in 2017 in
the city, with a per capita GDP of US $15,000 in
2017. It ranked 25th in China’s Top 100 Cities in
2017. It has been observed that the temperature has
continued to rise during the past 20 years (Hu et al.
2015; Cai et al. 2017). Consequently, exploration of
the spatial variations in the urban climate associated
with land surface is essential. More information on the
study area can be found in the reference (Hu and Xu
2018).

Data resources and preprocessing

The Landsat OLI/TIRS images (30 × 30m) employed in
this study were acquired on 2016-06-25, when less
cloud cover was present. The preprocessing of the im-
ages included radiation calibration and atmospheric cor-
rection, based on the guide for Landsat-8 algorithm
(http://glovis.usgs.gov/CDR_LSR.php). The digit
numbers (DNs) of the images were converted into

reflectance values of the planetary surface (Xu et al.
2013; Kilic et al. 2016).

Retrieval of land cover and urban climate indices

In terms of the LUCC, the most prominent feature is the
change from ecological lands to built-up lands or bare
lands (Foley et al. 2005; Sun et al. 2010; Seddon et al.
2016). Thus, IBI and SI were applied to represent the
built-up lands and bare lands, respectively, and NDVI
was selected as an indicator of ecological lands. As
discussed in our introduction, LST and LSM were uti-
lized to represent local climate agencies. Additionally,
clouds and their shadows were masked based on very
low temperatures (Malbéteau et al. 2017); water patches
were also masked based on the MNDWI, using the
method of manual debugging threshold value (Xu
2006). The detailed calculation formulae for IBI, SI,
NDVI, LST, LSM, and MNDWI can be obtained from
our previously published literature (Xu 2006; Hu and
Xu 2018) and will not be described in detail here.

Regression models

Both a global model (ordinary least squares (OLS)) and
a local model (GWR) were employed to examine the
association between urban climate (LST and LSM) and
land surface features (IBI, SI, and NDVI). OLS assumes
that the relationship between dependent and indepen-
dent variables is consistent within the entire study re-
gion, while GWR recognizes the spatial heterogeneity in
the interaction between the two regressors across loca-
tions (Zawadzki et al. 2005; Fotheringham et al. 2016).
Much research has proven that the GWR model is more
effective than the OLS model (Hu et al. 2015). The
detailed formulae of the two regression models are
specified in the references (Poudyal et al. 2012; Hu
et al. 2015; Fotheringham et al. 2016).

For our case, both the OLS and GWR models were
estimated using the ArcGIS 10.0 program. For GWR
models, the Gaussian equation was adopted, using a
fixed distance according to the Akaike information cri-
terion (AIC). The goodness of fit of the GWR model
was tested using a set of parameters, including the
adjusted R-squared; P value; residual squares; Moran’s
I; and AIC: (1) The value of the adjusted R-squared is
between 0 and 1, with a higher value representing better
simulation results. (2) The P value is widely used in
statistical hypothesis testing, with a threshold value of
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5%. (3) The residual squares are the sum of the squares
of residuals (deviations predicted from actual empirical
values of data). A small residual square indicates a tight
fit of the model to the data. (4) Moran’s I was used to
evaluate if the regression residuals are randomly distrib-
uted in space. A small Moran’s I value indicates a
random distribution of the residual squares, indicating
the goodness of fit of the GWR model. (5) The AIC is a
relative estimator of the goodness of fit of a statistical
model. If the difference between the AIC values of the
two models exceeds three, a model with a lower AIC
value is considered to be the better one.

Variables

Variations of urban climate in response to changes in
land cover were observed, using urban climate (LSTand
LSM) as dependent variables, and the land surface
features (IBI, SI, and NDVI) as independent variables.
In our analysis, six separate models were defined, with
one dependent variable and one independent variable
being involved in each model to el iminate
multicollinearity problems. The variables are described
in Table 1.

Results

Description of the regression outcomes

Table 2 indicates the regression results of the OLS and
GWR models for the association between urban climate
and land features. The adjusted R2 values of the GWR
models ranged from 0.784 to 0.959, higher than those of
the OLS models (0.002–0.832). The AIC and the resid-
ual squares of the GWR models were all smaller than
those for the OLS models, except for the residual
squares in the model of LSM and IBI. Moreover, the
values of Moran’s I were relatively small, ranging from
0.021 to 0.125; Figs. 2, 3, 4, 5, and 6 (right) also
revealed that the residuals of each model were randomly
distributed across the study area. Based on the above
results, we conclude that the fitting effect of the GWR
models was better than the OLS results. All six GWR
models were statistically significant at the 0.1% level,
which also indicated a high goodness of fit for the
locally weighted regression models.

Table 3 presents a summary of coefficients of the
GWR and the OLS models. In Table 3, the values of

minimum, average, median, maximum, and standard
deviation are listed. These statistics enabled a compari-
son of the coefficient values of each independent vari-
able and revealed how greatly the coefficients varied
across the study region. In summary, the impacts on the
LST (from large to small) were in the order of IBI, SI
and NDVI, while the impacts on the LSM (from large to
small) were in the order of SI, NDVI, and IBI; more-
over, both positive and negative effects coexisted in all
cases.

Spatial variations in the response of LST to land cover

Grid-level regression coefficients estimated by GWR
were mapped in Figs. 1, 2, 3, 4, 5, and 6 (left). In these
maps, the natural break classification method (Jenks)
was used to divide the coefficients into five categories,
with zero being artificially set as a demarcation point to
distinguish the positive and negative correlations for all
maps in terms of the GWR coefficients.

Figure 1 shows that the positive relationships be-
tween the LST and the IBI are distributed across most
of the study area, while there are very few portions of the
grids with negative associations randomly distributed in
the study area. This indicated that the LST increased
gradually with an increase in the IBI, whereas the rates
of increase varied significantly across the region. The
positive correlation coefficients were extensively and
noticeably higher along the north border and in some
relatively smaller clusters (e.g., the central cluster, the
southeast corner cluster, and the southwest cluster) com-
pared to those in other regions. A large green cluster,
located close to the river and including the inland river,
exhibited a lower level of positive correlation.

Figure 2 also indicates that the positive relation-
ships between the LST and the SI are distributed
across most of the study area and displayed clus-
tering similar to that seen in Fig. 1. Compared to
Fig. 1, an obvious feature in Fig. 2 was the
narrow stripes close to the river, indicating clearly
negative associations between the LST and the SI;
the negative correlation was more pronounced in
areas closer to the river. This negative relationship
transitioned to positive values at a distance of
approximately 1 to 2 km from the river.

Figure 3 reveals the spatial variations in the
relationships between the LST and the NDVI.
There were narrow stripes closer to the river, in-
dicating noticeably positive associations between
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the LST and the NDVI; the positive correlation is
greater in areas closer to the river. This was in
contrast to the correlation between the LST and
the SI. The width of the belt showing positive
values for the relationship between the LST and
the NDVI was greater (approximately 2 to 3 km)
than the width of the belt showing negative values
for the relationship between the LST and the SI.

Spatial variations in the response of the LSM to land
cover

Figure 4 demonstrates that the relationship be-
tween the LSM and the IBI was negative for most
of the study area, while there were also a few
clusters indicating positive associations scattered
across the study area. This indicated that the
LSM decreased as the IBI increased in most loca-
tions, but that there were still some areas showing
a synergistic relationship between the LSM and the
IBI. This figure also shows that the areas of neg-
ative correlations along the river zone, including

the inland rivers and the reservoirs, were larger
than for the inland locations.

Figure 5 also indicated that the negative rela-
tionships between the LSM and the SI were dis-
tributed across most of the study area, but that
there were narrow stripes close to the river, indi-
cating strongly positive associations between the
LSM and the SI; most of the areas with positive
correlations tended to be distributed near the riv-
ers. For the areas showing negative correlations
between the LSM and the SI, their magnitude
was greater in the areas near inland rivers or
reservoirs than those in other areas.

Figure 6 reveals the spatial variations in the
relationships between the WET and the NDVI,
demonstrating that there were narrow stripes close
to the river, indicating noticeably negative associ-
ations between the LSM and the NDVI; the neg-
ative correlations were more pronounced with de-
creasing distances from the river, while there were
positive correlations in other areas. This result was
in contrast to the correlation between the LSM and
the SI; moreover, the belt width of positive

Table 1 Description of the dependent and independent variables used in the regression models

Variables Minimum Average Maximum Standard deviation

Dependent LST 26.685 39.133 52.403 4.726

WET − 0.369 − 0.100 0.094 0.066

Independent IBI − 0.656 − 0.150 0.095 0.143

SI − 0.378 − 0.068 0.160 0.114

NDVI − 0.519 0.396 0.886 0.305

Table 2 Comparison of results between OLS (global model) and GWR (local model)

Dependent
variables

Independent
variables

GWR OLS

Adjusted R-
squared

AIC Residual
squares

P
value

Moran’s
I

Adjusted R-
squared

AIC Residual
squares

P
value

LST IBI 0.959 21,990.865 6225.837 0.001 0.025 0.832 32,443.428 29,268.500 0.001

SI 0.886 29,979.713 16,558.415 0.001 0.040 0.040 46,025.045 167,108.000 0.001

NDVI 0.832 32,586.880 27,916.078 0.001 0.125 0.073 45,754.880 161,416.000 0.05

LSM IBI 0.784 − 31,820.328 6.228 0.001 0.021 0.875 − 36,569.278 4.189 0.001

SI 0.813 − 32,805.093 5.626 0.001 0.024 0.002 − 20,365.115 33.464 0.001

NDVI 0.786 − 32,231.092 6.839 0.001 0.072 0.277 − 22,879.420 24.239 0.001
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correlations in the relationship between the LSM
and the NDVI was larger than that for the negative
correlations seen in the relationship between the
LSM and the SI, which was approximately 2 to
3 km from the river.

Discussions

Urban climate and land surface

The OLS regression outcomes indicated a significant
positive correlation between IBI, SI, and LST, while a
significantly negative correlation was seen between
NDVI and LST; contrasting results were obtained in
terms of the LSM. This is in accordance with the

findings related to the urban heat island (UHI) effect in
Quanzhou city, in the same Chinese province (Xu et al.
2009), and in the megacities of Southeast Asia (Estoque
et al. 2017). These previous studies indicated that there
was a significant positive correlation between mean
LST and the density of impervious surfaces, while this
correlation was negative for green space. This is because
built-up lands promote sensible heat exchange, leading
to an aggravation of the UHI effect, while greater veg-
etation coverage leads to higher rates of evapotranspira-
tion, promoting latent heat exchange for reduction of
LST (Wilson et al. 2003).

We also found that the coefficient values of the IBI
were greater than that of the NDVI (Table 3). Our results
of the correlations are consistent with earlier findings,
indicating that impervious surfaces have a higher impact

Table 3 Parameter descriptive statistics from the OLS (global model) and GWR (local model)

Dependent
variables

Independent
variables

OLS GWR

Minimum Average Median Maximum Standard
deviation

LST IBI 27.959 − 2.767 29.492 28.679 55.395 7.892

SI 9.487 − 131.223 6.394 19.589 49.277 31.928

NDVI − 1.749 − 26.116 − 2.441 − 1.061 16.793 13.119

WET IBI − 0.194 − 1.377 − 0.378 − 0.379 0.562 0.303

SI − 0.477 − 1.123 − 0.036 − 0.263 2.599 0.531

NDVI 0.228 − 0.275 − 0.021 − 0.034 0.384 0.170

Fig. 1 GWR coefficient (left), residual of IBI (right) against LST; the black background showswater areas; this convention ismaintained for
subsequent figures
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on LST than green space (Ma et al. 2016; Estoque et al.
2017). Estoque et al. (2017) indicated that the beta value
of impervious surfaces vs. LSTwas higher than that for
green space vs. LST; Xu et al. (2009) suggested that the
IBI can explain 91.2 to 94.5% of the LST variation in
urban areas. Expanding from previous studies, we also
explored the relationship between the LSM and land
cover, which indicated that the SI has a higher impact
on LSM than the IBI and NDVI. This is mainly because
the SI, including the combination information of bare
soil surface; built-up land; and sand surfaces (Rikimaru
et al. 2002), are dry areas but are not necessary at high

temperatures, because a large part of the soil areas is
under/near trees or near rivers (beaches).

It has been recognized that the effects of the land
cover on the LSTand the LSMmay differ greatly across
study areas (Zhou et al. 2016), which can be due to the
different spatial combinations of impervious surfaces;
green space; and underlying bio-geophysical factors
(Winckler et al. 2017; Estoque et al. 2017). In this
context, the global regressionmodel (OLS) assumes that
the relationship between the dependent variables and
independent variables is constant across the study area
(i.e., the values of β0 and β1 are the same for every

Fig. 2 GWR coefficient (left), residual of SI (right) against LST

Fig. 3 GWR coefficient (left), residual of NDVI (right) against LST
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possible location in the study area) and may lead to bias
when spatial variations in the relationship between the
urban climate and the land cover exist. Therefore, this
study further explored the relationship using GWR
models, which is a powerful tool for exploring spatial
heterogeneity (Fotheringham et al. 2016).

Spatial variations in the associations of urban climate
and land surface

We found that heterogeneity of the land-cover mosaic
inside the urban area entails the complexity in the spatial
distributions of LST and LSM. The relationships

between urban climate and urban surfaces have been
well established and were discussed in a previous sec-
tion of this paper. However, the spatial variations in the
relationships have been less thoroughly explored. Our
results confirm that the GWR provides a considerable
improvement over the OLS regressions. Though the
general spatial pattern of LST and LSM predicted by
the OLS and the GWR models seems similar (Table 3),
the GWR is able to highlight areas that are locally hot or
dry (Figs. 1, 2, 3, 4, 5, and 6), but the OLS cannot depict
such areas. Figs. 1, 2, 3, 4, 5, and 6 indicate the spatial
variations in the GWR regression coefficients and the
residual across locations, revealing the high

Fig. 4 GWR coefficient (left), residual of IBI (right) against LSM

Fig. 5 GWR coefficient (left), residual of SI (right) against LSM

194 Page 8 of 12 Environ Monit Assess (2019) 191: 194



heterogeneity in the relationship between climate and
land surfaces in urban area.

The distribution of the local coefficients of GWR has
several obvious features:

1) The response of urban climate to land surface is
affected greatly by water areas, whether a large
regional river (Minjiang River) or urban inland
rivers. In some cases, the rivers can mitigate the
negative effect of the built-up land on the LST and
the bare land on the LSM, e.g., the clusters closer to
the river exhibited a lower level of negative impact
of the built-up land on the LST (Fig. 1); the rela-
tionship between the LSM and the SI becomes
positive on the near the rivers (Fig. 5); in some
cases, the positive effect of vegetation cover on both
the LSTand the LSM is eliminated; it is unexpected

that a positive correlation between the LST and the
NDVIwas observed on both sides of the rivers (Fig.
3), and it is also interesting that a negative associa-
tion between the LSM and the NDVI was identified
on the riverbanks (Fig. 6); in another case, the rivers
may exacerbated the negative effect of the bare land
on the LST and the built-up land on the LSM, e.g.,
greater negative correlation between the LST and
the SI was found in the both sides of the rivers, and
areas closer to rivers showed greater negative cor-
relations (Fig. 2); this is the same association be-
tween the LSM and the IBI (Fig. 4).

2) The role of water areas is affected by their size and
surrounding land cover. Using the relationship be-
tween the LST and the NDVI as one case (Fig. 3),
the association was strongly positive on both sides
of the wide rivers, while there was a slight negative

Fig. 6 GWR coefficient (left), residual of NDVI (right) against LSM

Fig. 7 Distribution of IBI, SI, and NDVI
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association for areas surrounding the lake with a
higher negative relation on the both sides of the
narrow rivers. It is worth noting that there were still
extremely negative effects of the NDVI on the LST
in the vicinity of the lakes in the northern part of the
study area. This is because the areas surrounding
the lakes in the northern part are forested, while the
areas around the lakes are mostly built-up land. This
shows the combined effects of vegetation, build-
ings, and other characteristics of urban surfaces.
Our results are in agreement with a previous study
(Buyantuyev and Wu 2010), which verified the
combined effects of vegetation and built-up lands
for explaining spatio-temporal variation of temper-
atures in Phoenix.

3) The positive (NDVI) and negative (IBI and SI)
effects are greater in areas with low wind levels.
The dominant wind direction in the study area
during the study period (summer) is SE and the
study region is surrounded by mountains. There-
fore, the magnitude of the coefficients of LST vs.
NDVI and LSM vs. NDVI was greater in the north-
western part of the mountains in the study area
(Figs. 3 and 6). Moreover, the negative effects of
built-up land on the LST (bare land on both the LST
and the LSM) were also greater in north-western
part of the mountain and the study area (Figs. 1 and
2). The exception was the relationship between the
IBI and the LSM (Fig. 4). In addition to the higher
negative correlation at near rivers, the lower outlet
area still had a higher negative correlation than the
upper outlet area. Some clusters (red areas in Fig. 4)
showed positive correlation between the IBI and
LSM. This is mainly because these areas have
high-density buildings (Fig. 7) with lower direct
sunlight levels and therefore are damper.

Conclusions

This study used Landsat-8 OLI/TIRS data to explore the
relationship of the three components (IBI, SI, and
NDVI) with the urban climate (LST and LSM) by use
of both OLS and GWR regressions in the megacities of
Southeast China. The OLS regression outcomes indicat-
ed a significant positive correlation between IBI, SI, and
LST, while a significant negative correlation between

NDVI and LST was observed; opposite results were
obtained in terms of the LSM. We also found that the
impact of the IBI on the LSTwas greater than that of the
NDVI and the SI, while the impact of the SI on the LSM
was greater than that of the other two indicators.

The spatial patterns of GWR coefficients indicated
that (1) the response of urban climate to land surface is
affected greatly by areas of water, whether a large re-
gional river (Minjiang River) or urban inland rivers.
Rivers may reduce the positive effects of vegetation on
the LST and LSM, mitigate the negative effect of the
built-up land on the LST and the bare land on the LSM,
and exacerbate the negative effect of the bare land on the
LST and the built-up land on the LSM. (2) The role of
water areas is affected by their size and the combined
effects of surrounding lands. Large river areas may
offset the cooling effect of vegetation, while small rivers
may reduce the cooling effect of vegetation. (3) The
effect on the urban climate is affected by the prevalence
of winds. Vegetation has a greater positive effect in areas
with less wind, while the negative effects of buildings in
places with poor wind circulation are exacerbated.
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