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Abstract The study aims to assess the heavy metals
such as cobalt (Co), nickel (Ni), lead (Pb), chromi-
um (Cr), cupper (Cu), zinc (Zn), manganese (Mn),
and iron (Fe) from 25 surface sediment samples at
different sites of the Emerald Lake, Tamilnadu, India
using spatial distribution and multivariate techniques
like Pearson correlation matrix and principal com-
ponent analysis. From the result, the ranges of Fe,
Cu, Cr, Mn, Zn, Ni, Co, and Pb are noticed to be
78,128 to 132,876; 314 to 462; 336 to 523; 520 to
701; 20.1 to 53.21; 128 to 215; 91 to 129.9; and 151
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to 158 ug g ', respectively. The order of the average
heavy metals concentration is Fe > Mn > Cr > Cu >
Pb > Zn > Co > Ni. From the result, Ni, Cu, Cr, Pb,
and Cd are found to be considerably correlated as
they are usually related to anthropogenic activities,
wastewater, and sewage. From the principal corre-
sponding analysis (PCA) results retrieved from PC3
suggest that Fe, Mn, Cr, Cu, Pb, and Ni have com-
mon origin and are mainly due to anthropogenic
input, inorganic fertilizers in agriculture, human ac-
tivities, sewage effluents, traffic, and boat activities.
The study relatively provides a significant approach
for heavy metal pollution origin in the surface sed-
iment in the Emerald Lake.

Keywords Geochemistry - Heavy metals - Principal
component analysis - Emerald Lake

Introduction

The sediments in the lake play major role in the
contamination of the lake due to the effect of phys-
ical, chemical and hydrogeochemical, and biological
characteristics of the aquatic system. The reason for
the heavy metal contamination in the aquatic system
is mainly due to two processes; one is lithogenic
process which includes the flow of water, rock
weathering, and natural erosion (Singh et al. 2002)
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Fig. 1 Study area map

and the other is anthropogenic process which in-
cludes sewage discharge, atmospheric release of pol-
lutants by industry, and fertilizer leaching from ag-
ricultural land (Wright and Mason 1999; Dinescu
et al. 2004; Deng et al. 2010; Tang et al. 2010;
Ahdy and Youssef 2011; Mitra et al. 2012). Change
in the mineral composition of sediments and their
content of macro and micro elements are the essen-
tial parameters which describe the process occurring
in the lake. The chemical composition of the sedi-
ments is based on the nature of the deposited mate-
rial, the weathering process, and the diagenesis and
geochemistry of the specific elements (Rollinson
1993; Solecki and Chibowski 2000; Mahjoor et al.
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Table 1 Summary of the heavy metals abundance in Emerald Lake

Trace element Min Max Mean
Sand % 12.89 72.34 35.66
Mud % 27.66 87.11 64.34
OM % 4.6 9.8 7.35
CaCO3% 2.5 9.8 5.95
C/N ratio 6.1 10.7 8.95
Fe (mg/kg) 7.81 13.88 11.49
Mn (mg/kg) 314 462 370.95
Cr (mg/kg) 336 523 411.48
Cu (mg/kg) 520 701 611.32
Pb (mg/kg) 20.1 5321 34.04
Zn (mg/kg) 128 215 174.4
Co (mg/kg) 91 129.9 112.64
Ni (mg/kg) 151 158 154.24
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Fig.2 Spatial distribution map of
sand
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2009). The geochemical composition of the sedi-
ments clearly stipulates the present condition of the
lake environment.

The specific information about the geochemical
properties of the sediments can be gathered from the
broad knowledge about the total content of the ele-
ments (Boyle 2000; Chabbi 2003; Sanei et al. 2010).
Sediments composition, heavy metal concentrations,
and their distribution act as a major tool for evalu-
ating the impact of risk and pollution. The organic
and inorganic source and their enrichment in the lake
sediments are mainly controlled by the deposition of
particulate detritus through different natural and an-
thropogenic sources in the lake (Meyers and
Ishiwatari 1993; Holmer and Storkholm 2001).

78°12'32"E 78°12'40"E

Consequently, the geochemistry of lake sediments is
a combination of different processes such as catch-
ment lithology, weathering type, intensity effect, ero-
sion, and deposition occurring in the lake basins
(Minyuk et al. 2007; Khan et al. 2012).

At present, the geochemical investigation of the
lake surface sediments is widely used to evaluate the
impact on the environment, source of the sediment,
intensity of weathering process, etc., in the lake en-
vironment (Tarras-Wahlberg et al. 2002; Meyers
2003; Boyle et al. 1998; Yao and Xue 2015). A
comprehensive analysis about the physico-chemical
parameters of the lake’s surface sediments allows us
to recognize the control factors responsible for the
distribution pattern and the geochemistry of the
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Fig.3 Spatial distribution map of
mud
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eroded detritus sediments deposited in the lake
(Zhang et al. 2014; Chandrajith et al. 2008).

Heavy metal pollution is determined by the sedi-
ments in a lake. Heavy metals in the surface sedi-
ments are influenced by two aspects like lithogenic
and anthropogenic process (Gopal et al. 2017). Lakes
have been known for their different ecosystem such
as water cycling, climate change regulation which
provides habitat for microorganisms in the lake.
Lithogenic process includes the flow of water, rock
weathering, and natural erosion (Singh et al. 2002),
while anthropogenic process includes sewage dis-
charge, atmospheric release of pollutants by industry,
and fertilizer leaching from agriculture land. Geo-
chemistry of lake surface sediments is utilized to
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assess the sediment weathering, environmental
change, toxicity, tenacity, and biogeochemical of the
lake (Last and Smol 2001; Jin et al. 2001, 2003;
Laird et al. 2003; Magesh et al. 2013; Li et al.
2013; Balamurugan et al. 2015; Krishakumar et al.
2016; Gopal et al. 2017).

The primary information are gathered from the study
area 58 I/1 (1:50000) by Survey of India (1973). The
spatial integration maps are developed by software
package like ArcGIS 10.1 and ESRI. Emerald Lake is
located in the Yercaud hill station near Salem District in
Tamil Nadu, India, and it falls in between the latitudes
11°47'07.6" N and 11° 46’ 58.5" N and longitudes 78°
12'32.6" Eand 78° 12’ 37.7" E (Fig. 1) with an average
elevation of 1515 m asl. Yercaud has a moderate humid
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Fig.4 Spatial distribution map of
oM
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subtropical climate. The Emerald Lake has a minimum
and maximum depth of 1 to 5.1 m respectively
(Venkatachalapathy et al. 2014). It covers an area of
about 5.2 ha. In January, the temperature of the Yercaud
hill station is moderate. The maximum temperature was
29 °C and minimum was 15 °C and an average of 27 °C
in 2017 during the winter season. Average rainfall
ranges from 1500 to 2000 mm/a during in the northwest
monsoon season. The region is geographically secured
by charnockite rock. Laterite is the pre-dominant soil of
this region with its average depth of 1.5 m. Yercaud is
known for its coffee plantation and oranges in addition
to bauxite and granite reserve. Heavy metals such as Fe,
Mn, Zn, Cu, Cr, Pb, Ni, and Co from twenty-five surface
sediments are tested at various sites of the Emerald Lake

78°'12'32"E 78°12'40"E

with the help of spatial integration and statistical analy-
sis like the correlation matrix and principal component
analysis.

Materials and methods
Sampling and analytical procedures

Twenty-five sediment samples of 1 to 5.1 m depth
in water were collected from 25 sites of Emerald
Lake using a grab sampler during January 2017 as
shown in Fig. 1. The sample weighing 1 kg is
collected from the lake sites. The samples are put
away in fixed Ziploc sacks with lake water and tests
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Fig.5 Spatial distribution map of
CaCOs
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are passed to the research facility and put away at —
20 °C. Prior to the substantial metal examination
method, the sample is dried at 60 °C for 48 h. A
small amount of dried samples are sieved through a
mesh a 63-pm nylon mesh for homogenization and
stored in a fixed plastic sacks. CaCO3; examination
was achieved as suggested by Loring and Rantala
(1992). OM was studied subsequently after the ti-
tration method by Gaudette et al. (1974). In trace
element analysis, the sediments were air-dried and
disaggregated in an agate mortar. For each sample,
1 g of sediment is absorbed by using concentrated
HCIO4 solution (2 ml) near dryness. Then, again a
further addition of HCIO,4 (1 mg) and HF (10 ml)
was prepared, the mixture is then evaporated to near
dryness. Finally, HCIO, was added, then the sample
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was dried until the white fumes appear. The resi-
dues were dissolved in concentrated HCI and dilut-
ed to 25 ml (Tessier et al. 1979). By using grade A
filters, the acid solution was filtered and the analy-
sis of metals such as Mn, Cr, Cu, Ni, Co, Pb, and
Zn were performed by inductively coupled plasma
mass spectrometry, Council of Science and Industrial
research — National Geophysical research Institute,
Hyderabad.

Statistical technique

Usually, statistical techniques are employed to process
the scientific information with regard to the conveyance
and relationship among the contemplated parameters.
The spatial analyst part in ArcGIS software module
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Fig. 6 Spatial distribution map of
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maps to prepare the spatial distribution maps using
inverse distance weighted interpolation technique. Pear-
son correlation matrix and principal component analysis
are determined by IBM SPSS Version 20. Statistical
techniques like Pearson correlation and PCA were uti-
lized to discover the relationship between metals and the
origin of the metals, in the surface sediments of the
investigation sites.

Results and discussion

Organic matter (OM) and calcium carbonate (CaCO3)

Both the concentration of OM and CaCO; is shown
in Table 1. OM and CaCO; are mainly terrestrial

runoff contributions existing in the water column of
the lake. Losses of organic matter are high during
transportation of lake sediments (Bernasconi et al.
1997). Concentrations of the studied trace element
summaries are given in Table 1. Organic Matter
(OM) content varies from 9.8 to 4.6% with an aver-
age of 7.35%. Losses of organic matter are high
during transportation of lake sediments (Bernasconi
et al. 1997). Babeesh et al. (2017) reveals that the
range of organic matter and carbonates are 3.8—
13.8% and 0.2-1% (very low carbonate content)
respectively. The organic matter contents of the
marginal sediments and central parts of the lake
are attributed to the great turbulences in the former
caused by the wind generated waves that move fine
organic detritus into the lake. This shows that the
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Fig.7 Spatial distribution map of
Fe
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lake surface sediments gain a high organic content
from the lake turbulences, activities of the tourists
and soil erosion. The content of CaCO3;% varies
from 2.5 to 9.8% with an average of 5.95%. The
amount of CaCO3;% that accumulates on the lake
bed and at last buried in the sediments is a function
of how much is produced in the epilimnion and how
much is destroyed in the hypolimnion. However, if
the sediments of these lakes contain a large amount
of organic matter, more than about 12% organic
carbon, small amount of CaCOj is preserved in the
sediments. In some lakes, the increase in sedimen-
tary organic matter and dissolution of CaCO; hap-
pened thousands of years ago in response to natural
eutrophication. In other lakes, these processes hap-
pened or are happening now, in response to cultural

@ Springer

eutrophication. Although increased organic produc-
tivity due to eutrophication may increase the pH of
the lake water and cause greater precipitation of
CaCOs, the decomposition of the produced organic
matter in the hypolimnion and sediments causes
much greater dissolution of precipitated CaCO;. In
addition to the effect of organic productivity on
CaCO; accumulation, it may also affect the biogeo-
chemical cycles of other elements, particularly
redoxsensitive elements. Williams Lake precipitates
CaCO; during summer (McConnaughey et al. 1997)
but the surface sediments are virtually carbonate-
free. In the present study, the C/N ratio ranges from
6.1 to 10.7 with an average of 8.95% of the Emerald
Lake sediments given in Table 1. Overall, the C/N
ratio of the aquatic plants namely freshwater
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phytoplankton is greater than 10. A higher C/N
ratio (10-20) indicates a combination of aquatic
and terrestrial organic materials. In the present
study, the C/N ratio that ranges from 6.1 to 10.7
indicates that there is a good aquatic plant phyto-
plankton (diatom) growth in the lake. It is clear that
the source of the proportion of macrophytes to the
phytoplankton in the aquatic environment deter-
mines the C/N ratio.

Metal concentrations in the surface sediments
The heavy metals like Fe, Zn, Mn, Cu, Cr, Pb, Ni,

and Co are analyzed. From the result, the ranges of
Fe, Cu, Cr, Mn, Zn, Ni, Co, and Pb are 7.812 to

13.28; 314 to 462; 336 to 523; 520 to 701; 20.1 to
53.21; 128 to 215; 91 to 129.9; and 151 to
158 mg/kg, respectively. Figures 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, and 14 show the spatial
distribution map of these heavy metals. The com-
ponents are positioned in the following order: Fe >
Mn > Cr > Cu > Pb > Zn> Co > Ni. Fe has the
most prominent component focus in the middle part
of the Emerald Lake in the lake site no: 15. In
comparative study, high Fe values were analyzed
which ranges from 12.59 to 19.27 mg/kg at Ataturk
Dam Lake in Turkey by Karadede and Unlu (2000).
According to Kabata-Pendias and Pendias (1992),
the higher concentration of Fe as observed in the
lake sediments reveals that Fe is the most
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Fig.9 Spatial distribution map of
Cr
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commonly occurring metal on the earth’s crust. A
huge amount of Fe source might from the bauxite
ore mining activity and other anthropogenic sources
(Abd et al. 2011; Pereira et al. 2008). As indicated
by Salomons and Forstner (1984), iron hydroxides
are able to absorb large quantities of metals through
cation exchange processes, and iron oxides also
play a significant role in trapping metals in the lake
sediments.

In the present investigation, 151 to 158 mg/kg
values of Ni and 336 to 523 mg/kg values of Cr
are identified to be rich since they are nearly filtered
from the abutting rock exposures containing a lot of
charnockite rock (mafic mineral like olivine and
pyroxenes). In a further report, Ni is found chiefly
in the residue fraction, despite the fact that its
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substantial concentration is found to be of natural
issue from the Goczalkowice reservoir (Kwapulinski
and Wiechula 1993). Ni is found mainly in the
residual fraction although its high concentration is
found in the organic matter from the Goczalkowice
reservoir sediments (Kwapulinski and Wiechula
1993). Furthermore, heavy metals, including Cr,
Ni, Pb, and Cu, have a similar intonation in Taihu
and Dianchi, indicating that the contamination char-
acter and detailed study of the heavy metals are
comparative in the Taihu and Dianchi lakes (Wei
and Wen 2012). From the study, the values of Zn
range from 128 to 215 mg/kg in the Emerald Lake.
The other possible sources of Zn are from boat oil,
grease, sewage sludge, transmission fluids, and con-
crete. The results observed in this study are
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Fig. 10 Spatial distribution map
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consistent with the fact that Pb is generally present
in higher concentrations in various sewage dis-
charges, and lake as the sink, thus may received
large quantity of external inputs of Pb in Emerald
Lake, indicating that they suffer serious Pb contam-
ination. Additional, the main sources of Co, Cr, and
Co are due to the municipal wastewater, sewages,
landfill leachates, and geogenic materials.

Pearson correlation

The Pearson correlation matrix used among sand,
mud, OM, CaCO;, C/N, Fe, Cu, Cr, Mn, Zn, Ni,
Co, and Pb components are given in Table 2. The
Pearson correlation clarifies the heavy metal rela-
tionship and the importance of the main cause in

the environment (Karthikeyan et al. 2017; Gopal
et al. 2016a, b; Godson et al. 2018). The relation-
ship among the sediments demonstrates that all the
trace components are in a strong relationship with
sand and CaCOj;. Moreover, elements exhibit high
positive relationship with OM and also with mud.
Table 2 represents the results of Pearson’s correla-
tion analysis and their significance levels. Positive-
related mud versus C/N (2 =0.435), Fe (+*=0.501),
Mn (*=0.667), Cr (+*=0.415), Cu (+*=0.429), Pb
(r*=0.432), Zn (r*=0.372), Co (+*=0.377), and Ni
(*=0.618) is additionally seen in the reservoirs.
Also, Fe is effectively correlated with Mn (* =
0.549), Cr (*=0.563), Zn (*=0.374), Co (=
0.335), and Ni (¥ =0.328). According to the reports
by Lu et al. (2010) and Saeedi et al. (2012), if the
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Fig. 11 Spatial distribution map
of Pb
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correlation coefficient between heavy metal factors
is positive, then these factors may have the common
source and the identical behavior during transporta-
tion. Fe exhibits a high positive correlation with Cr
(*=0.563) and moderate correlation with other
trace elements like Mn (+2=0.549), Cu (/> =
0.374), and Co (r2=0.335). The elements Cr, Cu,
Co, and Ni, Mn are correlated positively. Fe exhibits
a very strong correlation with Mn (+*=0.549), Cr
(*=0.563), Cu (+*=0.295), Zn (+*=0.374), Co
(*=0.335), and Ni (#*=0.328). Ni, Cu, Cr, Pb,
and Cd are considerably correlated as they are usu-
ally related to anthropogenic activities, wastewater,
and sewage. Fe shows that the trace elements are
obtained from their origin (Bhuiyan et al. 2009) and
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that these trace elements are redistributed in the
sediments by the same hydrogeochemical process
(Bai et al. 2011). Finally, significant positive corre-
lations among Mn with Cr, Cu, and Ni component
verifies that they fall in the sediments (Fianko et al.
2013). Cu, Ni, Cr, and Pb are significantly identified
with anthropogenic activities. For this, Cu, Ni, and
Pb are usually derived from anthropogenic wastewa-
ter and sewage; Cr is typically related to industrial
activities (Li et al. 2009).

Principal component analysis (PCA)

Principal componentaAnalysis (PCA) is a general
multivariate analysis which is used in various
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Fig. 12 Spatial distribution map
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environmental studies to identify sources of the
metals in sediments (natural and anthropogenic
activities) and their element characteristics (Bai
et al. 2011; Anju and Banerjee 2012; Islam et al.
2015). The rotated component matrixes of the
PCA are presented in Table 3. The Kaiser-Meyer-
Olkin and Bartlett’s Test of Sphericity values are
0.626 and 72.371 (df=28, Sig <0.01 respective-
ly), suggesting that PCA might be useful in di-
mensionality reductions. In rotated matrix (Fig. 15)
analysis, the PCA plot for various parameters were
obtained, then varimax normalization is applied to
extract the variables. In the present study, the 13
variables from Emerald Lake surface sediments are
summarized by three principal components (PCs),
with the percentage of cumulative of 36.579,

49.411, and 71.043 respectively. These three com-
ponents have 36.579, 12.832, and 9.821% of the
variances as shown in Table 3. The loading plot of
the first three principal components of the sedi-
ment samples is shown in Fig. 15. PC1 explains
the 36.579% of total variance and reveals high
loading of sand, CaCOj;, and C/N (0.033, 0.057,
and 0.530 respectively). PC1 can be regarded as
transportation activities, mainly due to the dis-
charge of agricultural wastewater and untreated
urban sewage.

PC2 (12.83% of total variance) reveals that strong
loadings on Mud, Pb, OM, Zn, and Co (0.185,
0.146, 0.416, and 0.268 respectively) show high
positive loading mainly because of the metals which
form organic complexes with humic substance in the
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Fig. 13 Spatial distribution map
of Co
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surface sediments (Lepane et al. 2007). These organ-
ic matter complexes in surface sediments are often
transformed by geochemical composition of natural
processes in this area (Loska and Wiechula 2003;
Lepane et al. 2007), and PC3 (9.82% of total vari-
ance) shows such as Fe, Mn, Cr, Cu, Pb, and Ni
(0.381, 0.325, 0.406, 0.179, 0.562, and 0.363 re-
spectively). Results retrieved from PC3 suggest that
Fe, Mn, Cr, Cu, Pb, and Ni have common origin
and are mainly due to anthropogenic input, inorganic
fertilizers in agriculture, human activities, sewage
effluents, traffic, and boat activities. Association of
Fe and Cr recommended that multisource urban
environment prevails in the area due to human ac-
tivities which is responsible with the findings by
Acosta et al. (2011). Cu concentration is controlled
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by long-term application of inorganic fertilizers in
agriculture areas (Acosta et al. 2011). In similar
result, Cr and Mn for sediments, which are domi-
nantly contributed by lithogenic sources of Cr in
sediments, indicate that it is mostly contributed by
anthropogenic activities (Gopal et al. 2017). The
cumulative variance of the three PCA is 71.043,
which clearly indicates that the lithogenic factor
influences the distribution of maximum part of the
studied metals. Moreover from the observations, it
can be known that the Pb and Zn originate mainly
by the concourse of different sewage effluents, traf-
fic, and boat activities. Perhaps, the main source of
these elements is from the man-made activities like
agriculture, boating, pollution from the traffic and
untreated sewage, and domestic wastes.
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Fig. 14 Spatial distribution map
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Table 2 Pearson correlations of clay, silt, and sand (%) in surface sediments, OM %, CaCO;%, and C/N ratio trace element (mg/kg)

Sand Mud OM CCO3 C/N Fe Mn Cr Cu Pb Zn Co Ni
Sand 1
Mud -1 1
OM —0.043 0.043 1
CaCO;, 0.614*% —0.614%* —0.085 1
C/N —0435 0.435%*% —0.254 —0.135 1
Fe —0.501%% 0.501%% —0.03 —0.379%* 0.139 1
Mn —0.667%* 0.667%* 0.179 —0.51 —0.126 0.549%** 1
Cr —0.415%%* 0.415%*% —0.081 —0.528** —0.113 0.563%* 0.708%* 1
Cu —0.429%% 0.429%* —0.127 —0.108 0.033 0.295 0.416%* 0.340% 1
Pb —0.432%% 0.4327%%* 0.019 -0.178 0.057 0.017 0.075 0.05 0.162 1
Zn —0.372%* 0.372%* 0.138 —0.391%%* 0.151 0.374*%  —=0.012 —-0.086 0.076  0.082 1
Co —0.377%* 0.377%* 0.105 —0.338%* 0.469%*  (.335%* 0.305 0.132  0.012  0.098 026 1
Ni —0.618%%* 0.618%* —0.043 —0.259 -0.139 0.328 0.617%* 0.378 0357 0.532%* 0.146 023 1

*Correlation is significant at the 0.01 level (2-tailed)

**]talic Correlation is significant at the 0.05 level (2-tailed)
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Table 3 Principal component analysis loading for heavy metals in
the Emerald Lake

Elements Component
1 2 3 4 5

Fe 0.202 —0.127 0269 0.182  0.040
Mn 0436 —0.010 0.004 —0.115 —0.108
Cr 0423 -0.113 -0.178 —0.025 —0.078
Cu —0.188 —0.051 —0.111 0.035 1.084
Pb -0.218 0.661 —0.150 0.138  0.066
Zn -0.021  0.010 0.890 —0.184 —0.088
Co -0.157 —0.052 -0.201 1.015 0.008
Ni 0267 0531 0234 -0379 -0219

% of variance 30.65 1851 1473 13.877 12.843
% of cumulative  30.65  49.15  63.88  77.76  90.604

Extraction method: principal component analysis. Rotation meth-
od: varimax with Kaiser normalization. Component: scores

Conclusion

The heavy metals Fe, Mn, Zn, Cu, Cr, Pb, Ni, and
Co are analyzed from the 25 surface sediment sam-
ples of 25 different sites of the Emerald Lake. The
study has focused mainly on spatial integration,
statistical analysis like Pearson correlation matrix,
and PCA. The order of the heavy metal concentra-
tion is Fe > Mn > Cr > Cu > Pb > Zn > Co > Ni.

Component 2

05 p
86 a5 yp40 08 ° et ?
Componens Compo®

Fig. 15 Principal component analysis (PCA) of heavy metals in
the Emerald Lake

@ Springer

From the result, the bilateral Pearsn correlation
matrix of Ni, Cu, Cr, Pb, and Cd is considerably
significant as these are usually related to anthropo-
genic activities, wastewater, and sewage. The
highest component loading was established by the
PCA were characterized by the highest loading of
Cu, Co, and Fe. This result indicates that the Cu,
Co, and Fe have different metal concentrations and
were mainly sourced from mixed anthropogenic
inputs, including homemade wastes and sewages.
The study relatively provides a significant approach
for spatial map of element pollution source in the
surface sediment. Metal concentrations in other re-
search areas are believed to be related to the natural
mineralogical structure of the region like wastewa-
ter and mineral sources. Considering the individual
metal, Fe, Cu, Ni, Cr, Pb, and Cd have high po-
tential biogeological hazard for the greater part of
the site of the research area. In the future, research
based on geoaccumulation index, enrichment factor,
contamination factor, and pollution load index of
the sediments in the lake area in India may be
considered as well.
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