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Abstract Although hydrological models play an essen-
tial role in managing water resources, quantifying dif-
ferent sources of uncertainties is a challenging task. In
this study, the application of two parameter uncertainty
quantification methods and their performances for
predicting runoff was investigated. Sequential Uncer-
tainty Fitting version 2 (SUFI-2) and DiffeRential Evo-
lution Adaptive Metropolis (DREAM-ZS) algorithms
were employed to explore the output uncertainty of Soil

and Water Assessment Tool (SWAT) at a multisite flow
gauging station. In order to optimize the model and
quantify the parameter uncertainty, S1 and S2 strategies,
which belong to the SUFI-2 and DREAM-ZS algo-
rithms, were defined. The prior ranges of the S1 were
adopted from SWATmanual, and the prior ranges of the
S2 were selected using a compromising approach be-
tween the prior and posterior ranges extracted from S1.
P-factor, d-factor, Nash-Sutcliffe coefficient (NS), the
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This paper highlights the following aspects:
1. The correlation matrix between parameters in DREAM-ZS was
significantly better than SUFI-2.
2. The performance of DREAM-ZS algorithm to predict simulta-
neous parameter uncertainty was better than SUFI-2 algorithm.
3. The results of S and T indicators at multi-site in DREAM-ZSwere
better than the SUFI-2 for reducing the prediction uncertainties.
4. Most of the measured data in DREAM-ZS fell inside the 95PPU
and were larger than SUFI-2 algorithm.

Y. Hassanzadeh :A. A. Afshar (*)
Department of Water Engineering, Faculty of Civil Engineering,
University of Tabriz, Tabriz, Iran
e-mail: a.s.a.a.6269@gmail.com

e-mail: a.h.aghakhani@tabrizu.ac.ir
e-mail: yhassanzadeh@tabrizu.ac.ir

Y. Hassanzadeh

Y. Hassanzadeh
e-mail: yhassanzadeh02@yahoo.com

M. Pourreza-Bilondi
Department of Water Engineering, College of Agriculture,
University of Birjand, Birjand, Iran

e-mail: mohsen.pourreza@gmail.com

H. Memarian
Department of Watershed Management, Faculty of Natural
Resources and Environment, University of Birjand, Birjand, Iran
e-mail: hadi_memarian@birjand.ac.ir

H. Memarian
e-mail: hadi_memarian@yahoo.com

A. A. Besalatpour
Department of Soil Sciences, College of Agriculture, Vali-e-Asr
University of Rafsanjan, Rafsanjan, Iran
e-mail: a_besalatpour@yahoo.com

A. A. Besalatpour
e-mail: a.besalatpour@vru.ac.ir

http://orcid.org/0000-0003-1536-2648
http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-018-7145-x&domain=pdf


dimensionless variant of average deviation amplitude
(S), and the average relative deviation amplitude (T),
as performance criteria, were assessed. The NS, S, and T
for total uncertainty ranged 0.60–0.71, 0.46–0.51, and
0.94–1.01 under S1 strategy and 0.64–0.78, 0.07–0.22,
and 0.39–0.64 under S2, respectively. In parameter un-
certainty analysis, S and T indices ranged from 1.51 to
1.88 and 2.20 to 2.60, correspondingly. The results
showed that the DREAM-ZS algorithm improved mod-
el calibration efficiency and led to more realistic values
of the parameters for runoff simulation in SWAT model.
However, the S2 strategy, which implicitly takes advan-
tage of both formal and informal Bayesian approaches
simultaneously, will be able to outperform the S1 for
reducing the prediction uncertainties.

Keywords Uncertainty analysis .Multisite calibration .

SUFI-2 . DREAM-ZS . SWAT

Introduction

Most of the rivers, located in the large-scale mountain-
ous watersheds, are considered as the important sources
of water availability that significantly affect the hydro-
logic regimes of the downstream areas (Srivastava et al.
2013). The integrative management of large-scale river
basins needs a comprehensive hydrological modeling
(Bilondi and Abbaspour 2013; Marhaento et al. 2017).
Numerous number of physically based integrated distri-
bution models have been developed for watershed anal-
ysis and management, such as Hydrologic Simulation
Program-Fortran (HSPF) (Bicknell et al. 1996), Erosion
Productivity Impact Calculator (EPIC) (Wang et al.
2012), Water Erosion Prediction Project (WEPP)
(Flanagan et al. 2012), Hydrology Laboratory-
Research Distributed Hydrologic Model (HL-RDHM)
(Koren et al. 2004), and Soil and Water Assessment
Tools (SWAT) (Arnold et al. 1998). Among them, the
SWATmodel as a semi-distributed model is widely used
in many countries worldwide to evaluate hydrological
processes (e.g., rainfall-runoff, sediment, climate
change, land use, evapotranspiration, and water quality)
at large-scale watersheds (Afshar and Hassanzadeh
2017; Afshar et al. 2017b; Arnold et al. 2011; Bilondi
and Abbaspour 2013; Rostamian et al. 2008; Shi et al.
2014; Abbaspour et al. 2007; Lin et al. 2015).

The SWAT model is a physically based model; how-
ever, the correct values of the parameters cannot be

directly measured due to measurement limitations and
scale issues (Li et al. 2010). Therefore, the applicability
of the model stems on the values of model parameters
that should be computed through an inverse modeling
(IM) approach via a calibration process (Schoups and
Vrugt 2010; Laloy et al. 2010; Leta et al. 2015; Laloy
and Vrugt 2012). The calibration process in a modeling
scheme plays an important role to capture the optimal
parameter values which reasonably accord with reality
(Leta et al. 2016). Rigorous uncertainty due to some
errors in the input (forcing) and output data, model
structure, and algorithms significantly impacts the hy-
drological modeling results (Beven 2006). Thus, In
order to formulate the inverse modeling (IM) problems
for Uncertainty Analysis (UA) in various river basin
models, informal and formal Bayesian frameworks have
been developed. Informal Bayesian approaches, devel-
oped without rigorous statistical assumptions, attempt to
regard all uncertainties by improved parameter uncer-
tainty. Generalized Likelihood Uncertainty Estimation
(GLUE) (Beven and Binley 1992), Sequential Uncer-
tainty Fitting version 2 (SUFI-2) (Abbaspour et al.
2004), and Parameter Solution (ParaSol) (Van
Griensven and Meixner 2006) are examples of informal
approaches. The formal Bayesian approaches use ap-
propriate statistical assumptions and apply reliable like-
lihood functions to estimate the posterior probability
density (pdf) function of the model parameters and also
the total predictive uncertainty (Vrugt et al. 2008;
Schoups and Vrugt 2010; Kuczera and Parent 1998;
Rivera et al. 2015). The Markov Chain Monte Carlo
(MCMC) algorithms are examples of formal Bayesian
approaches. One of the most commonly used MCMC
algorithm is called DiffeRential Evolution Adaptive
Metropolis (DREAM-ZS). This algorithm was originat-
ed from the DREAM (Vrugt et al. 2009a) and was
applied as an effective and robust sampler (Vrugt et al.
2009b; Laloy and Vrugt 2012). In order to generate the
candidate points for the individual chains, the DREAM-
ZS uses samplings from the past states. The DREAM-
ZS has several preferences over the DREAM algorithm:
(i) only three parallel chains are needed for posterior
sampling and therefore the time for burn-in is reduced,
(ii) it needs fewer function evaluations than the
DREAM to converge to the suitable limiting distribu-
tion, and (iii) it consisted of a snooker updater which
produces jumps beyond the updates of parallel direction
that increases the variety of the candidate points (Ter
Braak and Vrugt 2008).
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In this study, informal and formal Bayesian ap-
proaches including SUFI-2 and DREAM-ZS were
employed for calibration, uncertainty analysis, and the
estimation of model parameters. The SUFI-2 algorithm is
a semi-automated procedure in the SWAT-Calibration
and Uncertainty Program (SWAT-CUP; Abbaspour
et al. 2007), which is widely used for optimizing the
parameters of the SWAT model (Setegn et al. 2010;
Abbaspour 2011; Wu and Chen 2015; Kumar et al.
2017; Parajuli et al. 2018). Some studies in different
application areas show that this approach is of high
computational efficiency for satisfactory uncertainty pre-
diction, especially for time-consuming works within
large-scale watersheds by the models like SWAT simula-
tor in comparison with the other methods within the
SWAT-CUP (Abbaspour et al. 2007; Rostamian et al.
2008; Yang et al. 2008; Setegn et al. 2010; Zhang et al.
2015). Thus far, many research works have been accom-
plished by means of the SUFI-2 for the uncertainty
analysis of SWAT model parameters (Abbaspour et al.
2007; Singh et al. 2013; Memarian et al. 2014; Narsimlu
et al. 2015; Li et al. 2017). The DREAM-ZS algorithm
has been recently applied to calibrate and analyze the
uncertainty of hydrological models (Kozelj et al. 2014;
Leta et al. 2015; Nourali et al. 2016; Xu et al. 2017; Zeng
et al. 2018), and due to the benefits of the DREAM
algorithm (Ter Braak and Vrugt 2008), it was used in this
research paper. Although many techniques exist to ana-
lyze uncertainty, only a few are available to be compared
together (Mantovan and Todini 2006; Yang et al. 2008;
Bilondi and Abbaspour 2013). According to the literature
review, the comparison and integration of SUFI-2 and
DREAM-ZS in multisite calibration has not been report-
ed yet. Therefore, the current study was conducted to
combine and compare the uncertainty prediction capabil-
ities of two algorithms, i.e., SUFI-2 and DREAM-ZS,
simultaneously by using new evaluation indices. This
study tries to calibrate the SWAT model in a multisite
mode for hydrological simulation of the Kashafrood
River Catchment (KRC) as a large mountainous water-
shed in Iran with high spatial variability.

Materials and methods

Study area and data set

In this research paper, SWAT model with a daily
time step was employed to model the hydrological

conditions of the Kashafrood River Catchment
(Iran). The KRC is located in the northeastern part
of Iran in Khorasan Razavi Province (KRP), and is
known as the biggest catchment in KRP with a
drainage area of 16,870 km2. The total length of
Kashafrood River, as the longest river in this catch-
ment, is about 285 km. Geographically, KRC is
situated between latitudes of 35° 35′N and 37° 07′
N and longitudes of 58° 15′E and 61° 13′E (Fig. 1).
The watershed altitude varies from 390 m (in the
southeast part) to 3302 m (in the northwest part)
above sea level, with a mean elevation of 1846 m
and a mean slope of 4.7%. Mashhad, the second
most populous city in Iran, is located within the
KRC. The climate of KRC is classified within the
semi-arid category with low annual precipitations
and high evapotranspiration in summer (Afshar
et al. 2017a; Sayari et al. 2013). In this catchment,
most of the precipitation (50–77%) occurs from
January to May (Afshar et al. 2017a) and the annual
average precipitation of this area is about 340 mm,
with high spatial variation. The average maximum
and minimum temperature of KRC is 20.6 and
7.1 °C, respectively.

In this research paper, a 35-m-resolution digital
elevation model (DEM) was obtained from the Na-
tional Cartographic Center (NCC) of Iran. The land
use map based on field investigation was extracted
from the classification of Indian Remote Sensing
(IRS) satellite imagery. The soil map was obtained
from the Range and Watershed Management Depart-
ment (RWD) of Khorasan Razavi Province. Daily
climatology data containing 34 precipitation stations
and 12 temperature stations located inside the catch-
ment were obtained from the Iran Meteorological Or-
ganization (IMO) during the period of 1992–2011 (see
Fig. 1). Stream flow data including five monthly run-
off gauges (Sar Asiab Shandiz (SARASSHA), Zire
Band Golestan (ZIRBAGOL), Golestan Jaghargh
(GOLHAGHR), Hesar Dehbar (HESDEHB), and
Kartian (KARTIAN)) were acquired from the Water
Resource Management Company (IWRMC) (see Fig.
1). General information on runoff gauges is presented
in Table 1.

Dominant land uses in KRC are pasture (50.9%),
agricultural land-generic (28.6%), and winter wheat
(15.6%), and the others are forest, urban, and water
body (4.9%). Heterogeneous mix of silty, loamy, silty
loam, and clay soils are the predominant soil types at the
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northern and center parts of the watershed, while dom-
inant soil types of the middle line of catchment are silty
clay loam and loamy sand. Location of study area,
meteorological stations, and stream flow gauges are
presented in Fig. 1.

The SWAT model

The SWAT model was developed by the United
States Department of Agriculture–Agricultural Re-
search Services (USDA-ARS) for assessing and

forecasting the impact of different management sce-
narios on water quality, groundwater resources, soil
erosion, and pollution loading (Arnold et al. 1998;
Narsimlu et al. 2015; Leta et al. 2016; Afshar and
Hassanzadeh 2017). It operates on a daily or sub-
daily time step, as a semi-distributed conceptual
model for large-scale watersheds. In this model, the
catchment is delineated into a number of sub-basins
which are further divided into hydrological response
units (HRUs). The HRUs are unequaled mixes of soil
type, land cover, and slope classes (Arnold et al.

Fig. 1 Location map of the study area

Table 1 General information of hydrometric stations in Kashafrood catchment

Stations Coordinate in the UTM projection system Altitude (m) Upstream area (km2) Upstream area proportion (%)

X Y

SARASSHA 710,323 4,031,143 1249 2041.9 15.5

ZIRBAGOL 714,453 4,069,797 1341 9258.6 70.3

GOLJAGHR 680,361 4,078,720 1267 5974.8 45.4

HESDEHB 762,154 4,027,491 1206 4398.2 33.4

KARTIAN 792,129 3,981,631 986 13,163.2 100.0
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2011). They are distributed non-spatially, and due to
the lumping resemblance of soil and land use areas
into a single unit, their computational cost using
SWAT is decreased (Neitsch et al. 2011). In the
SWAT model, the water balance is represented by
the processes of snowmelt, infiltration, evaporation,
plant uptake, lateral flow, percolation, groundwater
flow, and the channel routing (Neitsch et al. 2011), as
represented by Eq. (1):

Swt ¼ Sw0 þ ∑t
i¼1 Rday−Qsurf−Ea−Wseep−Qqw

� � ð1Þ

where Swt and Sw0 are the final and initial water
content on the day i (mm) and Rday, Qsurf, Ea, Wseep,
and Q

qw
are, respectively, the amount of precipitation,

surface runoff, evapotranspiration, return flow, and
water entering the vadose zone from the soil profile
on the day i in mm. In this study, surface runoff was
predicted by means of the modified Soil Conserva-
tion Service Curve Number (SCS-CN) approach
(USDA-SCS 1986) based on land use, soil type,
and the antecedent moisture condition. Moreover,
the Hargreaves method (Hargreaves and Samani
1985) was employed to calculate potent ia l
evapotanspiration (PET), and finally, the Muskingum
approach (Chow et al. 1988) was utilized for the
stream flow routing. More details on the SWAT mod-
el can be found in Arnold et al. (1998).

Informal Bayesian framework (SUFI-2)

SUFI-2 algorithm known as an informal Bayesian ap-
proach is an iterative process. It is implemented in the
SWAT-CUP interface (Abbaspour et al. 2004, 2007) and
is linked to SWAT model. SWAT-CUP interface is used
for model calibration, validation, sensitivity, and uncer-
tainty analysis and is able to analyze a large number of
parameters and measured data from several multisite
flow gauging stations simultaneously (Abbaspour et al.
2004, 2007). In order to find the optimal parameter
uncertainties from prior ranges, the SUFI-2
(Abbaspour et al. 2004, 2007) combines calibration
and uncertainty analysis with the minimum number of
iterations and the smallest possible prediction uncertain-
ty band (Abbaspour 2011; Wu and Chen 2015). Since
this procedure is involved with parameter sets, it can
explicitly take into account the interaction between the
parameters. SUFI-2 algorithm attempts to bracket most
of the measured data (more than 80%) within the 95

percent prediction uncertainty (95PPU) of the model
with as narrow as possible uncertainty band. Similar to
GLUE approach, in SUFI-2 all sources of uncertainty
(parameter, conceptual model, forcing input, etc.) are
mapped on the parameters (Abbaspour et al. 2004,
2007; Yang et al. 2008) because the likelihood measure
value implicitly reflects all sources of errors and any
effects of the co-variation of parameters’ values on
model performance and is associated with a parameter
set (Beven and Freer 2001). In SUFI-2, the parameter set
is firstly sampled from a uniform distribution in a Latin
Hypercube Sampling (LHS) framework disallowing 5%
of the very bad simulations. For each parameter set the
objective function is calculated. Then, the output uncer-
tainty of the model is quantified within the 95% band of
the prediction uncertainty (95PPU) and is calculated at
the 2.5 and 97.5% levels of the cumulative distribution
of the output variables (Yang et al. 2008). The parameter
ranges are taken as the final parameter values. More
details on SUFI-2 can be found in Abbaspour et al.
(2004) and Yang et al. (2008).

Formal Bayesian framework (DREAM-ZS)

The DREAM algorithm exhibited high efficacy and
merits in numerous studies which was employed
(Surfleet and Tullos 2013; Joseph and Guillaume
2013; Zahmatkesh et al. 2015; Engeland et al. 2016).
It represents excellent sampling efficiencies in calibra-
tion problems, such as multimodal target distributions
and high-dimensional search problems. Furthermore, it
is capable to be linked with a parallel computing
through running multiple chains. This algorithm is orig-
inated from the Shuffled Complex EvolutionMetropolis
(SCEM) algorithm (Vrugt et al. 2003) and the Differen-
tial Evolution-Markov Chain (DE-MC) method (Ter
Braak 2006). Using Bayesian updating, the DREAM
algorithm, proposed by Vrugt et al. (2009a,b) is a
MCMC sampler to search the posterior distributions
related to the parameter values and to estimate the
uncertainty of parameter in a high-dimensional sam-
pling problems. In this algorithm, the impacts of input
data, parameters, and the uncertainties of model struc-
ture are separated from the total uncertainty (Vrugt et al.
2008). The DREAM-ZS is an updated version of the
DREAM algorithm which is developed to estimate the
parameter posterior probability function (pdf). The let-
ters BZ^ and BS^ in DREAM-ZS refer to sampling from
the past state and a snooker updater, respectively (Laloy
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and Vrugt 2012). Checking the convergence of the chain
to the posterior distribution, one can obtain this data
from the R-statistic proposed by Gelman-Rubin
(Gelman and Rubin 1992).

The posterior distribution becomes stationary when
the values of this criterion are less than 1.2 for all of the
parameters (Vrugt et al. 2009a,b). Finally, after conver-
gence, when the number of parameter samples is suffi-
ciently high, the last 20% of the samples are extracted to
assess the uncertainty and an estimation of the statistical
values of the posterior distribution can be made (i.e., the
mean and variance values) (Gelman and Rubin 1992;
Laloy and Vrugt 2012). More detailed description of
DREAM-ZS is completely represents by Vrugt et al.
(2009a) and will not be repeated herein.

Quantification of parameter and total prediction
uncertainty

The runoff component simulated by the SWAT model
can be illustrated by

Ŷ̂ ¼ f θ;φ; X̂̂
� � ð2Þ

where Ŷ is the vector of model output or predictions
(N × 1), θ is the vector of unknown model parameter
sets with d dimension,φ represents the initial condition,

and finally, X̂ is the matrix of the measured input data
(e.g., precipitation, minimum and maximum tempera-
ture). In the Bayesian framework, parameter sets (θ) are
optimized through minimizing the residual errors e (θ),
which contains the difference between the model pre-
diction Ŷ and the corresponding observed output Yt.
The residual errors, as a statistical model explaining a
prior expected behavior at time step t, are defined as

e θð Þ ¼ Yt−Ŷ̂ ð3Þ
The unknown parameters of model such as random

variables, the posterior density function (pdf), and
p(θ|Y) (the relationship between the model and the data)
can be described under Bayes theorem (Box and Tiao
1992):

p θjYð Þ ¼ p θð Þ � p Yjθð Þ
p Yð Þ ∝p θð Þ � L θjYð Þ ð4Þ

where p(θ) is the prior distribution, p(Y|θ) ≡ L(θ|Y)
signifies the likelihood function of θ, and the normali-
zation factor (p(Y)) is obtained through the numerical
integration over the parameter space. In some cases, the

normalization factor can be neglected and p(θ|Y) is
proportional to the p(θ) multiplied by L(θ|Y).

Likelihood function in formal and informal Bayesian
framework

The identification of a range of plausible parameter sets
along with the estimation of parameter and prediction
uncertainty is simply extracted from mapped parameter
space to likelihood space (Vrugt et al. 2013; Schoups
and Vrugt 2010; Box and Tiao 1992). The probabilistic
measure which is used to estimate the statistical distri-
bution of the model residuals is called the likelihood
function (Kozelj et al. 2014). In a hydrologic model, the
parameters, uncertainties, and statistical analysis have to
be computed through a proper likelihood function (He
et al. 2010). Moreover, the results are unreliable if the
likelihood function is applied without reasonably indi-
cating the distribution of model errors. The residual
error assumptions can be classified into error variance,
error distribution, and error correlation structures at
different parts of the model response (Dumont et al.
2014).

In recent years, to estimate parameter uncertainty,
formal or informal likelihood functions in Bayesian
approaches have been employed by several re-
searchers (Nourali et al. 2016; Leta et al. 2016;
Pourreza-Bilondi et al. 2016; Dumont et al. 2014;
Hernandez-Lopez and Frances 2017; Yang et al.
2008; Mantovan and Todini 2006; Beven et al. 2008;
Vrugt et al. 2009b). According to the formal approach,
one begins from an assumed statistical model for the
residual errors. In other words, the functional type of
the joint pdf for the residual errors is identified as a
priori (Box and Tiao 1992). This factual model is then
used to determine the suitable shape of the likelihood
function (Box and Tiao 1992). The benefit of the for-
mal approach is that error model hypotheses are
expressed unequivocally and their legitimacy can be
confirmed as a posteriori (e.g., Schoups and Vrugt
2010). The formal approach, in any case, has been
censured for depending too intensely on residual error
presumptions that do not reflect reality in numerous
applications (Beven et al. 2008). On the other hand,
informal likelihood functions have been proposed as a
sober minded way to deal with uncertainty approxima-
tion within the sight of complex residual error struc-
tures (Nash and Sutcliffe 1970; Beven and Binley
1992; Vrugt et al. 2009b; Schoups and Vrugt 2010).
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The SUFI-2 algorithm as an informal parameter esti-
mation technique enables testing various types of objec-
tive functions that are known as informal likelihood
functions in calibration processes (Abbaspour 2011).
In this study, Nash and Sutcliffe (NS) coefficient as an
informal likelihood function was used to calibrate the
SUFI-2 algorithm based on five discharge stations
across the study catchment (Nash and Sutcliffe 1970):

L θijYð Þ ¼ NS ¼ 1−
σe

2

σo
2
¼ 1−

∑
N

j¼1
Ŷ̂j θið Þ−Yj

� �2
∑
N

j¼1
Yj−Y

� �2
ð5Þ

where i = 1,2,…,K, θi is the ith set of parameters,Ŷj (θi)
is the jth type of the model output (like the simulated
runoff) under θi set of parameters, Y is the measured
runoff, Yj is the jth observation of Y,Ῡ is the mean of the
observations, K is the number of parameter sets, and N
is the number of observations.

In this study, the DREAM-ZS as a sampling
algorithm was set to sample from the Bayesian
posterior and was combined with the standard least
squares (SLS) as a common and simple formal
likelihood function used by many researchers
around the world. It was employed under the as-
sumptions that the residual errors are independent
(uncorrelated) and identically distributed (i.i.d.),
following a normal or Gaussian distribution with
zero mean and constant variance (homoscedastic
errors) (Box and Tiao 1992; Yang et al. 2008;
Vrugt et al. 2009b; Schoups and Vrugt 2010; Vrugt
et al. 2013; Dumont et al. 2014; Pourreza-Bilondi
et al. 2016; Nourali et al. 2016; Leta et al. 2016;
Hernandez-Lopez and Frances 2017). This formal
likelihood is known as the Gauss-Markov (GM)
theorem:

L θijYð Þ ¼ ∏N
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ̂̂2i

q exp −
1

2σ̂̂2i
Yi−Ŷ̂i θið Þ� �2" #

ð6Þ

where σ̂i
2 is the standard deviation of the residuals.

The model setup and the uncertainty assessment
strategies

In this study, the watershed was divided into 217
sub-basins and with a threshold area of 4852 ha. A
total of 635 HRUs was defined in the model with

threshold values of 20, 20, and 10% for land use,
soil, and slope class, respectively. Then, for slope
discretization, the multiple slope option was select-
ed with four classes of 0–5, 5–10, 10–15, and >
15%. The flow was simulated based on the avail-
ability of data from 1992 to 2011. To make the
hydrological cycle operational, and decrease the
effect of the initial condition on the model output,
the first 3 years (1992–1995) were used as the
warm-up period of the model. Finally, the model
was calibrated using monthly data sets over an 11-
year time span, from 2001 to 2011.

The over-parameterization in the SWAT model
during the model parameter optimization leads to a
complex and time-consuming calibration process
(Nossent and Bauwens 2012). Therefore, Sensitivity
Analysis (SA) was carried out by SWAT-CUP tool to
improve the understanding of the influential and
non-influential parameters of the model on runoff
discharge. Most sensitive parameters were recog-
nized through the SA algorithm, i.e., Latin-Hyper-
cube-One-At-a-Time (LH-OAT) incorporated in
SWAT-CUP (Van Griensven et al. 2006; Leta et al.
2016). The LH-OAT was employed to depict a pri-
mary population of parameters (prior distributions),
which leads to the calculation of the 95PPU for a
given output variable. Twenty parameters were iden-
tified as sensitive parameters in this study (Table 2).
Furthermore, initial ranges of these parameters were
determined based on the SWAT manual (Arnold
et al. 2011). These sensitive parameters are impor-
tant to represent runoff, base flow, infiltration, and
channel routing processes. The posterior distribution
of the parameters, with uniform prior distributions,
was derived according to preselected ranges
(Table 2). The behavioral parameter sets were ap-
plied to generate model outputs. Therefore, the re-
sults were analyzed to achieve the 95% total predic-
tion uncertainty (95PPU) bands by calculating 2.5
and 97.5% levels of the cumulative distribution re-
lated to the output variables.

The assessment of two parameter uncertainty
analysis methods (SUFI-2 and DREAM-ZS algo-
rithms) was conducted through two uncertainty as-
sessment strategies, i.e., S1 and S2. These strategies
were recognized by two different initial parameter
ranges as shown in Table 3. The prior ranges of the
S1 strategy were adopted from SWAT manual, and
the prior ranges of the S2 strategy were selected
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using a compromising approach between the prior
and posterior ranges extracted from S1 strategy. As
it is depicted in Table 3, prior ranges of S2 were
adopted mainly from S1 posterior ranges.

The flowchart of SWAT modeling with both SUFI-2
and the DREAM-ZS frameworks utilized in computing
the parameter values and predictive uncertainty is illus-
trated in Fig. 2.

Performance assessment of the SUFI-2
and DREAM-ZS algorithms

Many indices have been applied and proposed to assess
the simulation accuracy of hydrological models and the
prediction bounds generated by the various uncertainty
methods. These indices can also be represented as the
criteria for comparing the prediction bounds acquired
from different uncertainty assessment methods. More-
over, the high-quality simulations are obtained from
parameter combinations within the parameter ranges
based on two criteria, i.e., P-factor and d-factor. In other
words, the SUFI-2 and DREAM-ZS algorithms, as an
iterative process, attempt to bracket most of the mea-
sured data within the 95PPU of the model (P-factor)
with as narrow as possible uncertainty band (d-factor).
In this study, the model prediction uncertainty was eval-
uated in the SUFI-2 and the DREAM-ZS algorithms by
means of two indices as well NS efficiency which
illustrates the goodness of fit between the simulated

Table 3 The description of two considered strategies

Strategy Algorithm Description

SUFI-
2

DREAM-
ZS

S1 × Set initial parameter ranges adopted
from SWAT manual

S2 × Set initial parameter ranges adopted
from trade-off between prior and
posterior ranges of S1 strategy

Table 2 Sensitive parameters obtained from LH-OAT and their prior ranges

Aggregate
parameters

Range Process Meaning of underlying SWAT parameters

CN2a [− 0.4, 0.4] Runoff generation Initial SCS (Soil Conservation Service) runoff curve number for moisture
condition II

GW_DELAYb [0, 400] Groundwater Groundwater delay time

ALPHA_BFb [0, 1] Groundwater Base-flow alpha factor

SOL_AWCa [− 0.3, 0.3] Soil water Available water capacity of the soil layer

SOL_Ka [− 0.8, 0.8] Soil water Saturated hydraulic conductivity

SOL_BDa [− 0.3, 0.3] Soil water Moist bulk density

GW_REVAPb [0.02, 0.2] Groundwater Groundwater Brevap^ coefficient

SHALLSTb [0, 1000] Groundwater Initial depth of water in the shallow aquifer

RCHRG_DPb [0, 1] Groundwater Deep aquifer percolation fraction

EPCOb [0.01, 1] Evapotranspiration Plant uptake compensation factor

ESCOb [0.01, 1] Evapotranspiration Soil evaporation compensation factor

SLSUBBSNb [10, 150] Geomorphology Average slope length (m)

CH_N2b [0, 0.3] Channel flow Manning’s Bn^ value for the main channel

CH_K2b [0, 150] Channel flow Effective hydraulic conductivity in main channel alluvium

SFTMPb [− 5, 5] Snow Snowfall temperature

SMTMPb [− 5, 5] Snow Snow melt base temperature

SMFMNb [0, 10] Snow Melt factor for snow on December 21

TIMPb [0.01, 1] Snow Snow pack temperature lag factor

SURLAGb [1, 24] Overland flow Surface runoff lag coefficient

PCPMMa [− 0.5, 0.5] Precipitation Average or mean total monthly precipitation in forecast period

a Parameter multiplied by 1 + r, where r is a number between lower and upper limits
b Parameter replaced by the new value from the range
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and the observed data (Nash and Sutcliffe 1970). The
formula is given as follows:

NS ¼ 1−
∑
N

i¼1
Ŷ̂i−Yi

� �2
∑
N

i¼1
Yi−Y

� �2
ð7Þ

where Yi is the observed runoff data in step i, Ŷi is the
simulated runoff data, Ῡ is the mean of observed runoff
data, and N is the number of observed data points.

P-, d-, and NS factors range from 0 to 100%, 0 to
∞, and − ∞ to 1, respectively. During the calibration
process, a good fit between the simulated and the
observed values is achieved when the P-factor is
close to 100% (bracket all observed data by predic-
tion uncertainty band) and d-factor close to 0 (to
achieve relatively small uncertainty band) (Yang
et al. 2008). Furthermore, the evaluation of model
prediction based on Moriasi et al. (2007) is very fine
when the NS values are between 0.75 and 1 and it
may be satisfactory if NS is greater than 0.36. The

parameter ranges and the posterior parameter distri-
butions can be obtained when the acceptable values
of P- and d-factor and NS efficiency are reached.

According to the previous sections, the SUFI-2 algo-
rithm attempts to assess all sources of uncertainties (e.g.,
model structure and input data) based on the best pa-
rameters (Abbaspour et al. 2007), while the DREAM-
ZS tries to separate them from the total uncertainty
(Vrugt et al. 2009a). A high level of symmetry prompts
an alluring forecast bound. In this way, other than that
the prediction limits should cover the observed dis-
charges, the mean difference between the lower and
upper forecast limits ought to be roughly equivalent to
the observed discharges. Besides, we expect that the
modeled prediction limits would be asymmetrical with
regard to the observed discharges because of the non-
linearity of the hydrological forms and the model struc-
ture utilized. As indicated by the observed hydrograph,
diminishing the asymmetry level of the prediction limits
to the littlest conceivable degree is a sensible point and it
would end up being a sensibly precise and vigorous
estimator (Xiong et al. 2009).

Initial parameter set through prior parameter ranges

Informal Bayesian approach in SWAT-CUP (S1: SUFI-2) Formal Bayesian approach (S2: DREAM-ZS)

Run SWAT model (based on information in watershed) and extract output data

Posterior Parameters

Are P-factor, d-factor and NS satisfactory?

Yes

No

Is R-Stat for all parameters less than 1.2?

N
o

 (In
crease n

u
m

b
er o

f 

iteratio
n

s)

Plot 95% confidence level

Comparison between Indices value (i.e. P-factor, d-factor, NS, S and T) to 

select the best strategy to reduce uncertainty band-width

Uncertainty Band

O
u

tp
u

t

Time

Observed Flow

Simulated Flow

Fig. 2 Computational framework of this study
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In addition to three prior indices (P-factor, d-factor,
and NS), two new indices of average degree of asymme-
try, i.e., the index of average deviation amplitude and its
dimensionless variant (S), and the average relative devi-
ation amplitude (T), were employed in this paper to
compare the results of two different uncertainty frame-
work. The perfect case is acquired when the estimations
of S and T are zero (for more information about S and T
indices, refer to Xiong et al. 2009). The SWAT is consid-
ered as a calibratedmodel if the acceptable values of these
criteria (P-factor, d-factor, NS, S, and T) are reached.

Results and discussion

In this study, two strategies related to the SUFI-2 and
DREAM-ZS applications were implemented in SWAT
to simulate stream flow in the KRC. It should be noted
that the observed data in the study area are very restrict-
ed; therefore, all results from two strategies were only
illustrated for the calibration data set.

S1 strategy

In SWAT-CUP, after running the first iteration, the good-
ness of fit between the observed and the simulated runoff
data is computed. As this case study is involved with
multiple-site calibration, it needs to assign weights for
these sites and then weighted objective function values
are calculated. Then, new parameter ranges are suggested
for next iterations. All of the processes of calibration and
uncertainty analysis were done with 20 parameters with
NS as an objective function for each of the 5 gauging
stations, separately. In addition, the minimum value of the
objective function threshold of this strategy (S1) for the
behavioral samples was chosen to be 0.5. The final upper
and lower bounds of the posterior parameters as well as
the fitted values of parameter (obtained from SUFI-2
uncertainty technique) are shown in Table 4.

Results of marginal posterior distributions of the
SWAT behavioral parameters derived from the SUFI-2
procedure are plotted in Fig. 3, and the best parameter
values for all parameters is also depicted with a blue
symbol (cross) (also see Table 4). The x axis in each
histogram reveals the posterior ranges of each individual
parameter. Although the shape of distributions demon-
strates the degree of parameter uncertainty, the calibra-
tion of parameter estimates may be considered as model
values. In general, the fine identifiable parameters are

obtained from the sharp and peak distributions, while
the flat distributions show more parameter uncertainty
(Jin et al. 2010). As shown in Fig. 3, almost all of the
parameters have entirely different posterior distributions
than the prior in terms of both the parameter range and
the shape of the distributions, except for the parameter
ALPHA_BF which shows a uniform distribution with a
narrower range. According to Fig. 3, it should be noted
that some of the SWAT parameters (e.g., CN2,
SHALLST, ESCO, SMFMN, and CH_N2) are well
identified within their prior ranges and their distribu-
tions are approximately Gaussian. While, the other pa-
rameters reveal either negatively (e.g., SOL_AWC,
SOL_K, GW_REVAP, RCHRG_DP, SLSUBBSN,
CH_K2, SMTMP, TIMP, and PCPMM) or positively
skewed (e.g., GW_DELAY, SOL_BD, EPCO, SFTMP,
and SURLAG) distributions (may be not considered as
easily identifiable parameters) and the mass of the pos-
terior distribution is concentrated at their lower or upper
bounds, respectively. On the other hand, some parame-
ters (except GW_REVAP, ESCO, CH_N2, CH_K2,
SMFMN, and TIMP) are better defined and the width
of posterior distributions covers only a relatively narrow
interior region compared to the prior range (the prior
ranges of parameters are relatively wide). This indicates
that the measured runoff data include enough informa-
tion to approximate these parameters and those ones
have less uncertainty, whereas the other parameters
(e.g., GW_DELAY, ESCO, CH_N2, CH_K2, SMFMN,
and TIMP) show considerably larger ranges and these
parameters are more uncertain. Thus, the SUFI-2 proce-
dure is capable of assessing the uncertainty parameters
in the SWAT model.

Correlation coefficient matrix of the posterior param-
eter samples for the SUFI-2 algorithm (S1 strategy) is
shown in Table 5. Results show that the correlations
between all of the sensitive parameters of the SWAT
model are very low and there are no significant correla-
tions (all coefficients less than 0.04). It should be
expressed that, although a rigorous probabilistic formu-
lation does not exist in the SUFI-2 algorithm, the pa-
rameter uncertainty may be propagated correctly
through hypercube sampling. SUFI-2 does not consider
parameter correlation; thus, some simulations with poor
objective function values may be picked out as the non-
behavioral ones.

The 95PPU at five stations on monthly basis for the
period 2001–2011 derived from the SUFI-2 algorithm
are plotted in Fig. 4. The total uncertainty denotes the
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combined influences of parameter, model condition, and
data calibration uncertainty. The model was calibrated
for KRC with one upstream (SARASSHA), three

mids t ream (ZIRBAGOL, GOLJAGHR, and
HESDEHB), and one downstream (KARTIAN) gaug-
ing stations. Analysis of hydrographs indicates that the

Fig. 3 Marginal posterior distributions of SWAT parameters under S1 strategy

Table 4 The optimum values of parameters in SWAT model obtained from the S1 strategy with prior ranges of parameters

Aggregate parameters Lower limit Upper limit Best value Aggregate parameters Lower limit Upper limit Best value

CN2 − 0.4 0.4 0.24 ESCO 0.01 1 0.46

GW_DELAY 0 400 135.53 SLSUBBSN 10 150 102.45

ALPHA_BF 0 1 0.04 CH_N2 0 0.3 0.11

SOL_AWC − 0.3 0.3 0.27 CH_K2 0 150 103.47

SOL_K − 0.8 0.8 − 0.31 SFTMP − 5 5 − 1.70
SOL_BD − 0.3 0.3 − 0.11 SMTMP − 5 5 − 1.29
GW_REVAP 0.02 0.2 0.11 SMFMN 0 10 7.92

SHALLST 0 1000 492.48 TIMP 0.01 1 0.65

RCHRG_DP 0 1 0.27 SURLAG 1 24 10.85

EPCO 0.01 1 0.41 PCPMM − 0.5 0.5 − 0.30
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calibrated model relatively underestimates the peak run-
off, while it is slightly overestimated in 2008, 2009, and
2010 at the lower and middle parts of the catchment
(KARTIAN, HESDEHB, and GOLJAGHR) and in
2009 at the middle and upper parts of the catchment
(ZIRBAGOL and SARASSHA), especially in the re-
cession limb. This may be reasoned that in the SWAT
simulation, SCS method was employed, which does not
consider precipitation duration and intensity (Arnold
et al. 2011). On the other hand, the accuracy of the
model is good in peak discharge estimations, although
not excellent. It should be expressed that rainfall gauge
stations are not a very good representative of precipita-
tion over the basin, because in the map show there are
no rain gauges in some high-altitude parts of the study
basin. Moreover, the KRC region is a mountainous
watershed and is exposed to high spatial and temporal
variability in rainfall distribution that cannot be captured
exactly using these rain gauges in this basin. Therefore,
such a limitation could have contributed to some degree
of simulation uncertainty (Memarian et al. 2014; Cho
et al. 2009). Furthermore, at all stations, the base flow
was of high correspondence. As it can be seen in Fig. 4,
most of the measured data were bracketed by the 95PPU
(from 57% in SARASSHA to 74% in HESDEHB),
which illustrates that the uncertainties in the SWAT
model within the permissible limits were relatively de-
creased. Similar d-factor was achieved at all gauging
stat ions (from 0.9 in KARTIAN to 1.29 in
ZIRBAGOL).

The results, based on the three evaluation criteria
(NS, P-factor, and d-factor), are shown in Table 6. In
this study, the sources of uncertainty, i.e., U1, U2,
and U3, are reflected as the total uncertainty in S1,
the total uncertainty in S2, and the parameter uncer-
tainty in S2, respectively. According to Table 6, the
NS coefficient during the calibration period was
obtained as 0.6 in HESDEHB up to 0.71 in
SARASSHA. Among three gauging stations, it
seems that SWAT model in HESDEHB shows a
good performance (NS = 0.6, P-factor = 0.74, and d-
factor = 0.92). Generally, it can be revealed that in
this study, the results of calibration in KRC can be
qualified as Bsatisfactory^ under the S1 strategy.
Finally, it should be expressed that the uncertainty
in the SUFI-2 procedure is relatively medium.
Therefore, the results of the DREAM-ZS procedure
must be analyzed to select the best algorithm and
strategy, which is represented in the next section.

S2 strategy

The DREAM-ZS was applied as a sampler to separate
the sources of error raised from the parameters of other
uncertainty sources (e.g., model structure and input
data) to estimate the total predictive uncertainty (Vrugt
et al. 2008). In this study, all of the processes of calibra-
tion and uncertainty analysis were conducted with 20
parameters as the most sensitive parameters with SLS as
a likelihood function for each of the 5 gauging stations
(Box and Tiao 1992) under the S2 strategy. Hence, the
sampling from the prior parameter distributions
(Table 7) for a total number of 120,000 runs is the initial
step for the DREAM-ZS. This algorithm was run with
three parallel chains to estimate the posterior distribu-
tions. Convergence of the DREAM-ZS was monitored
by using R statistic (Gelman and Rubin 1992) for each
parameter. When the R statistic for all sampled param-
eters goes below the threshold value of 1.2, then the
convergence of the algorithm can be achieved. In this
study, the S2 strategy met the convergence criteria after
performing about 99,800 runs for all sensitive
parameters.

After converging the chains, only the last 20% of
the samples (i.e., 20,000 parameter set) generated by
the DREAM-ZS was applied to plot the posterior
parameter distributions. These plots are visually il-
lustrated in Fig. 5. Moreover, the best values (max-
imum likelihood) for all of the parameters are
depicted with a blue symbol (cross) (see Table 7).
In this figure, the posterior distributions for all pa-
rameters reveal the existence of several distributions
in both shapes and parameter ranges. In all of the
parameters, the width of the prior ranges in the S2
strategy was smaller than S1 strategy. Furthermore,
it was found that in some parameters (e.g.,
ALPHA_BF, RCHRG_DP, and SFTMP), the width
of posterior ranges in the S2 strategy decreased
compared to the S1 strategy. It should be noted that
the S2 strategy employed the SLS likelihood func-
tion (Eq. (6)), which considers different sources of
error such as input, output, or model structure errors,
separately. Whereas the S1 strategy used the NS
likelihood function (Eq. (5)), which delineates these
errors only for parameter uncertainty. Consequently,
the prior parameter ranges in the S2 strategy were
smaller than the S1 strategy. These results exhibit
that the DREAM-ZS procedure skillfully optimized
some parameters for a complex model in
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comparison with the SUFI-2 procedure. Additional-
ly, the DREAM-ZS procedure may easily recognize

the identifiable parameters and maintains less uncer-
tainty. Moreover, some parameters except for

Fig. 4 The 95% prediction uncertainty ranges of five runoff stations in S1 strategy by the SUFI-2 algorithm: the light shaded area represents
the total uncertainty, red dots show the observed data, and the black line depicts the best prediction runoff

Table 6 Index values of NS, P-factor, and d-factor considered in both strategies of uncertainty for runoff simulation

Stations Sources of uncertainty

U1 U2 U3

NS P-factor d-factor NS P-factor d-factor NS P-factor d-factor

SARASSHA 0.71 0.57 1.10 0.78 0.93 1.77 0.78 0.19 0.25

ZIRBAGOL 0.65 0.58 1.29 0.73 0.89 1.36 0.73 0.24 0.28

GOLJAGHR 0.64 0.63 0.95 0.64 0.98 4.49 0.64 0.20 0.27

HESDEHB 0.60 0.74 0.92 0.63 0.99 3.10 0.63 0.34 0.28

KARTIAN 0.63 0.66 0.90 0.75 0.98 2.53 0.75 0.27 0.29

U1 total uncertainty in S1 strategy, U2 total uncertainty in strategy S2, U3 parameter uncertainty in strategy S2
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SOL _BD , SURLAG , PCPMM , SOL _K ,
SLSUBBSN, and EPCO are overlapping in terms
of shape and range for both strategies (see Figs. 3
and 5). Furthermore, the TIMP for the S1 and S2
and EPCO and ALPHA_BF for the S2 strategy are
the only parameters that retain a fixed distribution
shape. It establishes that these parameters have less
uncertainty in the SWAT model. The results demon-
strated that the ranges of other parameters must be
relaxed, as well. For instance, the distributions of
GW_DELAY, ESCO, and CH_N2 remarkably devi-
ate from normality in the S1 strategy and centralize
to their upper or lower bounds in the S2 strategy. In
addition, some parameters arrive to similar distribu-
tions or are very close to each other. For example,
CN2 , ALPHA_BF, SOL_AWC, SOL_BD,
SLSUBBSN, and SURLAG showed almost the
same values around 0.21, 0.04, 0.26, − 0.14, 99,
and 11.2 for both strategies, respectively.

The correlation matrices of the posterior parame-
ter samples for the DREAM-ZS algorithm (the S2
strategy) after convergence are given in Table 8. The
results of S2 strategy, as illustrated in Table 8, have
been modified in relation to the S1 strategy. As
illustrated in Table 8 and referred to Table 5, the
correlation matrix of the posterior parameter sam-
ples of the DREAM-ZS revealed that most correla-
tion values of pairwise parameters in the S2 strategy
increased and were significantly better than those in
the S1 strategy. For example, in the S2 strategy, the
significant positive correlations were shown be-
tween the pairwise parameters such as (SOL_AWC,
ESCO), (ALPHA_BF, SOL_AWC), and (ESCO,
SFTMP) with the values of 0.87, 0.78, and 0.75,

respectively, and significant negative correlations
were shown between the pairwise parameters such
as (CH_N2, CH_K2), (SMTMP, TIMP), and
(SURLAG, PCPMM) with the values of − 0.63, −
0.53, and − 0.50, respectively (see Table 8). The rest
of parameters have no significant correlation and
most of them are correlated with a coefficient of
less than 0.5. Nevertheless, the high correlations
between aforementioned parameters in the S2 strat-
egy provide important information about the uncer-
tainty of parameters and indicate powerful interac-
tions among those parameters and their effect on
model response. Therefore, these parameters may
be fixed in KRC region, before calibrating the
SWAT model.

After convergence is attained, the last 20% of the
samples of the SWAT model that adequately fit the
model to the observations were exerted to generate
model outputs. Then, the 95% confidence interval was
depicted by calculating 2.5 and 97.5%. The time series
data of the total uncertainty, parameter uncertainty, and
the best simulation according to the SLS likelihood
function and the observed runoff discharge at the five
stations on monthly basis for the calibration period
(1992 to 2011) were derived by the DREAM-ZS algo-
rithm in the S2 strategy and are plotted in Fig. 6.

As it can be seen in Fig. 6, the widths of the total
uncertainty for S2 are a little higher than S1 (according
to Table 6; e.g., in SARASSHA, d-factor for the total
uncertainty in S1 and S2 are 1.1 and 1.77, respectively,
and for the parameter uncertainty in S2 is 0.25). There-
fore, most of the observed points (more than 89%) in the
DREAM-ZS strategy fall inside the 95% prediction
uncertainty bounds and the P-factor is larger than the

Table 7 The fitted value of posterior parameters in the SWAT model obtained from the S2 strategy with prior ranges of parameters

Aggregate parameters Lower limit Upper limit Best value Aggregate parameters Lower limit Upper limit Best value

CN2 0.15 0.30 0.17 ESCO 0.35 1 0.99

GW_DELAY 0 200 2.08 SLSUBBSN 40 120 95.10

ALPHA_BF 0 0.20 0.05 CH_N2 0.08 0.30 0.25

SOL_AWC − 0.3 0.3 0.25 CH_K2 20 120 49.36

SOL_K − 0.8 0.8 0.39 SFTMP − 3 5 4.72

SOL_BD − 0.3 0 − 0.19 SMTMP − 3 0 − 2.01
GW_REVAP 0.02 0.14 0.03 SMFMN 0 10 0.99

SHALLST 400 1000 966.44 TIMP 0.01 0.8 0.03

RCHRG_DP 0 0.35 0.001 SURLAG 1 24 12.68

EPCO 0.01 0.5 0.1 PCPMM − 0.4 0.2 − 0.11
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SUFI-2, which indicates a high performance of the
model. For the S2 strategy, the total uncertainty band
brackets 89 to 98% of the observed data with a similar d-
factor from 1.36 to 5. The results of S2 are almost
similar to each other and differ from the S1 strategy
(see Fig. 6 and also Table 6). For example, the maxi-
mum and minimum P-factor and d-factor correspond to
GOLJAGHR (S2: P-factor = 98 and d-factor = 4.49) and
ZIRBAGOL (S2: P-factor = 89 and d-factor = 1.36), re-
spectively. By considering the SWAT parameter uncer-
tainty alone for the S2 strategy, only 19 to 34% of the
observed data are bracketed (difficulty illustrated in
Fig. 6). The limits of the upper and lower parameter
uncertainty in the S2 strategy cover most of the observed
data in these bands, indicating significant improvement
compared to the S1 strategy. Furthermore, the gap be-
tween 95% prediction due to model parameters and
observed data may be reasoned by the input/output data

or the inadequacy of the model structure (Laloy et al.
2010). Note that the bounds of parameters and the total
uncertainty are quite narrow and wide, respectively.
Therefore, this result demonstrates that there is remark-
able uncertainty in input data or structure of the model
utilized in this study. The comparison between the two
strategies, using NS, illustrates that the S2 strategy
exhibits better performance than the S1 strategy. Fur-
thermore, on average at all stations, the NS value was
found to be around 0.71 and 0.65 in S2 and S1, respec-
tively (Table 6). Although the NS values in both strate-
gies are similar, the S2 strategy shows a relatively stron-
ger relationship between the simulated runoff and the
observations, which is investigated further in the next
section. Although in DREAM-ZS the simulated month-
ly high flows are slightly underestimated in some
months and overestimated in other months (especially
at the end part of the calibration time period), it reveals a

Fig. 5 Marginal posterior parameters distributions of SWAT model under S2 strategy
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more realistic model with its tendency to further reduce
the difference between observed and simulated data.
Some different results between the informal and formal
Bayesian frameworks are due to different fundamentals
in their philosophies and mathematical rigor. As an
example, the DREAM-ZS uses formal mathematics
and Monte Carlo Markov Chain simulation to derive
prediction and parameter uncertainty, whereas the
SUFI-2 has a weak statistical basic (Mantovan and
Todini 2006). Furthermore, the SUFI-2 does not try to
discrete the parameters, input data, and structural errors
in the model from the total uncertainty.

Comparison between SUFI-2 and DREAM-ZS

The indices S and T were utilized to compare the
95% prediction uncertainty band (95PPU) and the
performance of uncertainty analysis. As shown in

Table 9, both S and T at multisite runoff stations
under the U2 uncertainty source have decreased, as
compared to the U1. Results indicated that a low S
(or T) value (in the other words a high degree of
symmetry) normally corresponded to a large average
band width of the estimated prediction bounds. Both
S and T indices at all runoff stations under the U3
were greater than U1 and U2. However, we cannot
compare the results of U3 with the U1, because the
values of U1 are resulted from a SUFI-2 algorithm
that attempts to predict all sources of uncertainties
(Abbaspour et al. 2007). The highest values of S and
T resulted from U1 in SARASSHA with the values
of 0.51 and 1.01, whereas the lowest values of these
indices were obtained under U2 in GOLJAGHR
with values of 0.07 and 0.39, respectively.

Consequently, compared to S1, the S2 strategy, which
considers both SUFI-2 and DREAM-ZS algorithms,
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Fig. 6 The 95% prediction uncertainty ranges of five runoff
stations in S2 strategy: the light and dark shaded area, respectively,
represents the total and parameter uncertainty; the red dots show

the observed data; and the black line depicts the best prediction of
runoff



arguably presented better results and lower uncertainties
by considering the S and T indices. As a result, the fitted
values of parameters in S2 can be applied to estimate the
hydrology cycle processes in KRCwith the SWATmodel.

Summary and conclusion

This paper investigated informal and formal Bayesian
frameworks (i.e., SUFI-2 and DREAM-ZS) by defining
two different strategies that simulate runoff discharge
over a 16,870-km2 semi-arid catchment system in Iran
using the SWAT model. Among the initial parameters,
20 parameters were identified as the sensitive parame-
ters to survey the calibration and uncertainty processes
at five runoff gauging stations. The optimization of
parameters in the SUFI-2 and DREAM-ZS algorithms
were conducted by considering NS and SLS as the
likelihood functions. The best posterior parameters in
the S1 strategy (the use of the SUFI-2 algorithm) were
obtained after a total number of 3000 runs while the S2
strategy (the use of DREAM-ZS algorithm) met the
convergence after performing 120,000 iterations. The
source code of DREAM-ZS was also modified to pre-
dict the parameter uncertainty at two or more runoff
stations in a large-catchment system. In this research
study, another strategy, i.e., S2, was investigated, as
well. Although it was run by the DREAM-ZS algorithm,
the prior ranges of this strategy were similar to the prior
ranges in S1. S2 strategy did not target the convergence
threshold; therefore, it was eliminated from the list of
studied strategies in this research.

The results of the marginal density showed that dif-
ferent posterior parameter distributions resulted from
different techniques. For the S1 strategy, both shape and
parameter ranges in all of the parameters had different
posterior distributions than their prior ranges except for
ALPHA_BF. While the distributions of CN2,
SHALLST, ESCO, SMFMN, and CH_N2 were well
defined and approximately Gaussian, the parameters
were either negatively or positively skewed. The width
of some parameters covered only a narrow region interior
compared to the prior range. For the S2 strategy, several
modes were seen in both shape and parameter ranges. In
S2, the TIMP, EPCO, and ALPHA_BF parameters main-
tained a constant distribution and had less uncertainty in
the SWAT model while the other parameter ranges need
to be relaxed. The width of posterior ranges in S2 either
increased or decreased compared to S1.

The results of the correlation matrix between the
sensitive parameters showed that for the S1 there were
very low significant correlations, whereas for S2, the
correlations were modified and significantly better than
the S1 strategy (positively and negatively significant
correlations could be seen in most parameters). The
highest correlation values were observed between
SOL_AWC and ESCO.

The results of uncertainty and calibration analysis
showed that in the both strategies, the calibrated model
relatively underestimated the peak runoff in most
months at all stations, whereas in some months of the
year, the recession limb was overestimated. However,
the base flow illustrated high correspondence. In S1,
most of the measured data were bracketed by the
95PPU (from 57 to 74%) and similar d-factors (from
0.9 to 1.29) were seen at all stations. Additionally, the
HESDEHB station was determined to have a good
performance. Even though the uncertainty in the S1
strategy was deemed as relatively satisfying, the width
of the total uncertainty in S2 was higher than S1. Most
of the measured data (more than 89%) in S2 located
inside the 95PPU and were higher than the S1 strategy
and d-factor in S2 (from 1.36 to 5) was larger than S1.
Similar to the S1, the peak runoff points in the S2
strategy of DREAM-ZS were slightly underestimated
and in some months were overestimated compared to
the observed data.

Finally, the results of the supplementary evaluation
criteria as new indices of the average asymmetry degree
(S and T) at all stations revealed that for the total
uncertainty, the both indices were greater in S1 than S2.

Table 9 Average asymmetry degree indices of S and Tconsidered
in both strategies of uncertainty for runoff simulation

Stations Sources of uncertainty

U1 U2 U3

S T S T S T

SARASSHA 0.51 1.01 0.17 0.56 1.61 2.28

ZIRBAGOL 0.46 0.94 0.22 0.64 1.54 2.19

GOLJAGHR 0.49 0.98 0.07 0.39 1.88 2.63

HESDEHB 0.51 1.00 0.11 0.45 1.86 2.61

KARTIAN 0.50 0.99 0.11 0.46 1.51 2.17

U1 total uncertainty in S1, U2 total uncertainty in S2, U3 param-
eter uncertainty in S2
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The results further indicated that a combination
method of two formal and informal Bayesian frame-
works can provide a better approach for runoff simula-
tion than either formal or informal methods, individual-
ly. The uncertainty analysis confirmed the higher effi-
ciency of DREAM-ZS algorithm (S2 strategy) to predict
simultaneous parameter uncertainty in KRC as a spa-
tially heterogeneous catchment than the SUFI-2
algorithm.

For future studies, the researchers can modify the
source of SWATmodel to assimilate data between phys-
ical and simulation processes in the model for the better
investigation of parameter uncertainty in different
Bayesian methods.
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