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Abstract Soil salinization is one of the major environ-
mental problems facing agricultural lands in arid and
semiarid areas of the world because of its detrimental
impacts on agricultural production and on the sustain-
able development of land resources. Hence, predicting
soil salinity is essential to avoiding further soil degrada-
tion. The present study is intended to develop a model
for predicting soil salinity in soils around Idku Lake by
using remote sensing and geographic information sys-
tem techniques. This lake is a shallow brackish basin
located in the western part of the Nile Delta. For this
purpose, Landsat 8-OLI images and shuttle radar topog-
raphy mission 1Arc-Second Digital Elevation Model
data were utilized in this research. A total of 91 surface
samples were collected across the study area at a depth
between 0 and 30 cm and were analyzed via traditional
laboratory analysis methods. Five environmental pa-
rameters were used in the design of the soil salinity
model. A pairwise comparison matrix was used to cal-
culate the factor weight value for each of the layers. A
linear regression model was used to plot the relationship
between the EC value and raster value of the salinity

map derived from the overlay model. According to the
results obtained from a pairwise comparison of the
factor layers, water table level was the greatest influen-
tial factor of soil salinity, followed by landforms. The
validation of the model demonstrated a high degree of
correlation (R2 = 0.72) between the measured EC values
and the salinity values derived from the model. Further-
more, this model could be a useful tool for predicting
soil salinity with a suitable validation.

Keywords Electrical conductivity . Overlay salinity
predictionmodel . GIS . NDVI . Environmental
parameters

Introduction

Soil salinization of irrigated agricultural lands is a
global environmental problem affecting the sustain-
able usage of land resources, environmental health,
agricultural production, and food security. This pro-
cess of salinization ultimately results in soil degrada-
tion (Gorji et al. 2015; Zewdu et al. 2017). Soil sali-
nization is spreading due to agricultural expansion and
climate change, especially in arid and semiarid climat-
ic zones (Jiang et al. 2017). Excess salt concentrations
lead to other soil degradation features, such as sealing,
crust formation, structural changes, and soil disper-
sion that leads to soil compaction (Farifteh et al.
2007). Salt-affected soils are generated by high accu-
mulations of salt at the soil surface. Geological
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formations such as limestone, halite, shale, and gyp-
sum are the major sources of the accumulated salt. The
disparity of soil salinity is influenced by the soil type,
parent material, and topography (Clay et al. 2001).

Soil salinity is classified into two main categories:
natural primary salinity or human-induced secondary
salinity (Allbed and Kumar 2013). Human-induced
salinity influences approximately 20% of irrigated
lands and 2% of dry lands worldwide (Sharma and
Singh 2017). Primary soil salinity exists in regions
where the parent material has a great amount of salt
(mostly the chlorides of sodium, calcium, and magne-
sium and, to a minor extent, carbonates and sulfates),
the level of the water table is high, and evapotranspi-
ration rates are higher than precipitation rates. How-
ever, secondary soil salinity is correlated with insuffi-
cient drainage and poor water quality in irrigated areas
(Ammari et al. 2013; Arora 2017).

Due to excess soluble salts in saline soils, electrical
conductivity (EC) values ≥ 4 dS m−1 are observed. This
influences plant growth in saline soils, which is usually
related to the specific ion toxicity and osmotic stress
(Sharma and Singh 2017).

Many soils vary spatially and temporally to a large
degree and this affects the assessment of soil salinity. In
addition, the traditional laboratory methods for
assessing salinity of soil are costly and time-
consuming methods, especially since a lot of samples
are needed to detect soil salinity (Aldabaa et al. 2015).
Also, the EC is often used to express soil salinity. Many
factors such as water holding capacity and soil texture
influence the use of EC measurements to assess soil
salinity (Pozdnyakova and Zhang 1999). Additionally,
soil extracts are often used in the determination of EC.
The real extract ratios utilized in traditional analysis
vary extremely and it is complicated to convert the
results into field water content values (Adiku et al.
1992). This has led to the use of various remote sensing
and modeling applications for directly detecting, moni-
toring, and predicting salt-affected regions.

Remote sensing (RS) imagery is an effective ap-
proach to map soil salinity. RS can supply helpful infor-
mation about evapotranspiration, precipitation, and crop
types that could be considered indirect indications of
soil salinity. Saline areas are often recognized via the
existence of patchy white spots of precipitated salts,
which can be recorded by RS imagery (Shahid 2013).
There are two limitations of the usage of RS data in
detecting saline areas. The first limitation is the

difficulty in identifying subsurface saline areas due to
the lack of resolution in inexpensive RS data (Furby
et al. 1995). The second limitation is plant cover of
saline soils that blocks the direct detection of the soil
(Shahid 2013). Remote sensing and GIS techniques
have been widely used to detect, map, and model salt-
affected soils (Peng 1998; Farifteh et al. 2006; Allbed
and Kumar 2013; Jiang et al. 2017).

Modeling is an important mathematical tool when
predicting soil salinity-related dependent variables that
assist in decision making. Additionally, model results
help in assessing probable scenario analyses. The input
data required to run the model differs in complexity
according to the data output requirements (FAO 2009).
Modeling techniques have been widely used to detect,
map, and model salt-affected soils. Corwin et al. (1989)
developed three regression models to predict soil salin-
ity potentials. They found a good correlation between
soil salinity predicted from the models and the measured
salinity in the field. In addition, Lesch et al. (1995)
applied a multiple linear regression models to predict
soil salinity. Recently, Fourati et al. (2015) applied Par-
tial Least Square Regression (PLSR) model to predict
soil salinity. The model gives a coefficient of determi-
nation R2 = 0.52 using the linear regression.

The development of soil salinity on agricultural
lands can commonly be related to many environmen-
tal factors: depth to water table, soil texture, geology,
landforms, and vegetation density. Depth to water
table is one of the most important factors in the devel-
opment of soil salinity because shallow water table
would enhance the movement of salts to the surface of
the soil (Corwin et al. 1989). Stressed vegetation can
be an indirect indication of the existence of excess
salts in the soils. Saline soils are commonly recog-
nized by identifying poorly vegetated regions (Asfaw
et al. 2016). Mokarram et al. (2015) studied the rela-
tionship between soil salinity and landforms by using
multiple regression analysis. They found that sand
content in the top soils was the greatest influential
factor in the prediction of soil salinity. To compare
two factors with each other for their relative impor-
tance in predicting the soil salinity susceptibility,
multi-criteria evaluation was used in conjunction with
pairwise comparison matrix (PWCM). Multi-Criteria
Evaluation (MCE) is a method that can be used to
evaluate and weight variables regarding their impor-
tance to achieve a particular objective which helps in a
decision-making process (Alvarado et al. 2016).
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The present study was planned to assess the extent
of soil salinity in areas around Idku Lake and to map
the spatial distribution of the problem through devel-
oping an overlay model based on environmental fac-
tors, RS data, and field measurements of EC. For this
purpose, a semi-comprehensive survey was carried
out over the research area so as to obtain an estimation
of the soil patterns.

Materials and methods

Study area

The study area, which covers more than 1000 km2,
is located in the western part of the Nile Delta,
extending from 30° 26′ 45″ N to 30° 59′ 15″ N
and from 29° 51′ 30″ E to 30° 31′ 08″ E (Fig. 1),
around Lake Idku. This lake is a shallow brackish
basin located in the western part of the Nile Delta
and has an area of approximately 126 km2 (Ali and
Khairy 2016). This area is characterized by a hot
desert climate, calmed by blowing winds from the

Mediterranean Sea. August is the warmest month,
with an average temperature of 20.42 °C. The aver-
age temperature in January is 13.15 °C. June is the
driest month, with 0 mm of rainfall. Most precipita-
tion occurs in January, with an average of approxi-
mately 23.8 mm. The average temperatures differ by
approximately 13.4 °C during the year. The evapo-
ration can range from 3.3 to 4.8 mm/day with an
average of 4.25 mm/day (Zaki and Swelam 2017).
According to the US Soil Taxonomy System (USDA
2014), the soil temperature regime would be identi-
fied as BThermic^ since the average annual temper-
ature is not more than 21 °C. Also the soil moisture
regime would be defined as BTorric^ where the
rainfall is always lower than evaporation rates (more
than 180 days).

The soil texture in this area is recognized as
clayey soils with recently reclaimed sandy soils
(El-Dars et al. 2014). The slope of soil surface is
flat. Soil depths differ considerably, ranging from
moderately deep to deep, and well match the water
table depths. Soil colors range from dark grayish
brown to yellow (Hegab 2014).

Fig. 1 A spatial location of the study area
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Data acquisition and processing

The present study was performed by using two multispec-
tral Landsat 8-OLI images (path 177/rows 38 and 39). The
images were acquired on 1 September 2015 with a spatial
resolution of 30 m. These images are free of sensor imper-
fections and clouds. The Landsat images were obtained in
the GeoTIFF format from the United States Geological
Survey (USGS) site (http://earthexplorer.usgs.gov/). By
using ENVI 5.1 software, images were projected onto a
UTM coordinate system usingWGS 1984 datum assigned
to UTM zone 36. The atmospheric correction was done to
reduce the noise effect using the FLAASHModel (Perkins
et al. 2005), which can correct both collective and multi-
plicative atmospheric effects (Wu et al. 2014), then the
images were mosaicked. Analysis of the images was ac-
complished by using ENVI 5.1 andArc-GIS 10.3 software
for image processing, analyzing, and presenting the results.

Geologic and geomorphological units of the study area

The shuttle radar topography mission (SRTM) could be
combined with multispectral images (Landsat 8-OLI) to
realize better view of the landscape, as it provides better

functionalities than the topographic maps. To delineate
the landform units, the SRTM images with a spatial
resolution of 30 m were downloaded from the USGS
site (http://earthexplorer.usgs.gov/). The digital
elevation model (DEM) of the study area was extracted
from SRTM by using Arc-GIS 10.3 (Fig. 2). The SRTM
is an esteemed space data of earth surface acquired by
precise radar scanning land at 1-arc sec intervals (Ali
and Shalaby 2012). The Landsat 8-OLI image and
SRTM data were processed in ENVI 5.1 software to
identify the different physiographic units according to
the approach developed by Dobos et al. (2002). The
map legend was designed according to Zinck and
Valenzuela (1990). The interpretation of Landsat 8-
OLI and SRTM images generates preliminary landform
units which were verified during field work.

Salinity model from measured EC

Soil field survey and laboratory analyses

A total of 91 sites were investigated in the field to collect
surface soil samples (0–30) during September 2015.
The samples were collected using grid system (3 ×

Fig. 2 Digital elevation model (DEM) of the study area as derived from the SRTM 1 arc-second data
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3 km), and some sites were shifted to avoid urban areas
and water bodies. Positions were located by global
positioning system (GPS). An appropriate number of
samples were selected to represent all landforms in
consonance with their areas. Figure 3 shows the loca-
tions of the surface soil samples. All soil samples were
air-dried and sieved through a 2-mm mesh. EC is often
used to express soil salinity. EC was measured in a 1:2.5
soil-water extract for coarse-textured soils, while it was
measured in saturated paste extract for fine-textured
soils. The EC was measured via an electronic bridge.
The samples were analyzed using the soil survey labo-
ratory methods manual (USDA 2004).

Spatial distribution of soil properties

Spatial interpolation is a well-known method used to
estimate the values of unknown locations based on the
characteristics of known data sets. The inverse distance-
weighted (IDW) method is a type of the interpolation
method, which estimates the values of unmeasured lo-
cations using a linear combination of the surrounding
known points weighted by the mean distance from them
to the unknown point (Yin et al. 2012; Chen and Liu

2012; Chen et al. 2016). The IDWalgorithm of Arc-GIS
10.3 was used to interpolate the measured EC values
over the study area. According to FAO (1988), EC
values were used to classify the levels of soil salinity.

Soil salinity risk prediction model

Environmental parameters

Environmental parameters were used in the design of
soil salinity risk model. These parameters include water
table level, soil texture, landforms, geology, and vege-
tation density. The water table level was determined by
using PVC pipe and measuring stick. In this regard,
spline method was used in the interpolation of water
table data. It is one of the methods of interpolation that
estimates values via mathematical function that reduces
surface bend (Robinson and Metternicht 2006). Soil
texture was determined by the percentage of sand, silt,
and clay following the soil survey laboratory methods
manual (USDA 2014). The standard pipette procedure
was applied for fine-textured soils, whereas dry sieving
procedure was utilized for coarse-textured samples.

Fig. 3 Locations of soil samples over the investigated area
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The geological units of this study area were extracted
from the geological map of Egypt (scale 1:500,000)
produced by CONOCO (1989).

DEM is a three-dimensional model of the earth’s
surface elevation (Brough 1986); it can be utilized to
display sets of data which can help in landform’s map-
ping (Ali and Moghanm 2013). Information extracted
from DEM, such as surface elevation, could be utilized
with the Landsat images to enhance their competence for
soil mapping (Lee et al. 1988). DEM and Landsat 8-OLI
images were used to identify and delineate the landform
units that were checked and modified during field work.

To extract the vegetation density layer from Landsat
8-OLI satellite image, the normalized differential vege-
tation index (NDVI) was used. NDVI is the most pop-
ular used index for spotlighting vegetation regions on
satellite images (Gandhi et al. 2015). It can detect wor-
thy information about the condition of vegetation cover,
vegetation structure, and leaf distribution (Yengoh et al.
2014). The NDVI was calculated from the following
equation (Mokarram et al. 2015):

NDVI ¼ NIR−Rð Þ= NIRþ Rð Þ ð1Þ

The value of this index ranges from − 1 to 1. The
NDVImap derived from the equation is shown in Fig. 4.

The raster of the factor layers is on different reso-
lutions. Before applying the model, all the layers were
resampled to the same cell size (30 m) using resample
tool in Arc-GIS. All the factor layers were with a
spatial resolution of 30 m. All the layers of the envi-
ronmental parameters were reclassified into four clas-
ses according to their susceptibilities to soil salinity
risks via the reclassify tool in Arc-GIS 10.3 software,
where class 1 represents the lowest susceptibility to
soil salinity and class 4 represents the highest. The
used ranks for water table level, landform, soil texture,
geology, and vegetation density are represented in
Table 1.

Assigning weight of factors and multi-criteria
evaluation

The multi-criteria evaluation approach was used in
weighted overlay analysis. Using a PWCM, the factor
weight values for each of the layers were calculated by
comparing two factors with each other for their

Fig. 4 Normalized difference vegetation index (NDVI)
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relative importance in predicting the soil salinity sus-
ceptibility of the study area. The scale formulated by
Saaty (1980) was utilized in the application of
PWCM. The values of the scale range from 9 to 1/9.
A ranking of (1, 3, 5, 7, 9) shows that the row factor is
more significant in comparison with the column fac-
tor, whereas a ranking of (1/3, 1/5, 1/7, 1/9) shows that
the row factor is less significant than the column factor
(Kihoro et al. 2013). A value of (1) indicates that the
row and column factors have the same significant. The
weights of all layers sum to one. Weight output from
pairwise comparison matrix for each of the factor
layers is shown in Table 2.

Once the layers and their weights were obtained,
weighted overlay analysis was applied using Arc-GIS
10.3 by multiplying the cell value of every environmen-
tal parameter by its particular weight to produce a map
of soil salinity levels (Eq. 2). In the output raster, four
classes were obtained from the model, ranging from 1 to
4, where the higher raster class 4 represented the regions
with high salinity levels, while the lower raster class 1
represented regions with low salinity levels.

Salinity ¼ 0:41� water table levelð Þ
þ 0:24� landformsð Þ
þ 0:19� soil textureð Þ
þ 0:11� geologyð Þ
þ 0:05� vegetation densityð Þ ð2Þ

Validation and comparison of the soil salinity risk maps

The validation and comparison of the soil salinity risk
maps derived from themeasured soil EC and the overlay
soil salinity risk model of the five factor layers were
performed. A linear regressionmodel in Excel 2013 was
used to plot the relationship between the EC values and
raster values of the salinity map derived from the over-
lay model on the scatter diagram. Then, the correlation
(R2) between the EC values and raster values of the
model was obtained (modified per Zewdu et al. 2017).
A flow chart of the methodology is shown in Fig. 5.

Table 1 Ranks used for water table level, landform, soil texture, geology, and vegetation density, according to their susceptibilities to soil
salinity risks

Rank Salinity class Water table level (cm) Landform Soil texture Geology Vegetation
density

1 None to slightly saline 160 Coastal sand sheet
River terraces
Overflow basin
River levee
Decantation basin
River Nile

Sandy Nile silt 0.63–1

2 Moderately saline 90 Former lake bed Sandy loam Marine deposits 0.35–0.62

3 Strongly saline 60 Fish ponds Sand clay loam Lacustrine
deposits

− 0.05 to 0.34

4 Very Strongly saline 50 Lake Loam Clay loam Clay Water bodies − 1 to − 0.051

Table 2 Pairwise comparison of factor layers

Layer/factor Water table level Land form Geology Soil texture Vegetation density Criteria weights (W)

Water table level 1.00 0.49

Landform 1/5 1.00 0.20

Geology 1/3 1/3 1.00 0.18

Soil texture 1/3 1/7 1/5 1.00 0.09

Vegetation density 1/7 1/5 1/7 1/7 1.00 0.04
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Results and discussion

Geologic and geomorphological units of the study area

Landsat 8-OLI, SRTM images, and field data were used
to delineate the landform units. The results showed that
there are three main landforms in the study area: the
floodplain, the lacustrine plain, and the marine plain
(Fig. 6). The main landform in this area is the floodplain,
which occupies an area of 746.89 km2 (73.45% of the
total study area). The sedimentary Nile depositions con-
tributed to developing the floodplain (Islam 2016). Ap-
proximately 16.19% of this area is covered by the la-
custrine plain (164.65 km2). The lacustrine plain was
formed by the deposition of sediment entering the lake.
After sediment deposition, the water may be drained
from the lake via evaporation or other processes, which
leaves the sediment behind (Thornbury 1950). The ma-
rine plain is found in the northern portion of the study
area and occupies an area of 105.37 km2 (10.36% of the

total study area). The marine plain is characterized by a
flat and low-lying area close to the seacoast (Ali and
Moghanm 2013). Three geological units are recognized
underlying the study area, including lacustrine deposits,
marine deposits, and Nile silt, which are shown in Fig. 7.
The Nile silt dominates the largest section of the study
area, covering 735.28 km2 (72.25% of the total study
area). The lacustrine and marine deposits occupy ap-
proximately 16.59 and 1.26% of the total study area,
respectively.

Spatial distribution of soil properties

Tables 3 and 4 illustrate some physical and chemical
characteristics of the investigated soils. The spatial distri-
bution of the EC over the study area is illustrated in
Fig. 8. The EC values in the topsoil (0–30 cm) range
from 0.43 to 24.38 dS/m. It was observed that higher EC
values are found in locations which are characterized by
shallowwater table because it encourages the movements

Fig. 5 Flow chart of methodology showing the steps used in this work (modified after Zewdu et al. 2017)
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Fig. 6 Landforms of the study area

Fig. 7 Geological units of the study area

Environ Monit Assess (2018) 190: 706 Page 9 of 16 706



T
ab

le
3

So
m
e
ch
em

ic
al
an
d
ph
ys
ic
al
ch
ar
ac
te
ri
st
ic
s
of

th
e
st
ud
ie
d
so
il
pr
of
ile
s

P
ro
fi
le
no
.

E
C
(d
S
m

−1
)

W
at
er

ta
bl
e
le
ve
l(
cm

)
So

il
te
xt
ur
e

L
an
df
or
m
s

Pr
of
ile

no
.

E
C
(d
S
m

−1
)

W
at
er

ta
bl
e
le
ve
l(
cm

)
So

il
te
xt
ur
e

L
an
df
or
m
s

1
0.
56

14
0

C
R
iv
er

te
rr
ac
es

47
19
.3
2

50
L

Fi
sh

po
nd
s

2
2.
44

10
0

SC
L

O
ve
rf
lo
w
ba
si
n

48
22
.3
7

40
L

Fi
sh

po
nd
s

3
0.
44

13
0

C
R
iv
er

te
rr
ac
es

49
2.
15

13
0

C
D
ec
an
ta
tio

n
ba
si
n

4
0.
75

14
0

C
R
iv
er

te
rr
ac
es

50
18
.7
1

50
L

Fi
sh

po
nd
s

5
0.
65

15
0

C
R
iv
er

te
rr
ac
es

51
3.
4

70
SL

D
ec
an
ta
tio

n
ba
si
n

6
2.
3

12
0

SC
L

O
ve
rf
lo
w
ba
si
n

52
2.
55

80
C

D
ec
an
ta
tio

n
ba
si
n

7
2.
5

90
SC

L
O
ve
rf
lo
w
ba
si
n

53
24
.3
8

40
L

Fi
sh

po
nd
s

8
1.
1

10
0

C
R
iv
er

te
rr
ac
es

54
1.
25

10
0

SL
D
ec
an
ta
tio

n
ba
si
n

9
1.
6

90
SC

L
O
ve
rf
lo
w
ba
si
n

55
12
.5
1

40
SL

C
oa
st
al
sa
nd

sh
ee
t

10
3.
5

80
SC

L
O
ve
rf
lo
w
ba
si
n

56
1.
35

12
0

C
R
iv
er

te
rr
ac
es

11
1.
2

11
0

C
O
ve
rf
lo
w
ba
si
n

57
8.
47

60
L

D
ec
an
ta
tio
n
ba
si
n

12
1.
3

12
0

C
O
ve
rf
lo
w
ba
si
n

58
22
.6
1

40
L

Fi
sh

po
nd
s

13
2.
84

90
SC

L
O
ve
rf
lo
w
ba
si
n

59
0.
84

80
C

D
ec
an
ta
tio
n
ba
si
n

14
18
.4
2

60
SL

O
ve
rf
lo
w
ba
si
n

60
12
.6
2

40
L

Fi
sh

po
nd
s

15
11
.2

70
SC

L
O
ve
rf
lo
w
ba
si
n

61
0.
81

10
0

C
L

R
iv
er

te
rr
ac
es

16
3.
66

11
0

C
O
ve
rf
lo
w
ba
si
n

62
0.
56

12
0

C
L

R
iv
er

te
rr
ac
es

17
4.
31

13
0

C
D
ec
an
ta
tio
n
ba
si
n

63
1.
13

12
0

C
L

R
iv
er

te
rr
ac
es

18
21
.5

40
S
L

Fo
rm

er
la
ke

be
d

64
1.
46

13
0

C
L

R
iv
er

te
rr
ac
es

19
2.
11

14
0

C
D
ec
an
ta
tio

n
ba
si
n

65
5.
46

70
L

D
ec
an
ta
tio
n
ba
si
n

20
3.
33

90
SC

L
D
ec
an
ta
tio

n
ba
si
n

66
5.
66

50
S

R
iv
er
te
rr
ac
es

21
22
.5

60
SL

D
ec
an
ta
tio

n
ba
si
n

67
0.
68

10
0

C
L

R
iv
er

te
rr
ac
es

22
2.
22

15
0

C
D
ec
an
ta
tio
n
ba
si
n

68
1.
43

13
0

C
L

R
iv
er

te
rr
ac
es

23
20
.7
1

50
SL

Fo
rm

er
la
ke

be
d

69
2.
33

12
0

S
C
oa
st
al
sa
nd

sh
ee
t

24
1.
8

10
0

SC
L

O
ve
rf
lo
w
ba
si
n

70
0.
63

10
0

C
L

R
iv
er

te
rr
ac
es

25
1.
4

12
0

C
O
ve
rf
lo
w
ba
si
n

71
1.
88

11
0

C
L

D
ec
an
ta
tio
n
ba
si
n

26
1.
22

14
0

C
R
iv
er

te
rr
ac
es

72
0.
47

11
0

C
L

R
iv
er

te
rr
ac
es

27
5.
34

70
SL

D
ec
an
ta
tio

n
ba
si
n

73
0.
44

10
0

C
L

R
iv
er

te
rr
ac
es

28
0.
56

12
0

C
R
iv
er

te
rr
ac
es

74
2.
21

12
0

S
C
oa
st
al
sa
nd

sh
ee
t

29
2.
36

80
SC

L
D
ec
an
ta
tio

n
ba
si
n

75
1.
62

12
0

S
D
ec
an
ta
tio
n
ba
si
n

30
3.
21

10
0

SC
L

D
ec
an
ta
tio
n
ba
si
n

76
1.
42

11
0

S
C
oa
st
al
sa
nd

sh
ee
t

31
3.
27

14
0

C
R
iv
er

te
rr
ac
es

77
0.
54

11
0

C
L

R
iv
er

te
rr
ac
es

32
4.
33

10
0

C
D
ec
an
ta
tio
n
ba
si
n

78
0.
68

11
0

C
L

R
iv
er
te
rr
ac
es

33
3.
84

10
0

C
R
iv
er

te
rr
ac
es

79
0.
87

12
0

S
C
oa
st
al
sa
nd

sh
ee
t

706 Page 10 of 16 Environ Monit Assess (2018) 190: 706



of salts up to the surface of the soil. In addition, the high
EC values were detected in soils around Idku Lake,
predominantly in the landforms of fish ponds and the
former lake bed. The results indicated that the soil salinity
varies excessively over this area (SD = 6.43). Note that
the EC values increase toward Idku Lake. This increase
may be due to the leakage from the saline Idku Lake into
neighboring areas, which enhance the shallow ground-
water level (Hegab 2014). The soil depth ranges from 40
to 150 cm, with a mean value of 96.92 cm. The soil
textures vary from clayey to sandy soils. The variation
in soil texture may be due to the variations of soil topog-
raphy, parent material, the degree and type of weathering,
and the mechanism of transportation (Abd-Elgawad et al.
2013; Hegab 2014). The results of the present study are
consistent with those of a previous study by Ali and
Moghanm (2013) that used GIS and RS techniques to
identify the differences in soil properties over the land-
forms of the dry regions around Idku Lake. They found
that the EC values ranged between 0.1 and 51 dS/m in the
topsoil layer. They also detected that marine and lacus-
trine deposits generally showed the highest EC values. In
addition, the results of this work coincide with the results
obtained by Hegab (2014), who examined the limitation
of soil fertility in soils close to Idku Lake. He observed
that the soil depths ranged from moderately deep to deep
and the soil ECs ranged from 2.60 to 60.90 dS m−1.

Soil salinity classes derived from measured EC

The map of the soil salinity derived from the IDW
interpolation method of the EC values over the study
area is divided into four classes of salinity levels accord-
ing to FAO (1988). The classes are none to slightly
saline, moderately saline, strongly saline, and very
strongly saline. None to slightly saline soils accounted
for the largest area (672.03 km2), representing approx-
imately 67.22% of the total study area. Moderately
saline soils accounted for 11.99% of the total area. It
was obvious that the strongly and very strongly saline
soils were concentrated in those areas adjacent to IdkuT
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Table 4 Some statistical characteristics of the investigated soils

Properties Total
samples

Mean Maximum Minimum SD

Water table
level cm)

91 96.92 150 40 28.66

EC (dS m−1) 91 4.69 24.38 0.43 6.43
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Lake and covered 11.17 and 9.62% of the total study
area, respectively. The spatial extents of the salinity
classes derived from the measured EC are shown in
Table 5 and Fig. 9a. The class degree clearly increased
with proximity to Idku Lake, likely because of the
seepage from the lake into nearby areas.

Overlay soil salinity risk prediction model

According to the results obtained from a pairwise com-
parison of the factor layers influencing the soil salinity,

the water table level was the greatest influential factor
(49%), followed by landforms (20%). Geology and soil
texture had degrees of influence of 18 and 9%, respec-
tively. The vegetation density had the lowest degree of
influence (4%). The results of the overlay model repre-
sent four levels of soil salinity, which are recognized as
none to slightly saline, moderately saline, strongly sa-
line, and very strongly saline. None to slightly saline
soils account for the largest extent (614.06 km2), cover-
ing 61.42% of the total area. These areas were charac-
terized by high water table and healthy vegetation lands.

According to the model, moderately saline soils covered
24.14% of the total study area. Strongly saline and very
strongly saline soils were concentrated in areas around Idku
Lake and accounted for 6.27 and 8.17% of the total study
area, respectively. These areas were characterized by shal-
low water table and low-set lands with poorly vegetation.
The areal extents of the salinity classes derived from the
overlay model are illustrated in Table 5 and Fig. 9b.

Validation and comparison of the model

The validation of the overlay model displayed a
high degree of correlation (R2 = 0.72) between the

Fig. 8 Spatial distribution of EC over the study area

Table 5 The areal extents of the salinity classes derived from
measured EC and the overlay model

Salinity
level (dS/m)

Salinity
class

Area (km2)
measured
EC

Area (%)
overlay
model

> 4 None to slightly saline 672.03 614.06

4–8 Moderately saline 119.85 241.36

8–16 Strongly saline 111.67 62.7

< 16 Very strongly saline 96.23 81.67

Total 999.78 999.78

the significance of data presented in bold text
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Fig. 9 Soil salinity prediction map derived from a measured EC and b overlay model
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measured EC values and the salinity values de-
duced from the model (Fig. 10).

Remote sensing and modeling techniques have
been widely used to detect, map, and model salt-
affected soils. Corwin et al. (1988) developed an
overlay model to predict soil salinity potential based
on four factors (leaching, soil permeability, depth to
water table, and groundwater quality). Verification
of the model displayed a median success in
predicting soil salinity potentials. They recommend-
ed that the development of a more advanced model
would weigh the significance of each effective fac-
tor in soil salinity evolution at a specific location.
Also, Akramkhanov and Vlek (2012) utilized a neu-
ral network model to predict soil salinity based on
environmental parameters in the Aral Sea Basin.
They found that about 70–90% of the locations were
precisely evaluated. In addition, Yahiaoui et al.
(2015) developed a linear regression model to pre-
dict that soil salinity relied on elevation in the Low-
er Cheliff plain (Algeria). The model gives a coef-
ficient of determination R2 = 0.45 using the linear
regression. Recently, Yu et al. (2018) used PLSR
and Landsat OLI images to map soil salinity in
Semiarid West Jilin Province, China. Results
showed that the models’ accuracy was enhanced by
the combination of the reflectance bands and spec-
tral indices.

The model used in this research can predict soil
salinity level at any location in the image. As a result,
the overlay soil salinity risk model developed from the
five environmental factors (groundwater table, land-
forms, soil texture, geology, and vegetation density) is
effective for predicting soil salinity levels.

Conclusion

The findings of the present study predicted the soil
salinity levels over the areas around Idku Lake by de-
veloping an overlay soil salinity model. Five environ-
mental parameters, including groundwater level, land-
forms, soil texture, geology, and vegetation density,
were used in the design of the soil salinity risk model.
The soil salinity levels derived from the model were
compared to EC values derived from a conventional
laboratory analysis. The validation of the model
displayed a high correlation coefficient (R2 = 0.73) be-
tween the measured EC values and the salinity deduced
from the model. The high degree of correlation makes
this model a favorable tool for predicting soil salinity.
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