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Abstract Traditional real-time air quality monitoring
instruments are expensive to install and maintain; there-
fore, such existing air quality monitoring networks are
sparsely deployed and lack the measurement density to
develop high-resolution spatiotemporal air pollutant
maps. More recently, low-cost sensors have been used
to collect high-resolution spatial and temporal air pollu-
tion data in real-time. In this paper, for the first time,
Envirowatch E-MOTEs are employed for air quality
monitoring as a case study in Sheffield. Ten E-MOTEs
were deployed for a year (October 2016 to September
2017) monitoring several air pollutants (NO, NO2, CO)
and meteorological parameters. Their performance was
compared to each other and to a reference instrument
installed nearby. E-MOTEs were able to successfully
capture the temporal variability such as diurnal, weekly
and annual cycles in air pollutant concentrations and
demonstrated significant similarity with reference in-
struments. NO2 concentrations showed very strong pos-
itive correlation between various sensors. Mostly,

correlation coefficients (r values) were greater than
0.92. CO from different sensors also had r values mostly
greater than 0.92; however, NO showed r value less than
0.5. Furthermore, several multiple linear regression
models (MLRM) and generalised additive models
(GAM) were developed to calibrate the E-MOTE data
and reproduce NO and NO2 concentrations measured by
the reference instruments. GAMs demonstrated signifi-
cantly better performance than linear models by captur-
ing the non-linear association between the response and
explanatory variables. The best GAM developed for
reproducing NO2 concentrations returned values of
0.95, 3.91, 0.81, 0.005 and 0.61 for factor of two
(FAC2), root mean square error (RMSE), coefficient of
determination (R2), normalised mean biased (NMB) and
coefficient of efficiency (COE), respectively. The low-
cost sensors offer a more affordable alternative for pro-
viding real-time high-resolution spatiotemporal air qual-
ity and meteorological parameter data with acceptable
performance.
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Introduction

With an increasing trend towards urbanisation due to
better job opportunities and greater access to amenities
and facilities in cities, urban areas are expanding rapidly
globally. Given this trend, air pollutant levels are
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increasing, especially in large urban agglomerations and
at roadside locations, which adversely impact human
health in a variety of ways. Air pollutants, especially
high levels of nitrogen dioxide (NO2) and particulate
matter (PM10 and PM2.5) are considered the most sig-
nificant environmental risks to public health in urban
areas in the UK (Department for Environment, Food and
Rural Affairs (DEFRA) 2015; World Health Organisa-
tion (WHO) 2013). Atmospheric air pollutants were
estimated to cause seven million premature deaths in
2012, worldwide (WHO 2014). Air pollutants (e.g. NO2

and PM10) emitted by various emission sources are risk
factors and are reported to increase the risk of incidence
of various diseases including heart disease, lung cancer
and both chronic and acute respiratory diseases, includ-
ing asthma (WHO 2014).

Air quality monitoring is important to promote air
quality awareness and to support abatement strategies
(Borrego et al. 2016). Several techniques are used to
monitor air quality (Penza et al. 2014), which include (a)
Reference or conventional real-time air quality monitor-
ing, (b) portable air quality monitors, (c) passive diffu-
sion tubes and (d) digital sensors. Reference air quality
monitoring instruments are the most accurate and are
used for air quality compliance purposes, studying ex-
posure, supporting air quality management and devel-
oping policies for reducing and controlling emissions.
Reference instruments are expensive to purchase and
maintain, and therefore, the spatial resolution of air
quality measurement is low and insufficient for detailed
spatiotemporal mapping. Portable or mobile monitors
are either carried by individuals or installed in vehicles
that can be stationed where fixed continuous monitors
cannot be installed. Portable instruments can be useful
for monitoring air quality in certain cases and can pro-
vide high-resolution temporal data for a short period of
time, but have limited application for spatial mapping
and long-term monitoring. Passive tubes are small col-
lection devices used for monitoring gaseous air pollut-
ants such as NO2 and typically provide monthly average
concentrations, which can be converted to annual aver-
ages. These diffusion tubes are the cheapest technique
and provide better spatial coverage. However, these can
be used only for gaseous air pollutants and for long-term
monitoring (mainly monthly average). Low-cost sensors
(LCS) are used to collect real-time air quality data
providing high-resolution spatial and temporal air qual-
ity data. These type of sensors are the new trend in air
quality monitoring and can support the conventional air

quality monitoring stations to increase the density of the
sensing network (Heimann et al. 2015; Van den Bossche
et al. 2015; Viana et al. 2015). The low-cost sensors use
the latest microsensing technology and are considered
the innovative tools for air quality monitoring in the
future (Castell et al. 2015; Snyder et al. 2013; Kumar
et al. 2015; Stojanovic et al. 2015). Data collected by
these sensors can be used for detailed spatial and tem-
poral mapping of air pollution, especially over distinct
areas such as city or an urban district, for atmospheric
model validation and assessing population exposure;
however, the data need to be handle with caution and
several corrections need to be applied first.

Several authors have analysed the performance of the
LCS, comparing their performance with reference
instruments and with each other. Borrego et al. (2016)
performed such an assessment (sensors compared to
reference instruments) in Aveiro, Portugal, from 13 to
27 October 2014. The LCS and reference instruments
were colocated and monitored the levels of gaseous
pollutants (e.g. CO, NOx, O3, SO2), particulate matter
(PM10, PM2.5) and meteorological parameters (e.g. tem-
perature, wind speed and direction, relative humidity,
solar radiation and precipitation). The resultant mea-
surements were mutually compared and different sen-
sors showed significantly different performance in terms
of the statistical metrics used for evaluating the sensors’
performance. The range of R2 (coefficient of determina-
tion) values for different air pollutants was O3 (0.12–
0.77), CO (0.53–0.87), NO2 (0.02–0.89), PM (0.07–
0.36) and SO2 (0.09–0.20), where a lower R2 value
shows poor measurement performance of the sensors.
Borrego et al. (2016) concluded that LCS had great
potential for air quality monitoring, if properly support-
ed by post-processing and data modelling tools.

Different sensor systems use different principles to
measure the concentrations of atmospheric pollutants
(Borrego et al. 2016). These include optical particle
counters (OPC), metal oxide semiconductor sensors
(MOS), electrochemical sensors (EC), non-dispersive
infrared sensors (NDIR) and photo-ionisation detection
sensors (PID). Aleixandre and Gerboles (2012) reported
that these air quality sensors work through either mea-
suring the electrochemical interaction between the sens-
ing materials and the atmospheric chemicals or through
absorption of visible light. The principle of light scat-
tering or absorption is used for measuring the levels of
PM. Individual sensors are usually integrated into a
platform of sensors known as a sensor node. Each
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sensor node contains a sensor board, the sensors and a
control board which integrates all the elements of the
hardware such as GPS, data storage, communication
ports and signal conditioning. Examples of networks
based on these types of sensors are (a) Cambridge
University Sensor Network for Air Quality (SNAQ)
(Mead et al. 2013; Popoola et al. 2013; Borrego et al.
2016), (b) AUTh-ISAG AQ Microsensors (Borrego
et al. 2016), (c) Energy Centre of Netherlands (ECN
Airbox) (Borrego et al. 2016; Hamm et al. 2016), (d)
NanoEnvi platform (Borrego et al. 2016), (e) AQMesh
sensors (Borrego et al. 2016; Carruthers et al. 2016), (f)
ENEAAir-Sensor (Suriano et al. 2015), (g) EveryAware
Sensor Box (Borrego et al. 2016) and Envirowatch E-
MOTE sensors (Reis et al. 2013). These sensors are
briefly described below.

(a) Cambridge university SNAQ are microsensors for
measuring the concentrations of multispecies in-
cluding gases air pollutants, particulate matter and
meteorological parameters. These are low-cost
sensors and can be powered by battery or mains.
Mead et al. (2013) employed these microsensors
for monitoring air quality in Cambridge. Static
sensors were deployed to street furniture, whereas
mobile sensors were carried by pedestrians and
cyclists. Mead et al. (2013) reported widely vary-
ing concentrations of air pollutants in the urban
environment, which could not be characterised by
sparse static conventional air quality network. Fur-
thermore, Popoola et al. (2013) deployed these
sensors in Heathrow Airport in London for air
quality monitoring. They reported considerable
spatial and temporal variations in air pollutant con-
centrations across the air quality network. Accord-
ing to their findings, high air pollutant levels were
linked with stable weather conditions.

(b) AUTh-ISAGAQMicrosensors use the principle of
Waspmote wireless network, developed by
Libelium, which is an international IT and
engineering company. These sensors aim to
reduce power consumption, reduce thermal noise,
provide easy inspection and require low
maintenance. Data are normally collected using
an SD card and can be run using both battery and
main power supply. These sensors were used by
Borrego et al. (2016) in their study and their per-
formance was compared to several other
microsensors and reference instruments. These

sensors can measure the concentrations of several
air pollutants and meteorological parameters.

(c) ECN Airbox were developed by the Energy Re-
search Centre of the Netherlands (ECN). Airbox
sensors monitor particulate matter (e.g. ultrafine
particles (UFP), PM1, PM2.5 and PM10), gaseous
(e.g. NO2 and O3) and meteorological parameters
(e.g. temperature and relative humidity). Airbox
sensors have been used for air quality monitoring
in the Netherlands in the city of Eindhoven in 35
locations since 2013. These sensors are powered
by battery and mains. Hamm et al. (2016) have
provided a detailed review of these sensors, which
could be read for further details.

(d) NanoEnvi sensors were manufactured by Envira.
These analysers use several sensors with different
technology. The sensors’ work is based on the
changes in electrical properties that happen in the
surface of the sensors when pollutants are present.
The air pollutants which can be measured by
NanoEnvi are gaseous pollutants (e.g. SO2, NO,
NO2, CO, CO2, O3, H2S and VOCs), particulates
(PM10 and PM2.5) and meteorological parameters
(e.g. wind characteristics, temperature, relative
humidity).

(e) AQMesh sensors are manufactured by Environ-
mental Instruments Ltd., UK. These are low-cost
microscale sensors for effective environmental
monitoring, which are developed for harsh outfield
environmental conditions and are capable of
wo r k i n g t o h i gh s t a nd a r d s . AQMesh
microsensors measure the concentrations of NO,
NO2, O3, SO2 and CO using the latest generation of
electrochemical sensors. Particulate matter is
measured using a light scattering optical particle
counter. Using solid state sensors, they can also
measure the levels of temperature, RH and
atmospheric pressure. Carruthers et al. (2016) com-
pared the performance of AQMesh in Cambridge
with reference instruments where AQMesh
showed considerably higher concentrations of
NO2, NO and PM10; however, overall, they per-
formed well and showed great potential for con-
tributing to the air quality monitoring, especially
improving the spatial coverage in the UK.

(f) ENEA Air-Sensor are manufactured by ENEA
(Energia Nucleare ed Energie Alternative), which
is an Italian agency for new technology, energy and
environment. These sensors measure the levels of
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several air pollutants, such as CO, NO2, O3, SO2,
H2S and PM10, and meteorological parameters
such as relative humidity and temperature. These
sensors can be operated via battery or mains.
Suriano et al. (2015) evaluated the performance of
these air sensors during a campaign of several
months in Italian national projects for sustainable
innovation in the smart cities. These sensors were
used both as stationary and mobile air quality mon-
itoring systems, and initial results indicated that
these sensors potentially could improve air quality
monitoring program.

(g) EveryAware sensors are manufactured by Vito (a
leading independent research and technology orga-
nisation based in Belgium andworks in the areas of
cleantech and sustainable development) under the
European Seven Framework Program (EU-FP7).
The EveryAware sensors are used for air quality
monitoring in Belgium, Italy and the UK.
EveryAware is a low-cost, portable air quality
monitor used for measuring personal exposure to
traffic pollution. This device contains six low-cost
gas sensors that react in the presence of traffic
pollutants (e.g. CO, NOx). Borrego et al. (2016)
used EveryAware sensors in Aveiro, Portugal, to
compare their performance with other microsensor
and reference instruments.

Dongol (2015) has listed several sensor platforms
which include DunavNet Platform, UrVamm, GeoTech
and ATEKNEA. In addition to these sensors, there are
several other types of sensors available for air quality
monitoring and the listing is growing with time. Sensors
of this type are cheaper, compact, user-friendly and pro-
vide high-resolution spatiotemporal air pollutant concen-
trations. They have the potential to enhance the existing
air quality network run at local levels by local authorities
and nationally by DEFRA. In addition, these sensors can
be installed independently by various research and gov-
ernmental organisations to monitor public exposure to
various air pollutants within a specific area. Despite all
these positive points, the quality of air pollution data
collected by these sensors is unproven and cannot be used
for regulatory and compliance purposes; however, the data
can be used for highlighting air pollution hotpots, for
public awareness and for complementing traditional air
quality monitoring programmes. There is a need for fur-
ther investigation to quantify uncertainties in the datasets
these types of sensors produce. These uncertainties are

related to exposure to harsh environmental conditions,
especially extreme temperature and relative humidity
and the associated time interval (i.e. the length of time
the instruments are operated in such a harsh environment).
Furthermore, uncertainties are also affected by the mea-
suring principles of the sensors and the quality of the
materials used by the manufacturers. Therefore, inter-
comparison of LCS made by different manufacturers
and with reference instruments is required. Further work
is also required to improve the performance of these
sensors by (a) improving their technology further to make
it more robust, (b) frequent calibration both in laboratory
and outdoor and (c) improving the experimental designs.

In this project, the aim is to install LCS in the city of
Sheffield to provide high-resolution spatiotemporal
maps of various air pollutants, especially NO2 which is
a pollutant of particular concern in Sheffield as well as
the rest of the UK. In this paper, the aim is to evaluate
the monitoring capability of Envirowatch E-MOTEs for
air quality monitoring. This is the first paper comparing
the performance of Envirowatch E-MOTEs with each
other and with reference instruments, which are recom-
mended by the European Union and UK DEFRA for air
quality monitoring. The paper analyses a year’s worth of
data and provides a more detailed assessment in com-
parison to previous studies (which have generally
analysed sensor data for a limited time ranging from a
week to a couple of months). Furthermore, supervised
machine learning approaches including multiple linear
regression and generalised additive modelling ap-
proaches are employed to calibrate the sensors by com-
paring their measurements with the reference instru-
ments and setting up the slope and intercept.

Methodology

In this project, the aim is to analyse CO (ppm), NO and
NO2 (ppb) data measured by LCS (Envirowatch E-
MOTEs) and NO and NO2 (ppb) measured by reference
sensors, along with meteorological data such as wind
speed, temperature and relative humidity, to assess the
performance of LCS. All these data were available for
the period October 2016 to September 2017. In this
section, firstly we describe Envirowatch E-MOTEs,
their operating principle and the air quality monitoring
network in Sheffield. This is followed by a statistical
analysis which includes model selection, development
and assessment.
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Envirowatch E-MOTEs

In this project, E-MOTEs developed by Envirowatch
Newcastle, UK, were employed. The E-MOTE was
launched by Envirowatch in 2010. Precision or reference
instruments used for air quality monitoring are large and
expensive to both purchase and maintain; in contrast,
these sensors are cheaper, small and suitable for a high-
density air quality monitoring network. E-MOTEs work
on a similar principle as the AQMesh pods, which use the
latest generation of electrochemical sensors made by
alphasense. E-MOTEs were used to measure the levels
of three gaseous pollutants: carbonmonoxide (CO), nitric
oxide (NO) and nitrogen dioxide (NO2).

The E-MOTEs use wireless technology to commu-
nicate their sensor reading and can be deployed on lamp
posts or other street furniture (Fig. 1). E-MOTEs in a
cluster communicate with a gateway by means of the
Zigbee protocol within a specific area for high-
resolution monitoring. The use of this protocol allows
the individual units to communicate with each other and
pass data from sensors that are not in range or without
line-of-sight of the gateway. Using GPRS, the gateway
device communicates the collected data over an internet
connection to a cloud server operated by Envirowatch.
The data are post-processed and presented for access by
users via the Enviroview web interface as well made
available for download via an application programming
interface (API).

LCS are more compact, portable and use less
power as compared to reference instruments. E-
MOTEs use electrochemical technology for measur-
ing gaseous air pollutants, including NOx, CO and
O3. Electrochemical sensors work by reacting to the
target gas, generating an electrical output which
varies with the concentration of target gases present
in air. Independent Envirowatch E-MOTEs transmit
raw measurement data to a cloud server. These data
are not concentration readings as such and require
post-processing. Once readings are received, mathe-
matical processing is applied to correct cross-gas
effects and prevailing environmental factors.

An electrochemical sensor contains a cell where three
electrodes are present. These electrodes are known as
the working or sensing electrode, counter electrode and
reference electrode. The electrodes are separated by
wetting filters, which are hydrophobic separators en-
abling ionic (cation and anion) contact between the
electrodes, allowing transport of the electrolyte via

capillary action. The sensed gas is either reduced or
oxidised at the working electrode. These reactions are
catalysed by the electrode materials specifically devel-
oped for the gas in question. Normally, the rate of
diffusion of the sensed gas to the sensor electrode is
slower than the rate of reaction of the gas at the elec-
trode. Therefore, the concentration of the sensed gas
determines the electrical current output by the sensor
(Mead et al. 2013). The potential difference between the
working and counter electrodes then generates an elec-
tric current which is the output signal of the sensor. With
a resistor connected across the electrodes, a current
proportional to the gas concentration flows between
the anode and the cathode. Thus, the current can be
measured to determine the gas concentration. The cur-
rent generated by these types of electrochemical sensors
is measured using suitable electronics and, following
further processing, displayed as a concentration mea-
surement in ppm (for CO) or ppb (for NOx, and O3).

Air quality monitoring network (AQMN)

Air quality data analysed in this paper are mainly from
two sources: LCS and reference instruments, which are
described below:

(1) LCS network

LCS used for air quality monitoring were
Envirowatch E-MOTEs. Ten E-MOTEs were deployed
at the University of Sheffield Campus (Fig. 2) for a year
(October 2016 to September 2017). This area is bound-
ed by Mappin Street, Rockingham Street, Portobello
Street and Broad Lane and can be classified as urban
background area. This area is part of the University of
Sheffield and is mainly comprised of offices, lecture
theatres and student accommodation. E-MOTEs pro-
vide minute-by-minute air pollutant measurements,
which were converted to hourly averages to make them
comparable to the data collected by reference instru-
ments. Sensor identities and coordinates of their loca-
tions are shown in Table 1 along with the average annual
concentration of each pollutant measured.

(2) Reference instruments network

Several reference instruments are installed to monitor
various air pollutant concentrations in Sheffield. These
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total nine (9) continuous air quality monitoring stations
(AQMS) and provide hourly concentrations of air

pollutants, including NOx, CO, SO2, O3 and particulate
matter mainly PM10 and PM2.5. Out of these, three (3) of

Fig. 1 Envirowatch E-MOTEs
post-mounted (left) and showing
the solar panel used for battery
charging (right). Ten of these E-
MOTEs were used for collecting
data used in this study

Fig. 2 Map of the locations of the
Envirowatch E-MOTEs included
in this study, where the red rect-
angle in the upper panel shows the
location where sensors were de-
ployed and the lower panel shows
their localisation sites (the map
was developed in ArcMap10.4.1
using basemaps of
OpenStreetMap)
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the monitoring stations are part of the Automatic Urban
and Rural Network (AURN) run by the UK govern-
ment’s DEFRA, whereas the remaining six sites are
installed and managed by Sheffield City Council
(Fig. 3). Devonshire Green (AURN), Waingate (RM1)
and Wicker (GH4) are the nearest to the E-MOTE
network. However, data from October 2016 to Septem-
ber 2017 were available only from Devonshire Green
(DG) monitoring station, which are compared with data
from the installed sensors. Figure 4 shows box plots
comparing NO (lower panel) and NO2 concentrations
(middle-panel) measured by each of the E-MOTEs and
with reference sensors (upper panel). The box plots
show the distribution of the concentrations with some
descriptive statistics including median (middle line of
the box), lower or first quartile (lower end of the box),
upper or third quartile (upper end of the box), inter-
quartile range (representing middle 50% of the data
points), upper and lower whiskers representing concen-
trations outside the middle 50% and outliers (point lying
beyond the whiskers). Box plots compare both central
tendency and variability or distribution of the concen-
trations. NO2 concentrations measured by the various
sensors exhibit a similar pattern; in contrast, NO con-
centrations show much more variability.

Statistical analysis

Statistical analyses were carried out, comprising corre-
lation analysis, regression analysis and graphical pre-
sentations, in the base packages of the R programming
language (R Core Team 2017) and two of its additional

packages known as ‘openair’ (Carslaw 2016) and
‘mgcv’ (Wood 2017).

In this paper, supervised machine learning ap-
proaches are suggested for calibrating E-MOTE outputs
in comparison with measurements gathered from the
reference instruments. Although these sensors are pre-
calibrated by the manufacturers, they require local out-
field calibration to account for cross interference of
other pollutants and meteorological parameters, e.g.
temperature and relative humidity. Two modelling ap-
proaches are employed in this study: (a) linear regres-
sion models (LRM) and (b) generalised additive models
(GAMs). For details on these models, see Hastie and
Tibshirani (1990),Wood (2006), Munir et al. (2013) and
Sayegh et al. (2014).

Model selection: choosing the best set of predictors

Air pollutant data were obtained from ten E-MOTEs
and a reference AQMS each measuring NO and
NO2. Meteorological data of wind speed, relative
humidity and temperature were also available from
a weather station collocated with reference station.
Firstly, NO and NO2 from all ten E-MOTEs (making
20 variables) along with relative humidity, wind
speed and temperature were considered as predictors
(independent variables) for predicting the concentra-
tion of NO and NO2 measured by the reference
instrument (Fig. 5, upper panel). Various other com-
binations of predictors were also tested to find the
best set of predictors using best subset regression
(BSR). After testing a combination of various pre-
dictors, six predictors were chosen and were used in

Table 1 Coordinates of the sensors and data summary showing the mean concentrations (annual mean) of various air pollutants from
October 2016 to September 2017

Sensors ID Northing (m) Easting (m) CO (ppm) NO (ppb) NO2 (ppb)

S701 392,846 631,411 0.33 2.39 58.00

S702 392,846 631,425 0.46 20.31 16.60

S703 392,845 631,437 0.33 10.95 13.30

S704 392,878 631,425 0.33 3.70 18.85

S705 392,878 631,409 0.35 11.55 19.03

S706 392,883 631,390 0.43 15.98 18.60

S707 392,878 631,418 0.33 7.87 17.59

S708 392,900 631,429 0.33 9.60 17.93

S709 392,837 631,400 0.33 9.49 18.70

S710 392,837 631,418 0.32 5.66 17.07
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the model development to model the concentrations
of NO2 and NO measured by reference instrument.
It can be seen in (Fig. 5 upper panel) that the value
of R2 increases with an increase in the number of
independent variables; however, after adding a cer-
tain number of covariates, the line becomes horizon-
tal showing little improvement in the R2 value. Con-
sidering the results of BSR and the outputs of the
actual LRM and GAM (discussed in coming sec-
tions), the final number of covariates were decided.
The whole dataset was divided into two subsets: a
training dataset (75%) and a testing dataset (25%)
both selected randomly. The raining dataset was
used to train the model, whereas the testing dataset
was used to assess the model’s performance and
check its validity.

The model selection process examines all possi-
ble sets of predictors in ordinary least square (OLS)
regressions and leads to choosing one that fits best
according to some criterion. The criterion could be
based on p value as in the standard stepwise
methods (e.g. backwards stepwise regression),
which take one variable away and then re-examine

the model. Alternatively, the criterion could be
based on R2 or adj-R2. This is called BSR or leaps-
and-bounds approach. Criterion based on R2 and
adj-R2 is technically much stronger than on the p
value; therefore, in this paper, the leaps-and-bounds
method is adopted. To apply the leaps-and-bounds
method, we employed one of the package of R
programming language known as ‘Leaps’ to select
the best set of predictors.

Model development

In this paper, two modelling approaches are employed:
linear regression model (LRM) and generalised additive
model (GAM).

(a) LRM

Two types of linear models were developed: Simple
linear regression and multiple linear regression model.
In simple linear regression model, only one dependent
variable (predictor) was used. This helps correct slopes
and offsets (intercepts) values of the lower-cost sensors

Fig. 3 Air quality monitoring
network of continuous
monitoring stations in Sheffield
comprised of AURN sites run by
DEFRA and Sheffield City
Council sites (the map was
developed in ArcMap10.4.1
using basemap of
OpenStreetMap)
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to improve the accuracy of results. During calibration,
the measurements are regressed vs reference measure-
ments, where readings from the E-MOTEs (NO_mean
or NO2_mean) are taken as independent (x-axis) and

reference readings (NO_DG or NO2_DG) as the depen-
dent (y-axis) variable. The regression model is run and
values of slopes and intercepts are calculated as shown
in Eqs. 1 and 2; here, DG stands for Devonshire Green

Fig. 4 Box plots of hourly
concentrations (ppb) NO (lower
panel), NO2 (centre panel) mea-
sured by E-MOTEs and their
mean compared with reference
measurements from Devonshire
Green monitoring station
(upper panel)
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which is the location of a reference air quality monitor-
ing station and NO_mean is the average of the readings
from all the sensors.

NO DG ¼ βo þ β1 NO meanð Þ þ Ɛ ð1Þ

NO2 DG ¼ βo þ β1 NO2 meanð Þ þ Ɛ ð2Þ
The values of slopes and intercepts are then applied

to the whole dataset of E-MOTEs.
βo is the intercept, β1 is the coefficient or slope, Ɛ is

the error term (the difference between observed and
modelled concentrations).

To account for cross interference and for the effect of
meteorological parameters, a multiple linear regression
model was developed for each NO and NO2 value as
given in Eqs. 3 and 4 using the predictors selected in the
model selection section (3.2.1).

NO DG ¼ βo þ β1 NO meanð Þ þ β2 NO2 DGð Þ
þ β3 NO2 meanð Þ þ β4 WSð Þ
þ β5 RHð Þ þ β6 Tempð Þ þ Ɛ ð3Þ

NO2 DG ¼ βo þ β1 NO DGð Þ þ β2 NO2 meanð Þ
þ β3 NO meanð Þ þ β4 WSð Þ
þ β5 RHð Þ þ β6 Tempð Þ þ Ɛ ð4Þ

In the above equations, βo is the intercept, β1
to β6 are the coefficients or slopes and Ɛ is the
error term. Furthermore, NO_mean and NO2_mean
are average concentrations of NO and NO2 from
the lower-cost sensors, NO_DG and NO2_DG are
NOx concentrations from the Devonshire Green
monitoring station, WS is wind speed (m/s), RH
is relative humidity (%) and Temp is the air tem-
perature (°C).

(b) GAMs

GAMs are advanced modelling techniques
which are applicable to both normal and non-
normal data distribution and do not assume the
relationship between response and explanatory var-
iables to be linear. GAMs rather permit the re-
sponse probability distribution to be any member
of the exponential family (e.g. normal, exponential,
gamma and poisson distribution). In contrast, a
linear model assumes the response distribution to
be normal and the relationship between response
and explanatory variables to be linear.

The GAMmodels developed in this study are shown
in Eqs. 5 to 8 below, using the same predictors used by
LRM shown in Eqs. 1 to 4.

NO DG ¼ s1 NO meanð Þ þ Ɛ ð5Þ

NO2 DG ¼ s1 NO2 meanð Þ þ Ɛ ð6Þ

Fig. 5 Best subset regression (BSR) using 23 predictors (NO_1 to
NO_10, NO2_1 to NO2_10, wind speed (WS), temperature
(Temp) and relative humidity (RH)) for predicting NO2_DG (up-
per panel) and 6 predictors (NO_mean, NO2_mean, NO_DG,WS,
Temp and RH) for predicting NO2_DG (lower panel)
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NO DG ¼ s1 NO meanð Þ þ s2 NO2 DGð Þ
þ s3 NO2 meanð Þ þ s4 WSð Þ
þ s5 RHð Þ þ s6 Tempð Þ þ Ɛ ð7Þ

NO2 DG ¼ s1 NO DGð Þ þ s2 NO2 meanð Þ
þ s3 NO meanð Þ þ s4 WSð Þ
þ s5 RHð Þ þ s6 Tempð Þ þ Ɛ ð8Þ

In the above models (5 to 8), s1 to s6 are the smooth-
ing terms (Wood 2006), each one of these is associated
with the adjacent explanatory variable. Response or
modelled variables are given on the left and the explan-
atory variables of each model are given on the right of
the equations.

Models’ assessment

To evaluate the models’ performance, predicted and
measured (observed) concentrations were compared.
For this purpose, several statistical metrics were calcu-
lated including correlation coefficient (r), coefficient
of determination (R2), rootmean square error (RMSE),
normalised mean biased (NMB), factor of two (FAC2)
and coefficient of efficiency (COE), which are defined
by Carslaw (2016) and Sayegh et al. (2014). RMSE
provides a good measure of the model error by calcu-
lating how close or far the predicted values are to the
observedvalues.NMBestimates average over or under
prediction, whereas ‘r’ is the strength of the linear
relationship between two variables (here, modelled
and observed concentrations). NMB value between +
0.02 and − 0.02 shows acceptable model performance.
Wewould like ‘r’ to have a value as close to one (± 1) as
possible; however, generally, a value ranging from ±
0.5 to ± 0.99 indicates reasonably good performance.
FAC2 is the fraction of modelled values within a factor
of 2 of the observed values. FAC2 should satisfy the
condition that 0.5 ≤Mi/Oi ≤ 2,whereMi represents the
modelledvalues andOi represents theobservedvalues.
A highly efficient or perfect model should have COE
value of 1; however, when analysing real data, a model
should have a COE value of less than 1. COE having a
zero value (COE = 0)means themodel prediction is not
better than the mean of the observed value, which in
otherwordsmeans its predictionpower is zero; it hasno
predictive advantage.

Results and discussion

Temporal variability and correlation analysis

Hourly average NO2 (ppb), NO (ppb) and CO concen-
trations (ppm) measured by ten E-MOTEs seemed rea-
sonable and had an overall mean of about 22 ppb,
10 ppb and 0.35 ppm, respectively. Overall, various air
pollutant concentrations showed a similar pattern at
different monitoring sites during different seasons, for
instance, NO2 concentration was higher in winter
months and lower in summer (time plots not shown
for brevity). These seasonal trends are further analysed
in coming sections. NO2 and NO concentrations mea-
sured at the Devonshire Green monitoring site also
showed higher concentrations in colder months and
lower concentrations in warmer months. Obara et al.
(2011) and Cai et al. (2016) have reported that air
pollutant levels are strongly associated with stable
weather conditions, atmospheric inversion, low wind
speed and shallow boundary layer which are generally
found in winter seasons in the UK. In such meteorolog-
ical conditions, air pollutants emitted by various sources
do not disperse and stay near the emission sources due
to poor horizontal and vertical dispersion.

Figure 6 shows correlation plots of hourly average
NO2 (upper panel), NO (centre panel) and CO (lower
panel) concentrations collected by the ten E-MOTEs.
The correlation coefficient value, ranging from − 1 to +
1, are normally represented as a decimal number (e.g.
0.xx). However, here to facilitate presentation, both zero
and decimal points are avoided, following the default
format of ‘openair’ suggested by Carslaw (2016). NO2

concentrations show very strong positive correlation
between various sensors. Mostly, correlation coeffi-
cients are greater than 0.92 (r > 0.92), except sensor-1
(NO2_1), which shows relatively weaker correlation,
with r values ranging from 0.60 to 0.67. The cause of
this weaker correlation is likely due to erroneous data
caused by bad communication between the sensor and
the gateway. Taking this into account, this shows all the
E-MOTE measurements of NO2 are consistent with
each other and show strong similarity with each other.
This strong similarity puts confidence in the consistency
of these sensors. This is the first study reporting the
performance of E-MOTEs; therefore, no comparison
was possible with previous studies. However, several
researchers have assessed the performance of other
LCS, such as AQMesh pods both in the UK and Europe
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and reported that their performance varied both spatially
and temporally from sensor to sensor (Castell et al.
2017).

In contrast, NO concentrations (Fig. 6, middle-panel)
showed weaker correlation. NO_5 vs NO_6 and NO_5
vs NO_7 showed strongest correlation with r value of
0.48 each. NO_6 vs NO_9 show zero r value, whereas
NO_2 vs NO_3 showed negative correlation. Figure 6
(lower panel) presents correlation plots of CO concen-
trations showing much stronger correlation than NO
concentrations. Except for CO_2 and CO_6, the remain-
ing sensors compared against each other showed r
values greater than 0.90. CO_2 and CO_6 have r values
ranging from 0.35 to 0.64, which are those for CO_2 vs
CO_6 and CO_1 vs CO_6, respectively. This confirms
that E-MOTEs produce consistent measurements of CO
concentration. For further analysis, time variation plots
are constructed in the next section to see how the pol-
lutant concentrations vary at various time scales, such as
diurnal, weekly and annually.

Figure 7 shows time variation plots of NO2 concen-
trations (ppb) collected by nine of the E-MOTEs.
NO2_1 was removed due to missing and likely incorrect
measurements. These plots show strong similarities
among the nine sensors on all time scales, i.e. diurnal,
weekly and annual cycles. During the diurnal cycle (Fig.
7, lower-left-panel), NO2 concentrations (ppb) start de-
creasing after midnight and continue to do so until about
05:00 h, then slightly increase at about 06:00–08:00 h
probably due to morning traffic peak hours. Afterwards,
NO2 levels gradually decrease and reach a minimum
level around midday (12:00 h), most probably due to
low traffic activities and atmospheric conditions which
help disperse air pollutants quickly. Relatively high
temperature, high wind speed and wider atmospheric
boundary layer during the afternoon improve both hor-
izontal and vertical air pollutant dispersion. Diurnal
cycles of temperature (°C) and wind speed (m/s) during
2017 at the Devonshire Green monitoring stations are
shown in Fig. 8, which clearly shows that wind speed
and temperature reach the highest levels during the
afternoon, which leads to a widening of the atmospheric
boundary layer and help disperse locally emitted

Fig. 6 Correlation plots of NO2 ppb (upper panel), NO ppb
(centre panel) and CO concentrations (ppm) (lower panel) from
ten E-MOTEs during Oct 2016 to Sept 2017 in Sheffield. All r
values should have been presented as decimal number; however,
here, both zero and decimal points are avoided to facilitate
presentation

R
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pollutants. After 14:00 h, NO2 levels begin increasing
and reach their highest levels in response to the

evening’s busiest traffic hours (about 18:00–20:00 h),
when this activity cause pollutant emissions to increase.

Fig. 7 Time variation plots of NO2 concentrations (ppb) from nine sensors from October 2016 to September 2017 (readings from one
sensor, NO2_1 were excluded due to missing and erroneous data)

Fig. 8 Diurnal cycles of wind
speed (m/s) and temperature (°C)
at the Devonshire Green
monitoring station during 2017,
showing highest wind speed and
temperature during the afternoon
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Furthermore, in the evening, the atmosphere is colder
and more stable which discourages air pollutants disper-
sion. The stable atmosphere continues as the night pro-
gresses, although traffic levels decline. This reduction in
traffic levels results in a slight decrease in NO2 levels. It
is worth noting that all the sensors produce almost the
same temporal pattern on daily basis. Diurnal cycles on
individual days (Monday to Sunday) are shown in Fig. 7
(upper panel). Weekly cycles of NO2 concentrations
(ppb) are shown in Fig. 7 (lower-right-panel), where a
uniform pattern of various sensors can be observed. As
expected, different traffic patterns during the weekend
result in lower levels of NO2 on Saturday and Sunday.

Annual cycles of NO2 (Fig. 7, lower-middle-pan-
el) are somewhat confusing showing much higher
levels of NO2 during October. It was expected that
NO2 levels would have been higher during the colder
months (i.e. November, December and January) and
lower during the hotter months (i.e. May, June and
July). This is seen in Fig. 9, which depicts NO2 levels
measured at the Devonshire Green monitoring station
during the same period as shown in Fig. 7. Concen-
trations measured at this location are shown as
NO_DG and NO2_DG, and average concentrations
of the E-MOTEs are shown as NO_mean and

NO2_mean. CO is not monitored at this site and
therefore comparison with the E-MOTEs was not
possible. All E-MOTE sensors have a strong correla-
tion with each other and have the same temporal
pattern; therefore, it is convenient to average their
measurements to facilitate comparison with the mea-
surements from the Devonshire Green si te.
NO2_mean and NO_mean are closely related with
NO2_DG and NO_DG at diurnal, weekly and annual
cycles; however, some differences can be observed at
various temporal intervals. To summarise, it can be
said that generally, E-MOTEs show close similarities
with the reference instrument; however, there are
some dissimilarities at various temporal scales. NO2

and NO concentrations (ppb) at Devonshire Green
produced a smooth annual cycle going down from
January to June–July and then going up until Decem-
ber. Such a smooth annual cycle does not exist when
mean NO and NO2 concentrations measured by E-
MOTEs were plotted. NO2_mean showed lowest lev-
el in September and highest in October and the clear
summer and winter difference demonstrated by
Devonshire Green has disappeared here. Overall,
the results discussed above are encouraging as they
successfully capture the temporal trends of air

Fig. 9 Time variation plots comparing diurnal, weekly and annual cycles of NO2 and NO at Devonshire Green and the mean of all 10 E-
MOTE sensors during Oct 2016 to Sept 2017 in Sheffield
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pollutants and show a consistent performance by
showing strong correlation with each other.

Modelling

In this section, both linear and non-linear regression
modelling approaches are employed and their perfor-
mances are compared using several statistical metrics.

Linear regression models

The outputs of model 1 to 4 are presented in Table 2,
showing the values of various statistical metrics. Table 2
shows that the multiple linear regression model
(MLRM) demonstrated much better performance than
the simple linear regression model (SLRM). This was

expected as MLRMs used several extra explanatory
variables including temperature, wind speed and relative
humidity. The values of FAC2, RMSE, R2, NMB and
COE are shown in Table 2. The values of NMB dem-
onstrate acceptable model performance since they lie
within the range of + 0.02 to − 0.02 (Table 2). The other
metrics also signify a small degree of error in the model
and good predictability. Figure 10 shows a scatter plot
with model lines and shows that most of the points lie
between the FAC2 region, which again demonstrates
acceptable model performance. It should be noted that
these metrics were calculated using the testing data
(25% randomly selected), and for the training dataset,
the values returned for these metrics displayed even
better performance (not shown for brevity). This shows
that using air quality data measured by LCS and

Table 2 Showing the outputs of simple (SLRM) and multiple linear regression models (MLRM)

Model Response variable Explanatory variable(s) FAC2 RMSE R2 NMB COE

SLRM NO_DG NO_mean 0.98 2.84 0.25 0.002 0.10

SLRM NO2_DG NO2_mean 0.78 10.15 0.15 0.013 0.05

MLRM NO_DG NO_mean, WS, NO2_mean, RH, NO2_DG, Temp 0.30 12.79 0.51 0.012 0.12

MLRM NO2_DG NO_mean, WS, NO2_mean, Temp NO_DG, RH, 0.83 5.76 0.64 0.001 0.41

Fig. 10 Scatter plot comparing
observed and MLRM-predicted
concentrations of NO2_DG (ppb)
based on the testing data (25%
randomly selected), where the
solid middle line is the 1:1 line,
whereas the upper and lower lines
represent 2:1 and 0.5:1 respec-
tively. Most of the points lie
within these lines demonstrating
acceptable model performance
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meteorological data as explanatory variables, we can
successfully predict (reproduce) NO2 concentrations
measured by reference instruments. Further details of
model 4 are given in Table 3, which shows that all
explanatory parameters in the model had highly signif-
icant effects (p value < 0.01) on the response variable.
Explanatory variables with positive coefficients (i.e.
NO_mean and NO2_mean) show positive effect on the
response variable, whereas the variables with negative
coefficients (e.g. temperature and wind speed) show
negative effect on the response variable. The negative
effect of temperature and wind speed suggests that
warmer and windier conditions help disperse locally
emitted pollutants and hence decrease NO2 concentra-
tions. The negative correlation between relative humid-
ity and temperature is well known; therefore, relative
humidity is showing positive associations with NO2.
Positive association between different NOx species is
expected as they have the same emission source and
therefore show positive coefficients in Table 3. Linear
regression is unable to address the non-linear relation-
ship between response and explanatory variables; there-
fore, a non-linear regression model is employed in the
next section to test how it performs in comparison to its
linear counterpart.

Generalised additive model

Generalised additive models (GAM) are shown in Eqs. 5
to 8. After running these models, predicted and observed
concentrations were compared and several metrics were
calculated to assess their performance, which are present-
ed in Table 4. Comparing Tables 2 and 4, it can be
observed that using the same explanatory variables,

GAM performs better and displays greater predictability.
Comparing these models, model 8 showed best perfor-
mance. Its outputs are shown in Fig. 11, which shows how
the response variable (NO2_DG) changes with each ex-
planatory variable. This figure also shows that the associ-
ation between explanatory variables and response variable
(NO2_DG) is not linear and changes for different values of
the explanatory variables. It is interesting to see that the
effect of temperature on NO2 is negative (the curve is
downward) until around 20 °C is reached; afterwards, as
temperature increases further, the curve turns upward,
showing a positive effect, most probably due to the for-
mation of secondary NO2 in the atmosphere. In contrast,
the effect of wind speed results in a downward curve
regardless of wind speed, which is probably due to the
fact that high wind speed disperses locally emitted pollut-
ants more effectively. GAM successfully address the non-
linear relationship between response and explanatory var-
iables, and probably, this is the reason that GAMperforms
significantly better than the MLRM, using the same ex-
planatory variables. As an example, let us compare the
GAM andMLRMbased on NO2_DG. GAMhas resulted
in a high R2 value (0.83) and lower RMSE (3.91) than
MLRM where the R2 value was 0.64 and RMSE was
5.76. This shows that GAM has predicted NO2_DGmore
accurately. Figure 12 compares observed and predicted
NO2 and the plot shows a linear association between
observed and predicted concentrations with most of the
points lying within FAC2 region. All independent vari-
ables have highly significant effects (P < 0.001) on
NO2_DG.AlthoughGAMshows better performance than
MLRM, MLRM are used more often by researchers due
to the ease with which it can be applied and interpreted.
MLRM provide a slope for each explanatory variable as it
assumes a linear relationship, whereas in the case of
GAM, the slope changes almost at every point (Fig. 11).
In real-life situations especially in the case of air quality
data, relationships are not always linear; therefore, GAM
provide a better option for air quality modelling and
display greater predictability as shown in this study. To
explain this further, several plots are shown in Fig. 13
showing that the association between various air pollut-
ants is not linear. To address the non-linear association, we
need a non-linear model. GAM successfully addresses the
non-linear association between various air pollutants and
so performs better than a linear model. A demonstrative is
shown in Fig. 13 (lower-right panel), where the value of
R2 is 0.79 for GAM and 0.5 for LRM showing consider-
able difference in performance of the two models.

Table 3 Showing various parameters of model 4 along with their
slopes and p values

Explanatory
Variable

Coefficient
(slopes)

Significance value (p
value)

Intercept 14.74 0.000***

NO_mean 0.125 0.000 ***

NO_DG 0.250 0.000***

NO2_mean 0.168 0.000***

Temp − 0.412 0.000***

WS − 1.219 0.000***

RH 0.026 0.001 **

Note: p. stars relate to how statistically significant the effect is:
p < 0.001 = ∗∗∗, p < 0.01 = ∗∗
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Further discussion of LCS

Castell et al. (2016) have evaluated the performance of
the AQMesh sensors measuring gaseous air pollutants
(e.g. NOx, CO and O3) and particulate matter (PM10 and
PM2.5) in Oslo, Norway. They performed the evaluation
both outdoors and under indoor laboratory conditions.

They considered several types of emissions and environ-
mental conditions such as roadside traffic and urban
background over a 6-month period (April to September,
2015). Castell et al. (2016) concluded that good perfor-
mance of the low-cost sensors in the laboratory does not
imply similar performance when sited outdoors. There-
fore, to reduce uncertainties, sensors must be calibrated in

Table 4 Showing different statistical metrics for GAM

Response variable Explanatory variable(s) FAC2 RMSE R2 NMB COE

NO_DG NO_mean 0.98 2.80 0.17 0.014 0.101

NO2_DG NO2_mean 0.80 10.06 0.16 0.012 0.048

NO_DG NO_mean, NO2_mean, NO2_DG, WS, RH, Temp 0.53 9.89 0.70 0.008 0.50

NO2_DG NO_mean, NO2_mean, NO_DG, WS, RH, Temp 0.95 3.91 0.83 0.005 0.614

Fig. 11 Outputs of GAM (Eq. 8), in which NO2_DG (ppb) was
used as the response variable and NO2_mean (ppb), NO_DG
(ppb), NO_mean (ppb), temperature (temp °C), wind speed (ws
m/s) and relative humidity (rh %) were used as explanatory

variables. The dashed lines are the estimated 95% confidence
interval, whereas the vertical short lines on the x-axis show the
data presence
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outdoor field locations. They also concluded that there is
a lack of adequate outdoor testing of the sensors by the
manufacturers before marketing such sensors, which can
lead to poor performance and misleading data, which is
of great concern, especially when members of the public
use such instruments without scientific supervision to
collect and interpret air quality data.

Borrego et al. (2016) compared the performance of
several LCS with reference instruments from 13 to 27
October 2014 and reported that for measuring O3,
AQMesh and NanoEnvi sensors had the lowest errors
and higher coefficient of determination (R2 > 0.70),
whereas ENEA Air-Sensors, ISAG and Cambridge
SNAQ showed poor performance with R2 < 0.2. To
measure the levels of NO2, Borrego et al. (2016)
compared the performance of six platforms, where
the highest correlation and lowest errors were shown
by AQMesh, ECN Airbox and Cambridge University
SNAQ with R2 > 0.80 and mean biased error (MBE)
close to zero. In contrast, ENEA Air-Sensors and
AUTh-ISAG AQ Microsensors demonstrated very
poor correlation (R2 < 0.1). For measuring the levels
of CO, AQMesh and Cambridge University SNAQ
had the highest correlation (R2 > 0.80) with reference
instruments, whereas the performance of the rest of

the sensors was also satisfactory (R2 > 0.50) (Borrego
et al. 2016). For monitoring NO, AQMesh and Cam-
bridge University SNAQ were compared, where
AQMesh showed better correlation (R2 = 0.80) than
Cambridge University SNAQ (R2 = 0.30). For mea-
suring PM10, all sensors showed poor correlation with
reference instruments, with R2 = 0.36 being the
highest which was observed with the ECN Airbox
(Borrego et al. 2016). The ECN Airbox also showed
the highest correlation (R2 = 0.27) with reference in-
struments for measuring PM2.5, the other sensors had
lower R2-values.

Castell et al. (2017) compared the measurements
from 24 AQMesh sensors against reference
instruments and reported that the quality of the
data obtained from the LCS were questionable.
The performance of the sensors varied both
spatially and temporally and was dependent on the
atmospheric composition and meteorological
conditions, such as temperature and relative
humidity. Furthermore, Castell et al. (2017) reported
that the performance varied from unit to unit; there-
fore, it is necessary to check the data quality of each
pod separately before use. The sensors installed in
the laboratory showed much stronger correlation

Fig. 12 Scatter plot comparing
observed and GAM-predicted
concentrations of NO2_DG (ppb)
based on the testing data (25%
randomly selected), where the
solid middle line is the 1:1 line,
whereas the upper and lower lines
are 2:1 and 0.5:1 lines respec-
tively. The dashed lines show
within the factor of two regions.
Most of the points lie within these
lines showing an acceptable
model performance
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(R2 > 0.95 for all pollutants) with reference instru-
ments than those installed outdoors, where the aver-
age R2 values were 0.60, 0.86, 0.49, 0.54, 0.56 and
0.51 for CO, NO, NO2, O3, PM10 and PM2.5, re-
spectively. Air quality data collected by means of
LCS are suitable for promoting air quality aware-
ness, general information and for highlighting air
pollution hotpots; however, the data are not suitable
for air quality compliance and research, especially
for assessing health and environmental impacts of

air pollution (Castell et al. 2017). Dongol (2015) has
also concluded that air quality data collected by LCS
cannot be used for air quality regulatory purposes
and for other purposes where highly accurate data
are required. Therefore, Lewis and Edwards (2016)
state there is a need for further legislation to regulate
the usability of data obtained from low-cost sensors.

Referring to the uncertainties in air quality data col-
lected by LCS, Lewis and Edwards (2016) have
commented that the recent introduction of these sensors

R
2

for GAM = 0.95 and LRM = 0.92 R
2

for GAM 0.9 and LRM 0.87

R
2

for GAM 0.91 and LRM 0.84 R
2

for GAM 0.79 and LRM 0.5

Fig. 13 Comparing the performance of linear (LRM) and non-linear (GAM)models. R2 for GAM= 0.95 and LRM= 0.92, R2 for GAM 0.9
and LRM 0.87, R2 for GAM 0.91 and LRM 0.84, R2 for GAM 0.79 and LRM 0.5
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for monitoring public exposure to air pollution are gen-
erating a large volume of data, which remain mostly
untested, and therefore their quality is questionable and
will create difficulty for air quality managers and
planners in the future. Furthermore, Lewis and
Edwards (2016) mentioned that these sensors show
stability and sensitivity issues and that the sensors’
readings are subject to interference from other long-
lived air pollutants, e.g. CO2 and H2 and prevailing
meteorological conditions like relative humidity, tem-
perature and wind speed. The lower-cost sensors per-
form better when air pollutant levels are high (Lewis and
Edwards 2016). The lower-cost sensors have potential
to measure air pollutant levels in places where tradition-
al monitoring was not previously possible. They are
portable, cheaper, and can provide much better spatial
and temporal coverage in real-time, providing more
localised and timely warnings to the public.

Lewis et al. (2016) have shown that one potential
solution to reduce the uncertainties of air quality data
obtained by using this class of sensors is by applying
supervised machine learning techniques, such as the
boosted regression tree (BRT) model. Spinelle et al.
(2017) applied three approaches for calibrating the con-
centration of NO2, CO and CO2. The methods were
linear regression, multiple linear regression and a super-
vised machine learning technique (artificial neural net-
work). Using simple linear regression, only the refer-
ence concentration was used as an explanatory variable,
whereas in the other models, relative humidity and
temperature were also used. Supervised learning tech-
nique showed better performance than the other two
models. The finding of this current study agrees with
the above previous studies and show that the quality of
NO2 concentrations measured by LCS can be much
improved by applying supervised machine learning
techniques based on GAM.

Conclusions

LCS have the potential to contribute to real-time air
quality monitoring networks installed to date as this
type of sensors are cheap, compact, user-friendly and
provide high-resolution spatiotemporal measure-
ments of air pollutant concentrations. However, these
sensors have limitations; therefore, the sensors re-
quire outdoor calibration and the data obtained from
these sensors require further processing employing

advanced statistical modelling approaches, such as
GAM. In this paper, air pollutant data from ten
Envirowatch E-MOTEs were compared with each
other and with reference instruments. The sensors
were able to capture the diurnal, weekly and annual
cycles of air pollutant concentrations with some dis-
crepancies. NO2 and CO showed stronger correlation
between various sensors, where most of the correla-
tion coefficients were greater than 0.9; however, NO
showed relatively weaker correlation between the
various sensor locations. NO2 concentrations showed
very strong positive correlation between various sen-
sors. Mostly, correlation coefficients (r values) were
greater than 0.92. CO from different sensors also had
r values mostly greater than 0.92; however, NO
showed r value less than 0.5. Several linear and
non-linear models were developed for sensor calibra-
tion and for predicting NO2_DG and NO_DG con-
centrations using NO_mean and NO2_mean and me-
teorological parameters as explanatory variables.
GAM demonstrated better performance by exhibiting
stronger similarity (e.g. greater correlation coefficient
and FAC2 values) and lower error (e.g. weaker
RMSE and NMB) between observed and modelled
concentrations of NO and NO2. GAM were able to
capture the non-linear association between various
air pollutants and performed better than linear
models. The best GAM developed for reproducing
NO2 concentrations returned values of 0.95, 3.91,
0.81, 0.005, and 0.61 for factor of two (FAC2), root
mean square error (RMSE), coefficient of determina-
tion (R2), normalised mean biased (NMB) and coef-
ficient of efficiency (COE), respectively. Therefore,
GAM are recommended for LCS calibration and for
reproducing measured NO2. In the coming projects,
we intend to deploy a more dense network of LCS in
the whole city of Sheffield to collect high-resolution
spatial and temporal air quality data. We also aim to
improve experimental designs of the sensor network,
test other sensor technologies and identify new cali-
bration approaches for better performance in the
future.
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