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Abstract In this study, artificial neural networks
(ANNs) including feed forward back propagation neural
network (FFBP-NN) and the radial basis function neural
network (RBF-NN) were applied to predict daily sew-
age sludge quantity in wastewater treatment plant
(WWTP). Daily datasets of sewage sludge have been
used to develop the artificial intelligence models. Six
mother wavelet (W) functions were employed as a pre-
processor in order to increase accuracy level of ANNs.
In this way, a 4-day lags were considered as input
variables to conduct training and testing stages for the
proposed W-ANNs. To compare performance of W-
ANNs with traditional ANNs, coefficient of correlation
(R), root mean square error (RMSE), mean absolute
error (MAE), and Nash-Sutcliffe efficiency coefficient
(NSE) were considered. In the case of all wavelet func-
tions, it was found that W-FFBP-NN (R = 0.99 and
MAE = 5.78) and W-RBF-NN (R = 0.99 and MAE =
6.69) models had superiority to the FFBP-NN (R = 0.9
and MAE = 21.41) and RBF-NN (R = 0.9 and MAE =
20.1) models. Furthermore, the use of DMeyer function
to improve ANNs indicated thatW-FFBP-NN (RMSE =

7.76 and NSE = 0.98) and W-RBF-NN (RMSE = 9.35
and NSE = 0.98) approaches stood at the highest level of
precision in comparison with other mother wavelet
functions used to develop the FFBP-NN and RBF-NN
approaches. Overall, this study proved that application
of various mother wavelet functions into architecture of
ANNs led to increasing accuracy of artificial neural
networks for estimation of sewage sludge volume in
the WWTP.

Keywords Sewage sludge quantity .Wastewater
treatment plant . Artificial neural networks .Wavelet
functions

Introduction

Sludge is chiefly composed of water with lower
quantity of solid materials eliminated from liquid
sewage. Sewage sludge has two main sources includ-
ing industrial and domestic wastewaters (Danish
et al. 2016). With emergence of modern communi-
ties, huge quantity of sewage sludge, which is ema-
nated from human activities, is one of the most chal-
lenging environmental issues in industrialized coun-
tries (e.g., Belanche et al. 1999; Hanbay et al. 2008).
Compared to the past decades, ferocious demands for
contemporary wastewater treatment plant (WWTP)
in order to increase level of water quality for masses
in the community have enhanced the quantity of
sewage sludge generation. Fundamentally, sludge
production is inextricably bound up with the

Environ Monit Assess (2019) 191: 163
https://doi.org/10.1007/s10661-019-7196-7

M. Zeinolabedini :M. Najafzadeh (*)
Department of Water Engineering, Faculty of Civil and Surveying
Engineering, Graduate University of Advanced Technology,
Kerman, Iran
e-mail: m.najafzadeh@kgut.ac.ir
e-mail: moha.najafzadeh@gmail.com

M. Zeinolabedini
e-mail: mary.zeinolabedini@gmail.com

http://orcid.org/0000-0002-1902-3099
http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-019-7196-7&domain=pdf


wastewater treatment process. This means that an
increase of wastewater treatment can produce huge
quantity of sewage sludge. On account of putrefac-
tion of the organic components of the sludge and
difficulties of its disposal process, gradual gathering
of huge quantity of the sewage sludge from various
sources such as domestic and industrial wastewaters
has deteriorative effects on environment (e.g.,
Llorens et al. 2008; Pai et al. 2011; Huang and
Chen 2015).

With rapid rise of the industrial revolution and dwelling
in megacities, recycling process of the wastewater plays a
substantial role inmanagement of water resources.WWTP
units are one of important places for conducing recycling
processes. In fact, treatment of sewage sludge is performed
due to decrease in quantity of sludge physical properties
such as mass and humidity in order to cut down high costs
of disposal process. There is no denying the fact that an
accurate estimation of sewage sludge volume can have
significant influences on performance of WWTP (e.g.,
Belanche et al. 1999; Hamoda et al. 1999; Wan et al.
2011; Kaira and Christian 2013; Filipović et al. 2013; Li
et al. 2014; Danish et al. 2016; Fernandez de Canete et al.
2016; Kołecka et al. 2017). In the case of designing the
sludge treatment units (STU), pieces of information related
to the quantities, sources, and weight-volume relationship
of sludge are essentially needed to consider as well as
providing disposal facilities (Mirabi et al. 2014). This is
highly recommended to predict the volume of sludge for
designing sludge treatment facilities in the wastewater
treatment systems (Kaira and Christian 2013). Generally,
it can be said that there is no relationship to predict sewage
sludge quantity owing to the fact that sewage sludge
treatment is a complicated process with high level of
non-linearity, uncertainty, and large time-delay. For in-
stance, during storm events, upsets to the various physical
and biological processes occasionally occur in a WWTP,
and thus, possibility of forecasting the hydraulic loads to
treatment facilities during storm is highly parsimonious for
optimization of WWTP operation. Most of the hydrolog-
ical and hydraulic models which are capable to describe
sewage collection systems are grouped into deterministic
techniques (El-Din and Smith 2002). On the other hand,
such numerical models need in-depth information about
system and occasionally rely on the large number of
variables which some of them are uncertain or not easy-
to-define. In this way, WWTP units are the systems with
degree of complexity due to existence of physical and
chemical processes.

Nowadays, artificial intelligence (AI) approaches are
used to solve problems of a complex system. In accor-
dance with potential of AI models, for more than two
decades, soft computing techniques such as artificial
neural networks (ANNs), adaptive neuro-fuzzy infer-
ence system (ANFIS), support vector machine (SVM),
random forest (RF), multivariable adaptive regression
splines (MARS), gene-expression programming (GEP),
evolutionary polynomial regression (EPR), and model
tree (MT) have been applying to assess operation of
WWTP (e.g., Boger and Guterman 1990; Cohen et al.
1997; Belanche et al. 1999; Gontarski et al. 2000; El-
Din and Smith 2002; Çinar 2005; Llorens et al. 2008;
Moral et al. 2008; Noori et al. 2010; Li et al. 2014;
Honggui et al. 2014; Safavi et al. 2015; Guo et al. 2015;
Han et al. 2016; Najafzadeh and Zeinolabedini 2018;
Cong and Yu 2018). Applications of AI models showed
that physical and chemical processes of WWTP can be
well evaluated. On the basis of previous investigations,
the most predominant AI approach used to assess per-
formance of WWPT was ANN models as, multilayer
perceptron (MLP) and radial basis function neural net-
works (RBF-NN). These two common ANNs have
remarkable advantages. The MLP, known as feed for-
ward neural network (FF-NN), is the most common
supervised training model of ANN which is essentially
applied for regression and classification. This approach
has high rate of convergence to find non-linear relation-
ships between input variables and output variables.
Moreover, RBF-NN is more flexible than other structure
of the ANNs due to the fact that any non-linear function
can be used in the structures of RBF-NN as an activation
function. Hence, structure of the RBF-NN will be capa-
ble of improving accuracy level of model performance.
Furthermore, RBF-NN models are easy-to-design be-
cause of having just three layers. In this way, volume of
computations is intrinsically low in comparison with
other types of ANNs (Oja 1994). Sewage sludge values,
known as stationary signals, occasionally have high
level of irregularly, and additionally, this problem can
have repercussion on accuracy level of ANNmodels. To
get rid of this problem, researchers have applied wavelet
transformation (WT), as a preprocessor, to smooth ir-
regularity of sewage sludge signals. In fact, on the most
useful advantage of WT is de-noising of the non-
stationary signals in different decomposition levels. In
this way, wavelet function has the capability to reduce
irregularity of signals which are out-of-band
(Najafzadeh and Zeinolabedini 2018).

163 Page 2 of 25 Environ Monit Assess (2019) 191: 163



In this research, two types ANNs including feed
forward back propagation neural network (FFBP-NN)
and RBF-NN are used to predict the volume of sludge
produced in WWTP, located in Kerman City, Iran. Fur-
thermore, various mother wavelet functions, known as
model preprocessors, such as Daubechies (db), Coiflet
(coif), DMeyer (dmey), Haar, Symlets (Sym), and
Biorsplines (bior) are used to increase precision level
of FFBP-NN and RBF-NN techniques. Performances of
the proposed W-ANNs models are investigated by
means of various statistical criteria.

Intelligence predictive models: a brief review

Since the middle of 1980s, AI techniques have been
applied to assess physical and chemical processes in
WWTP. A survey of literature indicated that
Rumelhart and McCielland (1986) were probably the
first researchers who have used FFBP-NN model to
predict removal of total organic carbon (TOC) in the
treatment plant. Boger and Guterman (1990) have ap-
plied successfully a three-layer ANN to predict weekly
NH4-N concentration using a two-year data for Shafdan
WWTP, Israel. Côté et al. (1995) have proposed a two-
step model to improve accuracy level of activated
sludge process (ASP) prediction. In the first step, opti-
mal selection of parameters was conducted using down-
hill simplex approach and consequently five effective
variables as effluent suspended solid (SSef), effluent
COD, NH4, dissolved oxygen (DO) in the mixed liquor,
and volatile suspended solids (VSS) in the returned
activated sludge (AS) were considered. In the second
phase, feed forward networkwas successfully utilized to
estimate the ASP. Cohen et al. (1997) used neuro-fuzzy
technique to prosperously evaluate load entering the
WWPT and biochemical conversion through the se-
quencing bath reactors (SBR) process. Belanche et al.
(1999) have predicted behavioral patterns of WWTP,
located in Catalonia, Spain, by means of fuzzy hetero-
geneous neural network (FH-NN). They found that per-
formance of FH-NN to estimate BOD, COD, and total
suspended solid (TSS) was better than other ANNs.

Gontarski et al. (2000) have employed ANN models
to predict environmental characteristics of output flow
fromWWTP at Rhodiaco Ltda, Brazil. From their study,
statistical results indicated that ANNs estimated accu-
rately elimination of TOC. El-Din and Smith (2002)
have proposed FFBP-NN approach to predict

wastewater inflow rate at the entrance of plant. They
found that FFBP-NN could simulate efficiently
physical-chemical processes occurring within storm
events inWWPT located in the Edmonton area, Canada.
Onkal-Engin et al. (2005) have presented a reasonable
relationship between sewage odor and BOD of WWTP
by means of ANNs. Mjalli et al. (2007) have applied
ANN model to appraise WWTP at Doha city, Qatar.
They considered COD, BOD, and TSS as input
variables and found that ANN had good performance.
Hanbay et al. (2008) collected TSS data fromWWTP in
Malatya, Turkey and found that W-ANN had an accept-
able level of efficiency in assessment of WWTP perfor-
mance. Moreover, Jalili Ghazizade and Noor (2008)
have used ANN model to estimate mass of municipal
solid waste production in Mashhad, Iran. They conclud-
ed that ANN approach had lower computational error in
comparison with traditional models. On the basis of
mass balance modeling, Llorens et al. (2008) predicted
outflow ofWWTP into Tet River, south of France. They
used Kohonen Self-Organizing Maps (KSOMs) for re-
trieval of missing datasets and found that KSOMs-ANN
was an appropriate tool for system evaluation. Moral
et al. (2008) have predicted ASP using ANN model.
They considered nine various chemical variables to
obtain an acceptable level of accuracy. In Noori et al.
(2009a) research, principle component analysis (PCA)
and SVM used to estimate solid waste management
system at Mashhad city, Iran. They found that applica-
tion of PCA could increase precision level of SVM
technique. Furthermore, Noori et al. (2009b) have
employed PCA-ANN to predict solid waste production
in Tehran, Iran. They concluded that performance of the
PCA-ANN stood at the higher level of linear regression
model. Fernandez et al. (2009) have used successfully
neurofuzzy model to precisely forecast flow rate of
WWTP. Pai et al. (2011) used ANFIS models to obtain
precise estimate effluent suspended solids (SSef), efflu-
ent COD, and effluent pH fromWWTP in Taiwan. Nasr
et al. (2012) have applied FFBP-NN models to evaluate
operation of WWTP in El-Agamy, Egypt. They consid-
ered BOD, COD, and TSS as input variables to develop
FFBP-NN model. From their research, they concluded
that ANN is a robust tool to assess the performance of
WWTP. Boniecki et al. (2012) employed successfully
ANNs to predict ammonia emissions sent out from
sewage sludge composting. Ongen et al. (2013) indicat-
ed that ANN had the capability of providing an accurate
prediction for calorific value of synthetic gas generated
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by dewatering sludge in WWTP. Verma et al. (2013)
used different AI models such as ANN, k-nearest neigh-
bor, MARS, SVM, and RF to predict TSS in WWTP
located at Demoines, USA. They considered effluent
flow rate and the influent carbonaceous biochemical
oxygen demand (CBOD) as input variables. They con-
cluded that FFBP model was the best approach among
other AI techniques. In Zare-Abyaneh (2014) study,
concentration of water quality indices for WWTP was
estimated by multivariate linear regression (MLR) and
ANNmodels. Also, temperature, pH, TSS, and TS were
taken into account as input variables. Statistical results
demonstrated that ANN had better performance than
MLR model. Honggui et al. (2014) used a fuzzy neural
network (FNN) to precisely simulate fault detection
patterns of WWTP. From their research, DO, pH,
COD, and total nutrients (NT) were considered as input
parameters. Guo et al. (2015) predicted total Nitrogen
concentration using ANN and SVM for WWTP in
Ulsan, Korea. They found that SVM model had better
performance in comparison with ANN approach.
Moreover, Huang and Chen (2015) have employed
two types of ANN model including FFBP-NN and
generalized regression neural network (GRNN) to esti-
mate the thin layer pattern in municipal sewage sludge
(MSS). They found that both ANN models could pro-
vide an accurate prediction of average temperature and
moisture content in MSS. Han et al. (2016) concluded
that recurrent self-organizing neural network (RSONN)
provided precise estimations of SVI for WWTP in the
Beijing, China. Cong and Yu (2018) found thatW-ANN
could produce more accurate prediction of water quality
indices for WWTP than ANN and SVM techniques. In
Han et al. (2018) study, a fuzzy neural network (FNN)
based on PCA technique was used to predict concentra-
tions of effluent total phosphorous (TP) and ammonia
nitrogen (NH4-N). They tested PCA-FNN for various
WWTP in China and, as a result, robustness of the
proposed AI model was found. Recently, Najafzadeh
and Zeinolabedini (2018) have used three conjunction
models of W-EPR, W-MT, and W-GEP to precisely
predict rate of sewage sludge in the WWTP located in
Kerman city, Iran.

Overview of the study region

Kerman city, located in the southeast of Iran, has stood
at the 14th most populated city in Iran. In terms of

geographical properties, Kerman has altitude of
1755 m above sea level, latitude 30° 17′, and longitude
57° 04′. In this city, the WWTP was designed in eight
modules and for population about 75,000. The plant,
located in the last 6 km (approximately 3.5 miles) of
northwestern part of Kerman city, has area of 45 ha and
design capacity of 259,200 m3/day. Location of Kerman
WWTP was illustrated in Fig. 1. It is worth mentioning
that the proposed method applied for refining process in
this WWTP unit is conventional activated sludge (CAS)
(Forster and Foundation 2003). In fact, CAS system
basically comprises a tank for aeration process, which
is applied for biological degradation. Additionally, there
is a secondary tank, known as a clarifier, for sedimenta-
tion. In the clarifier, separation of sewage sludge from
treated wastewater is performed. In fact, CAS has some
advantages. Not only is CAS the low-cost project, but
also it needs small land. Furthermore, it has effluent with
good quality and relatively low head losses.

In the present research, 1736 datasets of daily
sewage sludge values have been collected from
Kerman WWTP for a period of 57 weeks begin-
ning at 2011 to develop the proposed models.
Figure 2 illustrates variations of sewage sludge
values versus time. Generally, the datasets (23rd
October 2011 until 21st July 2016) was divided
randomly into two parts including training
(calibration) and testing (or validation). In other
words, exactly 70% of the datasets were dedicated
to training purpose while the remaining 30% used
for testing. Statistical characteristics of sewage
sludge were presented in Table 1.

Methodology

Wavelet transformation

Wavelet function has the capability to analyze
stationary (or periodic) and non-stationary datasets
by means of various types of wavelet mother
functions. This technique can transform datasets
to both time and frequency information with a
higher resolution, which is not provided by con-
ventional transformation (e.g., Hamed et al. 2004;
Noori et al. 2010; Kisi and Shiri 2011; Shoaib
et al. 2015; Shiri 2018). Basically, wavelet trans-
formation is defined in form of two important
functions as, continuous wavelet transformation
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(CWT) and discrete wavelet transformation
(DWT). The CWT of a time series f(t) is presented
as follows (Kisi and Shiri 2011):

wa;b tð Þ ¼ ∫þ∞
−∞ f tð Þ 1ffiffiffi

a
p ψ* t−b

a

� �
dt ð1Þ

Where * is indicative of the complex conjugate
function, ψ(t) is the wavelet function (or mother

wavelet), a and b are the frequency factors and
time factor, respectively.

In the case of a discrete time series [f(t)], the
DWT can be defined as follows:

w a; bð ÞD ¼ 2
− j=2 ∫ j¼ J

j¼1ψ
* 2− j=2−k
� �

f tð Þdt ð2Þ

in which j and k are the integer values. As seen in
Fig. 3, the DWT of a specific time series is com-
puted by sending it through a series of filters,

(a)

(b)

(a)

(c)

Fig. 1 (a) Study area location; (b) general scheme of Kerman WWTP; and (c) sludge drying beds
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known as low-pass and high-pass filters. This pro-
cess is known as Mallat algorithm (Mallat 1989).
The time series (or signal) is decomposed into two
main parts including the approximation and detail.
In the current investigation, coefficients of detail
(d) and approximation (a) related to the decompo-
sition of a non-periodic signal are provided by
means of Eq. (2).

Selection of wavelet families

One of the most challenging issues in Wavelet
transform is to select the most appropriate mother
wavelet for analyzing the time series. In fact, a
wide range of mother wavelets employed on the
time series can provide various results. In this
study, wavelet functions, originated from six var-
ious wavelet families with different orders of sub-
class, were presented in Table 2. Other descrip-
tions about principle of mother wavelet functions
were mentioned in Seo et al. (2015). All the
wavelet families are used for DWT phase of hy-
brid models (Maheswaran and Khosa 2012;
Joseph and Anto 2012). In the present investiga-
tion, 32 selected wavelet functions are employed
to evaluate performance of hybrid W–ANN
models.

Definition of decomposition level

In addition to selection of typical mother wavelet func-
tions, determining decomposition level can influence
on accuracy of sewage sludge time series analysis.
Different researches considered various decomposition
levels to analyze non-stationary signals in their inves-
tigations (Partal and Kisi 2007; Kisi and Shiri 2011;
Catalão et al. 2011; Adamowski and Sun 2010; Seo
et al. 2015; Hu and Wang 2015; Kasiviswanathan et al.
2016; Najafzadeh and Zeinolabedini 2018). In Aussem
et al. (1998) research, the decomposition level was
determined by the following equation as:

L ¼ int log Nð Þð Þ ð3Þ
in which, L = the decomposition level, N = the number
of time series datasets, and int[·] = the integer-part func-
tion. L value is equal to 3 due to 1736 datasets.
Therefore, for a given wavelet function, three decom-
position levels (d1, d2, d3) and approximation (a3) were
generated. In this study, 128 (4 × 32) sub-time series
components (a3, d1, d2, d3) were generated by means of
six mother wavelet functions. For instance, Fig. 4
shows variations of Haar wavelet function components
with time.

Artificial neural networks

Feed forward neural network

The multilayer perceptron (MLP), known as feed
forward neural network, is one of the most common
and practical architecture of ANN including three

0

100
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300

400

500

600

0 500 1000 1500

seulav egduls ega
weS

Time

Fig. 2 Variations of sewage
sludge versus time for Kerman
WWTP

Table 1 Statistical properties of under study sewage sludge

Maximum Minimum Mean Standard deviation

543.16 20.36 259.28 71.38
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typical layers: an input layer, a hidden layer(s), and
an output layer. The volume of datasets according to
input and output variables plays a substantial role in
determining number of neurons in each layer and
number of hidden layers. Basically, the FF-NN is
considered as a model with m number of neurons
in the input layer {x1, x2, … , xm}, r number of neu-
rons in the hidden layer {h1, h2, … , hr} and p num-
ber of neurons in the output layer {z1, z2, … , zp}:

h j ¼ f ∑m
i¼1xiwij þ ∝ j

� � ð4Þ

zk ¼ g ∑r
j¼1hjθij þ βk

� �
ð5Þ

Where, f(.) and g(.) are the activation functions, ∝j is
the bias for jth neuron in hidden layer and βk is the bias
for kth neuron in output layer. Moreover, wij is the
weight of the connection from neuron xi to neuron hj,
and θij is the weight of the connection from neuron hj to
zk. Eventually, i, j, and k denote input, hidden, and
output layers, respectively. In-depth information about
FF-NN can be found in literature (Altunkaynak and
Nigussie 2015; Heidari et al. 2016).

Radial basis function neural network

Radial basis function neural network (RBF-NN) is ca-
pable to present solutions to the various problems such
as approximation (or prediction) of linear and non-linear
functions, pattern recognition of signal, and data classi-
fication. In this regard, radial basis functions were
employed as activation functions in the structure of
ANNs. The final output of the RBF-NN is a linear
combination of radial basis functions of the inputs and
neuron parameters. RBF is three-layer neural networks
which there are input vectors constructing the input
layer in the first layer. In the second layer, introduced
as a hidden layer, there are non-linear activation func-
tions which are applied in the hidden layer. Final neuron
in output layer is a linear function. Furthermore, basic
descriptions of RBF-NN model can be found in litera-
ture (e.g., Zounemat-Kermani et al. 2009; Bateni et al.
2007).

Models development

In the similar investigations for Kerman WWTP,
Najafzadeh and Zeinolabedini (2018) concluded that
use of a 4-day lag has produced more accurate

Signal

High-Pass

Low-Pass

Down 

sampling

Down 

sampling

d1

High-Pass

Low-Pass

Down 

sampling

Down 

sampling

d2

High-Pass

Low-Pass

Down 

sampling

Down 

sampling

d3

a3

d1,d2, d3: details

a3: approximation

Fig. 3 Mallat algorithm for three-level decomposition of a signal

Table 2 Results of ANNs performance without wavelet transformation

Model R RMSE (m3/day) MAE (m3/day) NSE

Training Testing Training Testing Training Testing Training Testing

FFBP-NN 0.89 0.90 32.1 30.8 21.60 21.41 0.79 0.81

RBF-NN 0.89 0.90 31.7 30.8 21.41 20.10 0.80 0.81
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prediction of S(t) than other lags. Therefore, in this
study, prediction of sewage sludge quantity [S(t)], as
an output variable, is conducted using a 4-day lag for
S(t) [S(t -1), S(t -2), S(t - 3), and S(t -4)] as input
variables.

To model FFBP-NN, the Levenberg Marquardt (LM)
algorithm was applied and additionally, the logsig and
pureline functions were chosen as activation functions
for the hidden layers and output layer, respectively. Learn-
ing rate of 0.01 and epoch number of 100 were used in
training phase. A diagram of the FFBP-NNmodel includ-
ing a network with two hidden layers of six neurons was
illustrated in Fig. 5. To gain the lowest computational error
of training stage for RBF-NNmodel, 30 neurons in hidden
layers were considered. Thus, proposed structure of RBF-
NN for predicting S(t) rates has been shown in Fig. 6.

In order to obtain the temporal and spectral infor-
mation of the time series sewage sludge data, input
variables (lagging from 1 to 4 days) are completely
decomposed into sub-series of approximation and
details using the DWT. As mentioned in Table 2,
32 selected mother wavelet functions were employed
to analyze the effects of the DWT on the precision
level of ANNs in comparison with simple FFBP-NN
and RBF-NN models. Each lagged signal (or time
series) was decomposed into three levels. In W-ANN
models, four input variables were transformed into

16 sub-time series. Training of W-FFBP-N model
was performed using 32 mother wavelet functions.
All the W-FFBP-NN models have two hidden layers
with 12 neurons. Learning rate value of 0.01 and
epoch of 100 were considered to obtain minimum
computations errors in training stages. Similarly,
performance of training stages for 32 W-RBF-NN
indicated that the models had the same structure with
30 hidden neurons. Implementation of the wavelet
function with FFBP-NN and RBF-NN techniques
has conceptually been depicted in Fig. 7.

Results and discussion

Training and testing for both ANNs and W-ANNs
were evaluated using various statistical parameters
as, the correlation coefficient (R), the root mean
square error (RMSE), the mean absolute error
(MAE), and the Nash-Sutcliffe efficiency coeffi-
cient (NSE). These parameters were expressed as,

R ¼
∑n

i¼1 S tð ÞiObs−S tð ÞObs
� �

S tð ÞiPre−S tð ÞPre
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 S tð ÞiObs−S tð ÞObs
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 S tð ÞiPre−S tð ÞPre
� �2r ð6Þ
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Fig. 4 Decomposed Haar wavelet sub-time series components (Ds) of sewage sludge datasets
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MAE ¼ 1

n
∑n

i¼1 S tð ÞiObs−S tð ÞiPre
		 		 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 S tð ÞiObs−S tð ÞiPre
� �2r

ð8Þ

NSE ¼ 1−
∑n

i¼1 S tð ÞiObs−S tð ÞiPre
� �2

∑n
i¼1 S tð ÞiObs−S tð ÞObs
� �2 ð9Þ

where S(t)Obs is the observed values, S tð ÞObs is the mean
of S(t)Obs , S(t)Pre is the estimated (predicted) values,
S tð ÞPre is the mean of S(t)Pre, and n is the number of
data sets.

Quantitative results of RBF-NN and FFBP-NN
techniques were presented in Table 5. In training
stage, Table 3 indicated that efficiency of RBF-NN
model stood at the relatively higher level of accuracy
(RMSE = 31.7 and MAE = 21.41) than FFBP-NN
(RMSE = 32.1 and MAE = 21.6). For testing phase,
statistical parameters of R (0.9), RMSE (30.8), and

NSE (0.81) showed that both RBF-NN and FFBP-
NN approaches have the relatively same performance
to predict S(t). Furthermore, statistical performance
of W-FFBP-NN for training and testing phases were
presented in Table 4. In training stage, Table 4
showed that Daubechies function with db10 sub-
class has produced lower computational error (R =
0.99 and RMSE = 9.52) than other db sub-classes.
Similarly, values of MAE and NSE showed this
trend. For the Coiflets function, the use of fifth sub-
class provided the most accurate estimation of sew-
age sludge (MAE = 6.63 and NSE = 0.98). Moreover,
Symlets function with sub-class of sym8 predicted
S(t) with the highest level of accuracy (RMSE =
10.68 and MAE = 7.55) in comparison with other
sub-classes. Statistical parameters of RMSE (10.6)
and NSE (0.97) indicated that BioSplines function
has stood at the highest level of precision in the
prediction of sewage sludge compared with other
bio sub-classes. According to Table 4, it should be
generally mentioned that DMeyer and Haar functions
have the lowest and highest computational error in
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S (t-4)
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Bias

Input 

layer

Hidden 

layer
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Fig. 5 Proposed architecture of FFBP-NN for sewage sludge prediction
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prediction of S(t), respectively. In testing stage, su-
periority of mother wavelet functions had as same
manner as training phases. For instance, DMeyer
function had the best performance (RMSE = 7.76
and MAE = 5.73) than other mother wavelet
functions.

Table 5 presents quantitative results for both training
and testing stages of W-RBF-NN models. In training
phase, DMeyer function with RMSE of 9.56 and MAE
of 6.81 has provided the most accurate prediction than
other mother wavelet function, while Haar function
resulted in the worst performance (RMSE = 20.82 and
MAE = 13.02). The Coiflet function with coif5 sub-
class has produced more precise prediction of S(t)
(RMSE = 10.52 and MAE = 7.64) than sym8 sub-class
(RMSE = 11.68 and MAE = 8.24), bior6.8 sub-class
(RMSE = 11.21 and MAE = 7.92), db9 sub-class
(RMSE = 11.33 and MAE = 8.07). Furthermore, values
of R and NSE indicated superiority of coif5 sub-class to

the sym8, bior6.8, and db9 sub-classes. For testing
stages of W-RBF-NN models, DMeyer function wave-
let had the best efficiency (RMSE = 9.35 and MAE =
6.69) than db10 (RMSE = 10.45 and MAE = 7.64),
coif5 (RMSE = 10.17 and MAE = 7.64), sym8
(RMSE = 11.68 and MAE = 7.77), bior6.8 (RMSE =
11.04 and MAE = 0.97), and Haar (RMSE = 20.91 and
MAE = 12.8). Values of R and NSE were indicative of
superiority of DMeyer-RBF-NN to the other mother
wavelet functions with various sub-classes.

In order to evaluate the efficiency of hybrid wavelet
models, the percentage of increase (or decrease) in the
statistical indices was compared with those obtained
using simple ANN models. Figure 8a–d illustrated the
percentage of variations in the R, RMSE, MAE, and
NSE values for 32 W-FFBP-NN models, respectively.
As seen in Fig. 8, W-FFBP-NN model developed by the
dmey wavelet function had the best efficiency and the
corresponding increase in the R and NSE values were

S (t)y

S (t-1)

S (t-2)

S (t-3)

S (t-4)

Input 

layer

Hidden 

layer

Output 

layer

Fig. 6 Proposed architecture of
RBF-NN for prediction of sewage
sludge
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about 10.3% and 22.5%, respectively whereas RMSE
andMAE values decreased to 75.3% and 73.2% respec-
tively. With respect to R and NSE values, the efficiency
of W-FFBP-NN model improved by the db10 and coif5
wavelet functions was similar to the W-FFBP-NN de-
veloped using dmey wavelet function, while R and NSE
values for all functions have increased about 10.3% and
22.5%, respectively. In accordance withMAE value, the
use of Haar and db3 wavelet functions has gone through
similar trend. Applying Haar wavelet function had the
highest level of error for the sewage sludge quantity
prediction (RMSE = 22.96 and MAE = 15.48) in com-
parison with those obtained using other wavelet func-
tions. For the Haar-FFBP-NN model, the increase in the
R and NSE values reached to 5.8% and 11.8% respec-
tively in comparison with the simple FFBP-NN model.
What is more, the decrease in the RMSE and MAE
value were roughly 26.9% and 27.6%, respectively.

Figure 9a–d presented the percentage of changes in
the R, RMSE, MAE, and NSE values for the W-RBF-
NN models in comparison with the simple RBF-NN
model, respectively. For an improved W-RBF-NN by
dmey function, R and NSE values have increased to
roughly 10.1% and 21.7%, respectively whereas de-
crease in the RMSE and MAE values were about

69.7% and 67.4%, respectively. The efficiency level of
W-RBF-NN model developed by Haar function was
almost similar to the bior1.1 function. Compared with
the simple RBF-NN model, an increase in the R and
NSE values obtained by the Haar-RBF-NN model was
roughly 6.4% and 13.3%, respectively whereas decrease
in the RMSE and MAE value was about 34.7% and
38%, respectively. From Tables 4 and 5, values of
statistical parameters confirmed that an increase of the
number of sub-class order in each wavelet family led to
an increase in precise level of W-NN models. In this
study, application of dmey and haar wavelet functions in
structure of ANN models have provided the best and
worst accuracy level, respectively. Figures 10 and 11
showed qualitative performance of hybridW-FFBP-NN
models for training and testing stages, respectively. Al-
so, for the best mother wavelet function, Figs. 12 and 13
illustrated performance ofW-RBF-NNmodels for train-
ing and testing phases, respectively.

Results of DR analysis

In this study, the crucial aim of using statistical param-
eters is to select the AI approach which has the most
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Fig. 7 Flow chart of W-ANNs
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accurate performance. In other words, these error indi-
ces may have no capability of presenting valuable infor-
mation about error distribution. In this way, perfor-
mance of theW-ANNs was evaluated using discrepancy
ratio (DR) to present more robust mother wavelet func-
tion. Fundamentally, mathematical shape of DR was
expressed as (White et al. 1973),

DR ¼ log
Q tð Þ Predictedð Þ
Q tð Þ Observedð Þ

 !
ð10Þ

DR values can be evaluated in three different ways.
When DR is equal to 1, the proposed model has the best
performance can be obtained. Furthermore, for DR > 1,
the proposed technique had over prediction for S(t)

Table 3 W-FFBP-NN models results with wavelet transformation

Mother wavelet Sub class R RMSE (m3/day) MAE (m3/day) NSE

Training Testing Training Testing Training Testing Training Testing

Haar haar 0.95 0.95 22.96 22.96 15.65 15.48 0.89 0.90

Daubechies db2 0.97 0.97 15.79 15.74 11.13 11.63 0.95 0.94

db3 0.97 0.96 20.96 20.52 16.42 15.54 0.91 0.91

db4 0.98 0.98 13.21 13.19 9.03 9.21 0.96 0.96

db5 0.98 0.98 12.28 11.87 8.45 8.49 0.97 0.97

db6 0.98 0.98 10.90 10.75 7.50 7.47 0.97 0.97

db7 0.98 0.98 11.07 10.94 7.73 7.71 0.97 0.97

db8 0.98 0.98 11.49 10.56 7.72 7.43 0.97 0.97

db9 0.98 0.99 10.58 10.29 7.18 7.20 0.97 0.98

db10* 0.99* 0.99* 9.52* 9.51* 6.75* 6.80* 0.98* 0.98*

Coiflets coif1 0.97 0.96 17.36 17.26 11.59 11.41 0.94 0.93

coif2 0.98 0.98 14.53 14.46 11.10 11.18 0.95 0.96

coif3 0.98 0.98 11.2 11.13 7.75 7.97 0.97 0.97

coif4 0.98 0.98 11.02 10.61 7.8 7.6 0.97 0.97

coif5* 0.99* 0.99* 9.49* 9.42* 6.63* 6.64* 0.98* 0.98*

Symlets sym2 0.97 0.96 17.78 17.57 12.58 11.92 0.93 0.93

sym3 0.97 0.97 14.94 14.92 10.19 10.07 0.95 0.95

sym4 0.98 0.98 12.99 12.68 9.27 8.92 0.96 0.96

sym5 0.98 0.98 12.11 11.71 8.29 8.29 0.97 0.97

sym6 0.98 0.98 11.83 11.67 8.4 8.19 0.97 0.97

sym7 0.98 0.98 10.83 10.71 7.67 7.42 0.97 0.97

sym8* 0.98* 0.98* 10.68* 10.16* 7.55* 7.20 0.97* 0.97*

BiorSplines bior1.1 0.95 0.95 21.55 20.9 13.79 13.76 0.9 0.91

bior1.5 0.96 0.96 18.35 16.66 11.53 11.35 0.93 0.93

bior2.4 0.98 0.98 13.58 12.79 9.40 9.25 0.96 0.96

bior2.8 0.98 0.98 12.32 12.21 8.67 8.41 0.97 0.97

bior3.3 0.97 0.97 16.40 16.15 10.54 10.43 0.94 0.94

bior3.7 0.98 0.98 12.75 12.52 8.70 8.86 0.96 0.96

bior4.4 0.98 0.98 12.84 12.85 8.98 8.98 0.96 0.96

bior6.8* 0.98* 0.98* 10.6* 10.32* 7.45* 7.35* 0.97* 0.97*

DMeyer dmey* 0.99* 0.99* 7.76* 7.76* 5.73* 5.79* 0.98* 0.98*

*The proposed wavelet-conjunction models with the best performance
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values; otherwise, for DR < 1, possibility of under pre-
diction state is inevitable.

In this study, DR analysis is conducted using
testing dataset. Minimum, maximum, and average
of DR values for the testing stage of the W-ANN
models have been computed in Tables 6 and 7.
From Table 6, an improved FFBP-NN model by
dmey function had the minimum range of DR
values [− 0.056, 0.057] and average of 0.002,

Table 5 Results of DR analysis for W-FFBP-NN model

Mother wavelet
function

Sub-
class

Maximum
DR

Minimum
DR

Average
DR

Haar haar 0.757 − 0.154 0.016

Daubechies db10 0.083 − 0.116 − 0.0004
Coiflets coif5 0.600 − 0.066 0.001

Symlets sym8 0.088 − 0.086 − 0.00001
BiorSplines bior6.8 0.151 − 0.054 0.002

DMeyer dmey 0.057 − 0.056 0.002

Table 4 W-RBF-NN models results with wavelet transformation

Mother wavelet Sub class R RMSE (m3/day) MAE (m3/day) NSE

Training Testing Training Testing Training Testing Training Testing

Haar haar 0.95 0.95 20.82 20.91 13.02 12.8 0.91 0.91

Daubechies db2 0.97 0.96 17.14 16.37 11.86 11.70 0.94 0.94

db3 0.97 0.97 15.20 14.63 10.11 9.82 0.95 0.95

db4 0.98 0.98 13.7 13.71 9.54 9.28 0.96 0.96

db5 0.98 0.98 12.61 12.40 8.89 8.9 0.96 0.96

db6 0.98 0.98 12.22 11.34 8.5 8.27 0.97 0.97

db7 0.98 0.98 11.76 11.62 8.3 7.86 0.97 0.97

db8 0.98 0.98 12.65 11.75 8.85 8.17 0.96 0.97

db9 0.98 0.98 11.43 11.33 7.84 7.68 0.97 0.97

db10* 0.98* 0.98* 11.33* 10.45* 8.07* 7.64* 0.97* 0.97*

Coiflets coif1 0.97 0.97 16.44 14.86 11.29 10.02 0.94 0.95

coif2 0.98 0.98 13.18 12.87 9.14 8.94 0.96 0.96

coif3 0.98 0.98 12.37 11.17 8.5 7.8 0.96 0.97

coif4 0.98 0.98 11.42 10.11 8.07 7.37 0.97 0.97

coif5* 0.98* 0.98* 10.52* 10.17* 7.64* 7.17* 0.97* 0.97*

Symlets sym2 0.96 0.97 17.65 16.43 12.18 11.48 0.93 0.94

sym3 0.97 0.97 15.48 14.33 10.46 9.83 0.95 0.95

sym4 0.98 0.98 12.9 12.84 8.79 8.67 0.96 0.96

sym5 0.98 0.98 13.29 13.22 9.36 9.15 0.96 0.96

sym6 0.98 0.98 12.05 11.83 8.39 8.19 0.97 0.97

sym7 0.98 0.98 12.48 12.38 8.68 8.03 0.96 0.96

sym8* 0.98* 0.98* 11.68* 11.14* 8.24* 7.77* 0.97* 0.97*

BiorSplines bior1.1 0.95 0.96 22.12 17.9 13.8 11.92 0.9 0.93

bior1.5 0.97 0.97 17.29 16.61 11.28 10.97 0.94 0.94

bior2.4 0.98 0.98 14.09 13.47 9.8 9.55 0.96 0.96

bior2.8 0.98 0.98 12.71 12.45 8.84 8.44 0.96 0.96

bior3.3 0.97 0.97 17.16 16.26 11.18 10.71 0.94 0.94

bior3.7 0.98 0.98 13.27 12.82 9.19 9.02 0.96 0.96

bior4.4 0.97 0.98 14.19 13.45 9.99 9.32 0.95 0.96

bior6.8* 0.98* 0.98* 11.21* 11.04* 7.92* 7.86* 0.97* 0.97*

DMeyer dmey* 0.99* 0.99* 9.56* 9.35* 6.81* 6.69* 0.98* 0.98*

*The proposed wavelet-conjunction models with the best performance
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Fig. 8 Percentage of changes in (a) R, (b) RMSE, (c) MAE, and (d) NSE values obtained by W-FFBP-NN
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Fig. 9 Percentage of changes in (a) R, (b) RMSE, (c) MAE, and (d) NSE values obtained by W-RBF-NN
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Fig. 10 Scatter plots between observed and predicted sewage sludge quantity for training stages using (a) FFBP-NN; (b) haar-FFBP-NN;
(c) db10-FFBP-NN; (d) coif5-FFBP-NN; (e) sym8-FFBP-NN; (f) bior6.8-FFBP-NN; and (g) dmey-FFBP-NN
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Fig. 11 Scatter plots between observed and predicted sewage sludge quantity for testing stages using (a) FFBP-NN; (b) haar-FFBP-NN; (c)
db10-FFBP-NN; (d) coif5-FFBP-NN; (e) sym8-FFBP-NN; (f) bior6.8-FFBP-NN; and (g) dmey-FFBP-NN
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Fig. 12 Scatter plots between observed and predicted sewage sludge quantity for training stages using (a) RBF-NN; (b) haar- RBF-NN; (c)
db10- RBF-NN; (d) coif5- RBF-NN; (e) sym8-RBF-NN; (f) bior6.8-RBF-NN; and (g) dmey-RBF-NN
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Fig. 13 Scatter plots between observed and predicted sewage sludge quantity for testing stages using (a) RBF-NN; (b) haar- RBF-NN; (c)
db10- RBF-NN; (d) coif5- RBF-NN; (e) sym8-RBF-NN; (f) bior6.8-RBF-NN; and (g) dmey-RBF-NN
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resulting the best performance in comparison with
applying other mother wavelet functions. More-
over, mother wavelet of sym8 has stood at the
second rank in terms of accuracy for prediction
of sewage sludge. Average of DR value obtained
by haar-FFBP-NN model (average DR = 0.016)
showed the largest computational error than other
W-FFBP-NN models. Variations of DR values ver-
sus number of data points for the W-FFBP-NN
models were illustrated in Fig. 14. In Table 7,
dmey-RBF-NN model with average DR of −
0.0002 had the best performance in prediction of
sewage sludge. Furthermore, haar function with
DR between − 0.17 and 0.48 produced the lowest
accuracy for estimation of sewage sludge in com-
parison with W-RBF-NN models. Variations of DR
values with number of data samples for the W-
RBF-NN approaches have been shown in Fig. 15.

Conclusions

In this research, the effect of various mother wavelet func-
tions on the efficiency ofW-NNmodelswas investigated to
predict sewage sludge quantity forKermanWWTP, Iran. In
this way, two common types of ANNs including RBF-NN
and FFBP-NNmodels have been used to assess quantity of

sewage sludge. To obtain more accurate performance of
ANNs, six wavelet families including Haar, Daubechies,
Coiflets, Symlets, BiorSplines, and DMeyer were
employed to reduce irregularity of non-periodical time
series of sewage sludge.With respect to themother wavelet
functions of sub-class order, 32 wavelet functions were
used as preprocessors of input variables for the FFBP-NN
and RBF-NN models. Statistical parameters obtained
through training stage indicated that FFBP-NN has provid-
ed more precise prediction than RBF-NN model. More-
over, 32W-FFBP-NN approaches had superiority to simple
FFBP-NN model. Similarly, 32 W-RBF-NN models de-
creased remarkably computational error of sewage sludge
quantity in comparison with the conventional RBF-NN
network. Results of testing stages had the same trend as
the training phases. In training and testing stages, applica-
tion of dmey and haar functions had the best and worst
performance among other wavelet functions, respectively.

From a logical point of view, performance of
proposed W-ANN models showed that precision
level was inextricably bound up with type of
mother wavelets. Finally, results of the proposed
hybrid models indicated that the conjunction of
wavelet decomposition with ANNs could be con-
sidered as a robust tool for sewage sludge quantity
prediction. In the current investigation, one of the
main shortcomings is availability of dataset for a

Table 7 Results of DR analysis for W-RBF-NN model

Mother wavelet function Sub-class Maximum DR Minimum DR Average DR

Haar haar 0.488 − 0.172 0.004

Daubechies db10 0.151 − 0.101 0.0004

Coiflets coif5 0.078 − 0.091 − 0.0004
Symlets sym8 0.085 − 0.088 0.001

BiorSplines bior6.8 0.328 − 0.103 − 0.0009
DMeyer dmey 0.103 − 0.094 − 0.0002

Table 6 Results of DR analysis for W-RBF-NN model

Mother wavelet function Sub-class Maximum DR Minimum DR Average DR

Haar haar 0.488 − 0.172 0.004

Daubechies db10 0.151 − 0.101 0.0004

Coiflets coif5 0.078 − 0.091 − 0.0004
Symlets sym8 0.085 − 0.088 0.001

BiorSplines bior6.8 0.328 − 0.103 − 0.0009
DMeyer dmey 0.103 − 0.094 − 0.0002
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limited time period. There is no denying the fact
that applying signals of sewage sludge with a
longer time period can provide a reliable predic-
tion. Kerman WWPT was newly constructed and
consequently, time duration of daily measured
sewage sludge is intrinsically limited. As men-
tioned in this study, LM technique, as an iterative
algorithm, was used to train FFBP-NN and W-
FFBP-NN models. In order to improve accuracy
level of W-ANN techniques, there is a possibility
to employ evolutionary algorithms (EAs) such as

particle swarm optimization (PSO), genetic algo-
rithm (GA), and gravitational search algorithm
(GSA) in order to compute weighting coefficients
and biases related to general structure of ANNs. In
fact, statistical results of W-ANNs based EAs can
be compared with those obtained by the W-ANNs.
To conduct more in-depth research in future,
MARS and RF, as powerful data-mining ap-
proaches, can be applied instead of ANNs. Fur-
thermore, results of W-MARS and W-RF models
will be comparable with the current study.
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Fig. 14 Variations of the DRvalues versus time for the W-FFBP-NN model using various mother wavelet functions (a) haar; (b) db10; (c)
coif5; (d) sym8; (e) bior6.8; and (f) dmey

Environ Monit Assess (2019) 191: 163 Page 21 of 25 163



Acknowledgements We would like to thank the manager of
Kerman province wastewater treatment plant for providing us with
the field data used in this study.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

References

Adamowski, J., & Sun, K. (2010). Development of a coupled
wavelet transform and neural network method for flow fore-
casting of non-perennial rivers in semi-arid watersheds.
Journal of Hydrology, 390, 85–91.

Altunkaynak, A., & Nigussie, T. A. (2015). Prediction of daily
rainfall by a hybrid wavelet-season-neuro technique. Journal
of Hydrology, 529, 287–301. https://doi.org/10.1016/j.
jhydrol.2015.07.046.

Aussem, A., Campbell, J., & Murtagh, F. (1998). Wavelet-based
feature extraction and decomposition strategies for financial
forecasting. Journal of Computational Intelligence in
Finance, 6, 5–12.

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0 200 400

D
R

 V
al

ue
s

Data

(a) Haar-RBF-NN

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 200 400

D
R

 V
al

ue
s

Data

(b) Db10-RBF-NN

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 200 400

D
R

 V
al

ue
s

Data

(c) Coif5-RBF-NN

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 200 400

D
R

 V
al

ue
s

Data

(d) Sym8-RBF-NN

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 200 400

D
R

 V
al

ue
s

Data

(e) Bior6.8-RBF-NN

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 200 400

D
R

 V
al

ue
s

Data

(f) Dmey-RBF-NN

Fig. 15 Variations of the DRvalues versus time for the W-RBF-NN model using various mother wavelet functions (a) haar; (b) db10; (c)
coif5; (d) sym8; (e) bior6.8; and (f) dmey

163 Page 22 of 25 Environ Monit Assess (2019) 191: 163

https://doi.org/10.1016/j.jhydrol.2015.07.046
https://doi.org/10.1016/j.jhydrol.2015.07.046


Bateni, S. M., Jeng, D.-S., & Melville, B. W. (2007). Bayesian
neural networks for prediction of equilibrium and time-
dependent scour depth around bridge piers. Advances in
Engineering Software, 38(2), 102–111. https://doi.
org/10.1016/j.advengsoft.2006.08.004.

Belanche, L. s. A., Valdés, J. J., Comas, J., Roda, I. R., & Poch,M.
(1999). Towards a model of input-output behaviour of waste-
water treatment plants using soft computing techniques.
Environmental Modelling & Software, 14(5), 409–419.
https://doi.org/10.1016/S1364-8152(98)00102-9.

Boger, Z., & Guterman, H. (1990). Knowledge representation of
wastewater treatment plant operating history and current
state. Proceeding of the 5th International Association on
Water Pollution Research and Control Workshop,
Yokohama and Kyoto, Japan. Pergammon Press.

Boniecki, P., Dach, J., Pilarski, K., & Piekarska-Boniecka, H.
(2012). Artificial neural networks for modeling ammonia
emissions released from sewage sludge composting.
Atmospheric Environment, 57, 49–54.

Catalão, J., Pousinho, H. M. I., & Mendes, V. M. F. (2011). Short-
term wind power forecasting in Portugal by neural networks
and wavelet transform. Renewable Energy, 36(4), 1245–
1251.

Çinar, Ö. (2005). New tool for evaluation of performance of
wastewater treatment plant: artificial neural network.
Process Biochemistry, 40(9), 2980–2984. https://doi.
org/10.1016/j.procbio.2005.01.012.

Cohen, A., Janssen, G., Brewster, S. D., Seeley, R., Boogertt, A.
A., Graham, A. A., Mardani, M. R., Clarke, N., & Kasabov,
N. K. (1997). Application of computational intelligence for
on-line control of a sequencing batch reactor (SBR) at
Morrinsville sewage treatment plant. Water Science and
Technology, 35(10), 63–71.

Cong, Q., & Yu, W. (2018). Integrated soft sensor with wavelet
neural network and adaptive weighted fusion for water qual-
ity estimation inwastewater treatment process.Measurement,
124, 436–446.

Côté, M., Grandjean, B. P. A., Lessard, P., & Thibault, J. (1995).
Dynamic modelling of the activated sludge process: improv-
ing prediction using neural networks.Water Research, 29(4),
995–1004. https://doi.org/10.1016/0043-1354(95)93250-W.

Danish, M., Jing, H., Pin, Z., Ziyang, L., & Pansheng, Q. (2016).
A new drying kinetic model for sewage sludge drying in
presence of CaO and NaClO. Applied Thermal
Engineering, 106, 141–152. https://doi.org/10.1016/j.
applthermaleng.2016.05.191.

El-Din, A. G., & Smith, D. W. (2002). A neural network model to
predict the wastewater inflow incorporating rainfall events.
Water Research, 36, 1115–1126.

Fernandez de Canete, J., Del Saz-Orozco, P., Baratti, R., Mulas,
M., Ruano, A., & Garcia-Cerezo, A. (2016). Soft-sensing
estimation of plant effluent concentrations in a biological
wastewater treatment plant using an optimal neural network.
Expert Systems with Applications, 63, 8–19. https://doi.
org/10.1016/j.eswa.2016.06.028.

Fernandez, F. J., Seco, J. A., Ferrer, J., & Rodrigo, M. A. (2009).
Use of neurofuzzy networks to improve wastewater flow-rate
forecasting. Environmental Modelling & Software, 24, 686–
693.

Filipović, J., Grčić, I., Bermanec, V., & Kniewald, G. (2013).
Monitoring of total metal concentration in sludge samples:

case study for the mechanical–biological wastewater treat-
ment plant in Velika Gorica, Croatia. Science of the Total
Environment, 447, 17–24. https://doi.org/10.1016/j.
scitotenv.2012.12.078.

Forster, C. F., & Foundation, W. E. R. (2003). Wastewater treat-
ment and technology. Thomas Telford.

Gontarski, C. A., Rodrigues, P. R., Mori, M., & Prenem, L. F.
(2000). Simulation of an industrial wastewater treatment
plant using artificial neural networks. Computers &
Chemical Engineering, 24, 1719–1723.

Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J.-p., Kim, J.
H., & Cho, K. H. (2015). Prediction of effluent concentration
in a wastewater treatment plant using machine learning
models. Journal of Environmental Sciences, 32, 90–101.
https://doi.org/10.1016/j.jes.2015.01.007.

Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004).
Prediction of wastewater treatment plant performance using
artificial neural networks. Environmental Modelling &
Software, 19(10), 919–928. https://doi.org/10.1016/j.
envsoft.2003.10.005.

Hamoda, M. F., Al-Ghusain, I. A., & Hassan, A. H. (1999).
Integrated wastewater treatment plant performance evalua-
tion using artificial neural networks. Water Science and
Technology, 40(7), 55–65. https://doi.org/10.1016/S0273-
1223(99)00584-3.

Han, H.-G., Li, Y., Guo, Y.-N., & Qiao, J.-F. (2016). A soft
computing method to predict sludge volume index based on
a recurrent self-organizing neural network. Applied Soft
Computing, 38, 477–486. https://doi.org/10.1016/j.
asoc.2015.09.051.

Han, H., Zhu, S., Qiao, J., & Guo, M. (2018). Data-driven intel-
ligent monitoring system for key variables in wastewater
treatment process. Chinese Journal of Chemical
Engineering, 26(10), 2093–2101.

Hanbay, D., Turkoglu, I., & Demir, Y. (2008). Prediction of
wastewater treatment plant performance based on wavelet
packet decomposition and neural networks. Expert Systems
with Applications, 34(2), 1038–1043. https://doi.org/10.1016
/j.eswa.2006.10.030.

Heidari, E., Sobati, M. A., & Movahedirad, S. (2016). Accurate
prediction of nanofluid viscosity using a multilayer
perceptron artificial neural network (MLP-ANN).
Chemometrics and Intelligent Laboratory Systems, 155,
73–85. https://doi.org/10.1016/j.chemolab.2016.03.031.

Honggui, H., Ying, L., & Junfei, Q. (2014). A fuzzy neural
network approach for online fault detection in waste water
treatment process. Computers and Electrical Engineering,
40(7), 2216–2226.

Hu, J., &Wang, J. (2015). Short-term wind speed prediction using
empirical wavelet transform and Gaussian process regres-
sion. Energy, 93, 1456–1466. https://doi.org/10.1016/j.
energy.2015.10.041.

Huang, Y. W., & Chen, M. Q. (2015). Artificial neural network
modeling of thin layer drying behavior of municipal sewage
sludge. Measurement, 73, 640–648.

Jalili Ghazizade, M., & Noor, A. R. (2008). Prediction of munic-
ipal solid waste generation by use of artificial neural network:
a case study of Mashhad. International Journal of
Environmental Research, 2(1), 13–22.

Environ Monit Assess (2019) 191: 163 Page 23 of 25 163

https://doi.org/10.1016/j.advengsoft.2006.08.004
https://doi.org/10.1016/j.advengsoft.2006.08.004
https://doi.org/10.1016/S1364-8152(98)00102-9
https://doi.org/10.1016/j.procbio.2005.01.012
https://doi.org/10.1016/j.procbio.2005.01.012
https://doi.org/10.1016/0043-1354(95)93250-W
https://doi.org/10.1016/j.applthermaleng.2016.05.191
https://doi.org/10.1016/j.applthermaleng.2016.05.191
https://doi.org/10.1016/j.eswa.2016.06.028
https://doi.org/10.1016/j.eswa.2016.06.028
https://doi.org/10.1016/j.scitotenv.2012.12.078
https://doi.org/10.1016/j.scitotenv.2012.12.078
https://doi.org/10.1016/j.jes.2015.01.007
https://doi.org/10.1016/j.envsoft.2003.10.005
https://doi.org/10.1016/j.envsoft.2003.10.005
https://doi.org/10.1016/S0273-1223(99)00584-3
https://doi.org/10.1016/S0273-1223(99)00584-3
https://doi.org/10.1016/j.asoc.2015.09.051
https://doi.org/10.1016/j.asoc.2015.09.051
https://doi.org/10.1016/j.eswa.2006.10.030
https://doi.org/10.1016/j.eswa.2006.10.030
https://doi.org/10.1016/j.chemolab.2016.03.031
https://doi.org/10.1016/j.energy.2015.10.041
https://doi.org/10.1016/j.energy.2015.10.041


Joseph, S. M., & Anto, B. P. (2012). Speech coding based on
orthogonal and biorthogonal wavelet. Procedia Technology,
6, 397–404.

Kaira, G. L., & Christian, R. A. (2013). Wastewater treatment:
concepts and design approach: PHI learning.

Kasiviswanathan, K. S., He, J., Sudheer, K. P., & Tay, J.-H. (2016).
Potential application of wavelet neural network ensemble to
forecast streamflow for flood management. Journal of
Hydrology, 536, 161–173. https://doi.org/10.1016/j.
jhydrol.2016.02.044.

Kisi, O., & Shiri, J. (2011). Precipitation forecasting using
wavelet-genetic programming and wavelet-neuro-fuzzy con-
junction models. Water Resources Management, 25(13),
3135–3152.

Kołecka, K., Gajewska, M., Obarska-Pempkowiak, H., & Rohde,
D. (2017). Integrated dewatering and stabilization system as
an environmentally friendly technology in sewage sludge
management in Poland. Ecological Engineering, 98, 346–
353. https://doi.org/10.1016/j.ecoleng.2016.08.011.

Li, S., Li, Y., Lu, Q., Zhu, J., Yao, Y., & Bao, S. (2014). Integrated
drying and incineration of wet sewage sludge in combined
bubbling and circulating fluidized bed units. Waste
Management, 34(12), 2561–2566. https://doi.org/10.1016/j.
wasman.2014.08.018.

Llorens, E., Thiery, F., Grieu, S., & Polit, M. (2008). Evaluation of
WWTP discharges into a Mediterranean river using KSOM
neural networks and mass balance modelling. Chemical
Engineering Journal, 142, 135–146.

Maheswaran, R., & Khosa, R. (2012). Comparative study of
different wavelets for hydrologic forecasting. Computers &
Geosciences, 46, 284–295. https://doi.org/10.1016/j.
cageo.2011.12.015.

Mallat, S. G. (1989). A theory for multiresolution signal decom-
position: the wavelet representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(7), 674–693.
https://doi.org/10.1109/34.192463.

Mirabi, M., Mianabadi, H., Zarghami, M., Sharifi, M. B., &
Mostert, E. (2014). Risk-based evaluation of wastewater
treatment projects: a case study in Niasar city, Iran.
Resources, Conservation and Recycling, 93, 168–177.
https://doi.org/10.1016/j.resconrec.2014.10.002.

Mjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of
artificial neural network black-box modeling for the predic-
tion of wastewater treatment plants performance. Journal of
Environmental Management, 83, 329–338.

Moral, H., Aksoy, A., & Gokcay, C. F. (2008). Modeling of the
activated sludge process by using artificial neural networks
with automated architecture screening. Computers &
Chemical Engineering, 32(10), 2471–2478. https://doi.
org/10.1016/j.compchemeng.2008.01.008.

Najafzadeh, M., & Zeinolabedini, M. (2018). Derivation of opti-
mal equations for prediction of sewage sludge quantity using
wavelet conjunction models: an environmental assessment.
Environmental Science and Pollution Research, 25, 22931–
22943.

Nasr, M. S., Moustafa, M. A. E., Seif, H. A. E., & Kobrosy, G. E.
(2012). Application of artificial neural network (ANN) for
the prediction of EL-AGAMY wastewater treatment plant
performance-EGYPT. Alexandria Engineering Journal, 51,
37–43.

Noori, R., Abdoli, M. A., Ameri Ghasrodashti, A., & Jalili
Ghazizade, M. (2009a). Prediction of municipal solid waste
generation with combination of support vector machine and
principal component analysis: a case study of Mashhad.
Environmental Progress & Sustainable Energy: An Official
Publication of the American Institute of Chemical Engineers,
28(2), 249–258.

Noori, R., Abdoli, M. A., Farokhnia, A., & Abbasi, M. (2009b).
Retracted: results uncertainty of solid waste generation fore-
casting by hybrid of wavelet transform-ANFIS and wavelet
transform-neural network. Expert Systems with Applications,
36 ( 6 ) , 9991–9999 . h t t p s : / / do i . o rg / 10 . 1016 / j .
eswa.2008.12.035.

Noori, R., Karbassi, A., & Sabahi, M. S. (2010). Evaluation of
PCA and Gamma test techniques on ANN operation for
weekly solid waste prediction. Journal of Environmental
Management, 91(3), 767–771.

Oja, E. (1994). Neural networks—advantages and applications.
Machine Intelligence and Pattern Recognition, 16, 359–365.

Ongen, A., Ozcan, H. K., & Arayıc, S. (2013). An evaluation of
tannery industry wastewater treatment sludge gasification by
artificial neural network modeling. Journal of Hazardous
Materials, 263, 361–366.

Onkal-Engin, G., Demir, I., & Engin, S. N. (2005). Determination
of the relationship between sewage odour and BOD by neural
networks. Environmental Modelling & Software, 20, 843–
850.

Pai, T. Y., Yang, P. Y., Wang, S. C., Lo, M. H., Chiang, C. F., Kuo,
J. L., Chu, H. H., Su, H. C., Yu, L. F., Hu, H. C., & Chang, Y.
H. (2011). Predicting effluent from the wastewater treatment
plant of industrial park based on fuzzy network and influent
quality. Applied Mathematical Modelling, 35(8), 3674–3684.
https://doi.org/10.1016/j.apm.2011.01.019.

Partal, T., & Kisi, Ö. (2007). Wavelet and neuro-fuzzy conjunction
model for precipitation forecasting. Journal of Hydrology,
342, 199–212.

Rumelhart, D. E., & McCielland. (1986). Parallel distributed
processing: explorations in the microstructure of cognition.
Cambridge: MIT Press.

Safavi, S., Bateni, S. M., & Xu, T. (2015). Predicting the amount
of municipal solid waste via hybrid principal component
analysis-artificial neural network approach. Applied
Mechanics and Materials, 768, 722–727.

Seo, Y., Kim, S., Kisi, O., & Singh, V. P. (2015). Daily water level
forecasting using wavelet decomposition and artificial intel-
ligence techniques. Journal of Hydrology, 520, 224–243.
https://doi.org/10.1016/j.jhydrol.2014.11.050.

Shiri, J. (2018). Improving the performance of the mass transfer-
based reference evapotranspiration estimation approaches
through a coupled wavelet-random forest methodology.
Journal of Hydrology, 561, 737–750.

Shoaib, M., Shamseldin, A., Melville, B., & Khan, M. (2015).
Runoff forecasting using hybrid wavelet gene expression
programming (WGEP) Approach (Vol. 527).

Verma, A., Wei, X., & Kusiak, A. (2013). Predicting the total
suspended solids in wastewater: a data-mining approach.
Engineering Applications of Artificial Intelligence, 26,
1366–1372.

Wan, J., Huang, M.,Ma, Y., Guo, W.,Wang, Y., Zhang, H., Li,W.,
& Sun, X. (2011). Prediction of effluent quality of a paper
mill wastewater treatment using an adaptive network-based

163 Page 24 of 25 Environ Monit Assess (2019) 191: 163

https://doi.org/10.1016/j.jhydrol.2016.02.044
https://doi.org/10.1016/j.jhydrol.2016.02.044
https://doi.org/10.1016/j.ecoleng.2016.08.011
https://doi.org/10.1016/j.wasman.2014.08.018
https://doi.org/10.1016/j.wasman.2014.08.018
https://doi.org/10.1016/j.cageo.2011.12.015
https://doi.org/10.1016/j.cageo.2011.12.015
https://doi.org/10.1109/34.192463
https://doi.org/10.1016/j.resconrec.2014.10.002
https://doi.org/10.1016/j.compchemeng.2008.01.008
https://doi.org/10.1016/j.compchemeng.2008.01.008
https://doi.org/10.1016/j.eswa.2008.12.035
https://doi.org/10.1016/j.eswa.2008.12.035
https://doi.org/10.1016/j.apm.2011.01.019
https://doi.org/10.1016/j.jhydrol.2014.11.050


fuzzy inference system. Applied Soft Computing, 11(3),
3238–3246. https://doi.org/10.1016/j.asoc.2010.12.026.

White, W. R., Crabbe, A. D., Mill, H., & Station, H. R. (1973).
Sediment Transport: An Appraisal of Available Methods,
Hydraulics Research Station.

Zare-Abyaneh, H. (2014). Evaluation of multivariate linear regres-
sion and artificial neural networks in prediction of water

quality parameters. Journal of Environmental Health
Science & Engineering, 12(1), 1–8.

Zounemat-Kermani, M., Beheshti, A.-A., Ataie-Ashtiani, B., &
Sabbagh-Yazdi, S.-R. (2009). Estimation of current-induced
scour depth around pile groups using neural network and
adaptive neuro-fuzzy inference system. Applied Soft
Computing, 9(2), 746–755. https://doi.org/10.1016/j.
asoc.2008.09.006.

Environ Monit Assess (2019) 191: 163 Page 25 of 25 163

https://doi.org/10.1016/j.asoc.2010.12.026
https://doi.org/10.1016/j.asoc.2008.09.006
https://doi.org/10.1016/j.asoc.2008.09.006

	Comparative...
	Abstract
	Introduction
	Intelligence predictive models: a brief review
	Overview of the study region
	Methodology
	Wavelet transformation
	Selection of wavelet families
	Definition of decomposition level

	Artificial neural networks
	Feed forward neural network
	Radial basis function neural network


	Models development
	Results and discussion
	Results of DR analysis
	Conclusions
	References


