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Abstract Environmental pollution and disasters have
gradually increased with the growth of the population.
Surveillance of the effects of these incidents is very
important for public health. Satellite missions are a
very efficient tool for identifying pollutants such as oil
spills. The synthetic aperture radar (SAR) sensor is an
active microwave sensing system that can be used for
oil spill applications with optical sensors mounted on
Landsat 8, Sentinel 2, and Advanced Spaceborne
Thermal Emission and Reflection Radiometer
(ASTER) satellite systems taking into account cloud
coverage and revisiting time of the satellite at the same
location. In this study, the oil spill area caused by a
ship running aground at 13:40 local time (LT) on 18
December 2016 was studied on the coast of Ildır Bay
(Izmir, Turkey) with Sentinel 1 SAR and Landsat 8
multispectral sensors. Different image-processing
techniques were applied to Landsat 8 bands such as
minimum noise fraction (MNF), morphology, and
convolution filters in order to highlight the oil spill
area related to the incident. In the detection stage, oil
slicks and look-alikes were successfully distinguished
by analyzing the SAR data with Landsat 8 results and
the location of the ship. With the visual interpretation
of the results, the selected techniques are consistent
with each other in terms of showing oil spill areas.

Keywords Oil spill . Synthetic aperture radar . Landsat
8 . Image processing

Introduction

Oil spills have adverse effects on the marine environ-
ment in oceanic and coastal areas. Coastal areas are
places with high population density. In the case of oil
spills in coastal areas, the spread of oil should be mon-
itored before and after this event in order to ensure that
the shoreline is safe from pollutants. Oil spills can occur
from oil pipeline cracks, illegal discharge from ships,
ship incidents, and from oil drilling platforms. In coastal
areas, oil spills mostly occur due to illegal discharge and
ship incidents.

Various techniques have been developed to monitor
oil spills such as visual surveys with aircraft, microwave
radiometers (MWR), infrared line scanner (IR), laser
fluoro sensor (LFS), side-looking airborne radar
(SLAR), synthetic aperture radar (SAR), and optical
sensors (such as Landsat, Sentinel 2, Advanced
Spaceborne Thermal Emission and Reflection Radiom-
eter (ASTER)) (Gade et al. 1998, 2013; Richards 1999;
Shuchman et al. 2004; Montali et al. 2006; Solberg et al.
2007; Trivero et al. 2007; Gade 2015; Misra and Balaji
2017). From these techniques, remote sensing satellite
sensors working with different bandwidths in the elec-
tromagnetic spectrum, such as visible, near infrared,
shortwave infrared, thermal infrared (optical sensors),
and radar (SAR), can be used more efficiently because
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of continuous monitoring and wide global coverage of
the Earth. SAR satellites provide data in all weather
conditions including day and night. Oil spill monitoring
with SAR theoretically depends on the dampening of
the capillary waves in different wind speed conditions
resulting in dark formations. Wind speed is a very
important parameter for this dark formation. If the wind
speed is lower than 2 m/s, the sea surface does not give
any sign of the oil spill on SAR images. In order to
define oil spill, the wind speed should be between 3 and
6 m/s. Moreover, thick oil spills can be defined with
wind speeds between 10 and 12 m/s. As a result, the
wind speed should range between 2.5 and 12 m/s in
order to detect oil spills with SAR observations (Lawal
et al. 2016).

There are several system-dependent parameters
(configuration) that affect the processing of SAR data
for oil spill monitoring. The first parameter is radar
bands. Remote sensing satellites equipped with SAR
sensors send a signal at different frequencies labeled as
X-band (8–12 GHz, 2.5–4 cm), C-band (4–8 GHz, 4–
8 cm), and L-band (1–2 GHz, 15–30 cm). X-band is
more sensitive to sea surface waves due to its short
wavelength providing higher contrast between oil and
oil-free sea surface. But it includes a high amount of
speckle noise (Garcia-Pineda et al. 2017). Marzialetti
and Laneve (2016) stated that the contrast between the
oil spill and sea surface is high in X-band, medium in C-
band, and low in L-band. X-band gives better results
than C-band radar and L-band radar. However, C-band
and even L-band SAR data give good information about
oil spills (Marzialetti and Laneve 2016; Fingas and
Brown 2017, 2018). The second parameter is the polar-
ization type of the SAR system. Because of the high
dielectric constant of the sea surface, VV polarization
gives much more radar backscatter compared with HH
polarization. VV polarization radar gives a better signal-
to-noise ratio resulting in more contrast in the oil spill
area as well. So, VV polarization can be used more
efficiently in oil spill studies (Alpers and Espedal
2004; Alpers and Melsheimer 2004).

The main problem for oil spill studies with SAR
images is to separate the oil spill and look-alikes as they
produce similar characteristic dark spots. Look-alikes
can occur from biogenic films, low wind speed, internal
waves, ship wakes, grease ice, algae, shallow water, and
rain cells. For this reason, a multisensor approach can be
applied to the areas with oil spills in order to support the
discrimination of oil spill from look-alikes. In addition

to SAR, optical sensors can be used to validate SAR
results for oil spills. The response of optical sensors to
oil spill also changes with respect to light conditions,
film thickness, and optical properties of oil and sea.
Optical sensors are also affected by high cloud coverage
and fog that should be considered when processing
optical images. Operational remote sensing optical sen-
sors, such as Sentinel 2, Landsat 8, and ASTER, play an
efficient role in oil spill monitoring. Integration of dif-
ferent optical sensors is inevitable to obtain reliable oil
spill results as the sensing capabilities are dependent on
effects such as the position of the pollution, the different
geometry of acquisition, the progress of oil spill, sensor
specification, revisiting time of the satellites, spatial
coverage, and cloud coverage. As each sensor mounted
on the carrying platform has special characteristics in the
design stage, a combination of the information from all
sensors presents more reliable results in modeling the
extent and spread of oil spills (Zhao et al. 2014).

There are several studies related with SAR and
optical sensors. Majidi et al. (2018b) studied Sentinel
1 C-band dual polarization (VV/VH) data from the
Persian Gulf. They reported that VV polarization gives
better results than the VH polarization. Zhao et al.
(2014) carried out an oil spill study in a shallow coastal
sea in the Arabian Gulf using Moderate Resolution
Imaging Spectroradiometer (MODIS), Medium Resolu-
tion Imaging Spectrometer Instrument (MERIS), and
Landsat 7 ETM+ and Landsat 8 data for three different
events. They concluded that the oil spill areas have dark
or bright features because of the variations in oil type,
thickness of oil, solar, and viewing geometry. Xing et al.
(2015) examined the accidental oil spill from the Deep-
water Horizon in the Gulf Mexico on April 20, 2010.
They used daytime images of Landsat 7 ETM+ and
Landsat 5 TM thermal bands that show oil spill areas
with a temperature 0.6 K lower than the oil-free sea
surface. Majidi et al. (2018a) investigated an oil spill
in shallow water in the Al Khafji field in the Persian
Gulf that occurred on July 2017 with Sentinel 2 images.

Image processing of the raw data is also important to
highlight areas affected by oil spills. These methods can
be applied to the studies related with optical and SAR
sensors. In Kolokoussis and Karathanassi (2018),
object-based image analysis (OBIA) was applied to
Sentinel 2 in order to detect oil spill near the shore. This
analysis depends on the segmentation of the image
using homogeneity and geometric criteria resulting in
objects. Fana et al. (2015) studied support vector
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machines for oil spill monitoring using SAR images.
Sun et al. (2013) used Robert operator, Sobel operator,
Laplacian operator and LOG operator to define the oil
spill edge in the Penglai 19-3 oil accident using MODIS
remote sensing data. Dool et al. (2014) applied Sobel
and Prewitt edge detectors to highlight remarkable
edges in the SAR images. In addition, morphological
dilation filter is implemented on SAR data in order to
make features more noticeable.

In this study, Sentinel 1 data was analyzed to detect
an oil spill while Landsat 8 data was used for validation
purposes. Brightness temperatures were estimated from
Landsat 8 thermal band 10 in order to observe oil spill
changes in temperature on the sea surface. Minimum
noise fraction, morphology dilation, and Sobel edge
detection filters were applied to Landsat 8 bands for
determination of the oil spill region.

Study area and data

General description of the study area

While a cargo ship in motion was maneuvering to avoid
hitting a fishing boat, it ran aground on rocks near Fener
(Ufak) Island, Cesme, Turkey (Fig. 1). The sea vessel
incident occurred on 18 December 2016. The size of the
ship was 121-m length and 17-m width. It led to the
greatest environmental disaster in the history of Cesme.

Oil leaked into the sea due to a gash in the body of the
ship. When the situation was reported, the crew arriving
in the region set up a barrier to prevent leakage of the oil
on board. However, the rescue of the ship and environ-
mental cleanup work could not be started due to the
weather conditions.

After the storm, the leaking oil from the ship was
quickly controlled. When cleaning work involving a
100-person cleaning crew was carried out, 30 t of the
50-t oil slick were cleaned. The city of Cesme was saved
at the brink of a much greater catastrophe. Even though
the barriers around the ship controlled the oil spill, they
were breached during a second storm on 22 December
causing new pollution spreading 50 t of fuel oil. Starting
at 10:00 a.m. on 27 December, the ship was removed
from the rocks as a result of 12 h of work. Then, the ship
was towed to a safe region between the south of Fener
Island and the west of Celebi Island, and it was anchored
here to allow an investigation. In summary, a commer-
cial ship ran aground on a rocky place and fuel oil

leaking into the sea spread over a large area. The main
motivation here is to develop a method based on SAR
and Landsat 8 data so that the location of the oil slick
can be monitored with high accuracy (UBAK 2018).

SAR and Landsat 8 data

In this study, Sentinel 1 SAR and Landsat 8 multispec-
tral remote sensing satellite data was used. The Sentinel
1 is a C-band SAR instrument with a central frequency
of 5.405 GHz corresponding to a wavelength of ~
5.55 cm operated in single polarization (HH or VV)
and dual polarization (HH + HVor VV + VH). Sentinel
1A and Sentinel 1B satellites are in the same orbit to
help increase the imaging frequency as the temporal
resolution is reported to be 6 days (SUHET 2013;
Bourbigot et al. 2016; ESA 2018). The SAR data used
is given in Table 1 which was acquired at ground range
detected (GRD) processing level and in the interfero-
metric wide swath (IW) mode. The dual-polarized Sen-
tinel 1 SAR data for the study area on the relevant dates
were downloaded from the Copernicus Open Access
Hub of the European Space Agency. Four days of
SAR data are represented by the specification (14, 19,
20, and 26 December 2016). Level 1 IW GRD product
is multilooked and projected to ground range using an
Earth ellipsoid model. Ground range coordinates are the
slant range coordinates projected onto the ellipsoid of
the Earth. In this product, pixels are converted to almost
square spatial resolution and square pixel spacing by
using multilooking with reduced speckle noise at the
cost of lower resolution for the pixels (ESA 2018).

In order to strengthen the results from SAR analysis,
Landsat 8 bands can also be used to determine oil spills
(Table 1). There are only one set of data available from
Landsat 8 after the ship incident as most of the data has
high cloud coverage (20 December 2016). The Landsat
8 image covers the area of 185 km × 180 km with 16-
day repeat cycle. The data is stored in L1T format in 16-
bit digital numbers (DN). The L1T products are given in
the Universal Transverse Mercator (UTM) map projec-
tion with World Geodetic System 84 (WGS84) datum.
This data is radiometrically calibrated and orthorectified
using ground control points and digital elevation model
(DEM) (Roy et al. 2014).

For Landsat 8 data, 11 bands were used for process-
ing which can be seen in Table 2. The cloud coverage is
2% for the selected data. The bands from 1 to 9 are
Operational Land Imager (OLI), and bands 10 and 11
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Fig. 1 Location map of the study
area

Table 1 The list of used data

Satellite system Date Time Product type Incidence angles Acquisition orbits Mode Dual polarization

Sentinel 1A 14 December 2016 16:06:48 GRD 30.52–46.42 Ascending IW VV + VH

Sentinel 1B 19 December 2016 04:22:20 GRD 30.56–45.99 Descending IW VV + VH

Sentinel 1A 20 December 2016 04:14:51 GRD 30.65–46.16 Descending IW VV + VH

Sentinel 1B 26 December 2016 04:14:08 GRD 30.60–46.05 Descending IW VV + VH

Landsat 8 20 December 2016 08:52:36 OLI-TIRS – – – –
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are Thermal Infrared Sensor (TIRS) (Barsi et al. 2014).
TIRS bands are resampled to 30 m from 100-m spatial
resolution in order to make connections between bands
for mathematical computations in Landsat operation
center. In Landsat 8 products, spatial resolution for
thermal bands is delivered at 30 m. In this study, the
map projection was UTM Zone 35/WGS 1984.

Methodology

Sentinel 1A and 1B data were used for oil spill moni-
toring. Different polarization schemes can be used for
monitoring oil spills. The dampening effect is the prin-
ciple underlying the oil spill detection methodology in
SAR (Topouzelis et al. 2007; Topouzelis et al. 2009).
When the radar signal is sent to the sea, oil slicks can be
detected because of the dampening effect of oil on
capillary waves. Radar images have an advantage for
oil spill detection as the oil can be detected as black
patches on images. In addition to SAR images, Landsat
8 bands can be used by applying different filters. Bright-
ness temperature is used in oil spill analysis as well.

The work flow sequence of the processing for mon-
itoring possible oil spills on the sea using Sentinel 1 and
Landsat 8 data is shown in Fig. 2.

SAR data processing

Sentinel Application Platform (SNAP) software is jointly
developed by Brockmann Consult and is used to process
Sentinel 1 Level 1 IW GRD images for generation of
geocoded, calibrated (slope normalized), multilooked,

despeckled sigma0_VV product for VV polarization.
The preprocessing steps of the SAR data are given in
Fig. 2 (Minchella 2016). In the first step of the processing,
Sentinel 1 precise orbit files that are available some time
from the production of SAR data are applied because of
the low accuracy of the orbit state vector supplied in the
metadata. Later, thermal noise removal is carried out.
Thermal noise decreases the accuracy of radar reflectivity
estimates due to the background energy in the SAR
system. In the next step, calibration of the VV polarization
digital pixels is carried out by using parameters (system
dependent) given in the SAR product file for radiometri-
cally calibrated backscatter values (sigma 0). SAR images
also include speckle noise that can be seen in the image as
a salt-and-pepper effect. Multilooking is a method that
reduced the inherent speckled appearance by using two
approaches. Multilooked images can be generated in the
frequency domain using subspectral bandwidth or space-
domain averaging of a single look image, either with or
without specific 2D kernels by convolution. SNAP uses
the space domain approach to resample images to a lower
resolution (mean GR square pixel as 20 m) to decrease
speckle noise level usingmultilooking for azimuth (1) and
range (1). While Sentinel 1 GRD products are
multilooked, speckle noise reduction can be carried out
using different filters taking into account the distribution
of the data. In order to reduce the speckle noise, speckle
filtering option is used by selecting a 5 × 5 window size
gammamap filter in SNAP. Two studies can be given that
suggest gamma map filter. Meenakshi and Punitham
(2011) studied the mean, median, Lee sigma, local-region,
Lee, gamma MAP for speckle noise reduction on SAR
images. The gamma map filter has the property of

Table 2 The list of used bands for Landsat 8

Bands Wavelength (μm) Resolution (m)

Band 1—Ultra Blue (coastal/aerosol) 0.435–0.451 30

Band 2—Blue 0.452–0.512 30

Band 3—Green 0.533–0.590 30

Band 4—Red 0.636–0.673 30

Band 5—Near Infrared (NIR) 0.851–0.879 30

Band 6—Shortwave Infrared (SWIR) 1 1.566–1.651 30

Band 7—Shortwave Infrared (SWIR) 2 2.107–2.294 30

Band 8—Panchromatic 0.503–0.676 15

Band 9—Cirrus 1.363–1.384 30

Band 10—Thermal Infrared (TIRS) 1 10.60–11.19 100 (30)

Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100 (30)
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preserving edge information compared with other
methods. In addition, they stated that the gamma map,
Frost, and Lee filters with a 5 × 5 kernel show better
results for SAR images. Sudha and Vijendran (2017) used
six filter techniques with five different kernel sizes for

reducing speckle noise on Sentinel 1 data, and they found
that 7 × 7 window size gamma map filter provided better
results than the other methods. After the speckle filtering,
the terrain correction is applied to output data using Range
Doppler Terrain Correction Operator in SNAP because

Fig. 2 Work flow used in the study
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the distance between the SAR sensor and the reflected
surface can be distorted due to the tilt of the sensor and
topographic changes. The images should be corrected for
these effects in the terrain correction step by using digital
elevation model (DEM). SRTM (3 s) is used for DEM.
Moreover, the source GR Pixel spacing is obtained from
the multilooking step as 20 m in the range and azimuth
directions (square pixel) that represents distance on the
ground for a pixel. The pixel spacing for the resulting
product is selected as 20 m representing ground distance.
WGS 84 datum was chosen for map coordinate system in
terrain correction resulting in a geocoded image. The
subset of the area of interest is cropped from the terrain-
corrected image and converted to dB.

Landsat 8 data processing

Landsat 8 Level 1 (L1T) data is given in DN. In order to
estimate brightness temperature from Landsat 8 thermal
bands, the conversion was made from DN using the con-
stants in the metadata file. There are two steps in the
algorithm for estimation of brightness temperature, one of
which is conversion to top of atmosphere (TOA) radiance
and the other is conversion to TOA brightness temperature.

Conversion to top of atmosphere radiance

TOA spectral radiance can be estimated from Landsat
Level 1 data in DN with Eq. 1 as follows:

Lλ ¼ MLQcal þ AL ð1Þ
In this equation, Lλ is the TOA spectral radiance

(W/(m2 srad μm)), ML = 0.00033420 is the band-
specific multiplicative rescaling factor, AL = 0.10000 is
the band-specific additive rescaling factor, and Qcal is
the quantified and calibrated standard product (L1T)
pixel values (DN).

Conversion to top of atmosphere brightness temperature

TOA spectral radiance from the first step can be con-
verted to TOA brightness temperature using Eq. 2:

T ¼ K2

ln
K1

Lλ þ 1

� � ð2Þ

In this equation, T is the TOA brightness temperature
(Kelvin) and K1 = 774.8853 and K2 = 1321.0789 are the

band-specific thermal conversion constants. It should be
noted that the parametersK1,K2,ML, and AL are obtained
from the metadata file for the related data (USGS 2018).

Minimum noise fraction

The mathematical concept of the MNF is dependent on
the principal component analysis (PCA) method. In the
MNF method, noise fraction is minimized recursively
by using the same eigenvalues and eigenvectors obtain-
ed from the PCA resulting in uncorrelated output bands
(Green et al. 1988; Berman et al. 2012). Most of the
information can be found in the first output bands. Data
comprise d dimensions and n pixels. LetX show the size
of n × d data matrix with the size of d × 1 vector of Xi,
i = 1, 2, 3…, n:

X ¼ X1;…::Xnð ÞT ð3Þ
Xi can be obtained from the sum of signal (Si) and

noise (ϵi) as:

Xi ¼ Si þ ϵi ð4Þ
If there is no correlation between signal and noise,

the covariance of Xi can be represented as follows:

∑T
X ¼ ∑S

X þ ∑N
X: ð5Þ

where ∑T
X is the covariance of Xi, ∑S

X is the covari-

ance of Si, and ∑N
X is the covariance of ϵi. For mathe-

matical computations, the covariance matrices of the
signal and noise are diagonalized by using the A matrix
with d × d dimension which includes the eigenvectors
of the data (Eq. 6).

A∑S
XA

T ¼ Λ A∑N
XA

T ¼ I ð6Þ
In this equation, Λ is a diagonal matrix of eigenvalues

asλ1 ≥λ2 ≥…λd ≥ 0 and I is the identity matrix. In order
to solve Eq. 6, the generalized eigendecomposition meth-
od can be used for transformations (Green et al. 1988;
Berman et al. 2011).

Filters

In this study, two different filters were used: morphology
dilation and Sobel edge detection. In the morphology
dilation filter, the aim is to fill the holes between pixels
suppressing noise resulting in a smooth surface on a gray
image. This filter can be referred to as non-linear image-
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processing technique focusing on geometric structures
within an image. Dilation filters use set theory. Dilation
combines two sets (A and B) using vector addition of set
elements. A can be mentioned as the image whereas B is
a structure element, namely, kernel. In this study, kernel
size is selected as a 3 × 3matrix (B) (Haralick et al. 1987).

The aim of the edge detection algorithms is to
define discontinuity in the intensity function or very
steep gradient in the image. One of the edge detection
methods is the convolution Sobel detection filter that
can be used to define the gradients in the image. These
gradients show the edge of the grayscale image. When
the gradient is high in some pixel in the image, the
method defines that pixel as an edge (Shrivakshan and
Chandrasekar 2012). The Sobel edge detection meth-
od uses two 3 × 3 convolution filters. Each 3 × 3

convolution filter is separately moved in x and y di-
rection over each pixel of the grayscale image
resulting in a gradient component in these two perpen-
dicular directions. Gradient in x-direction can be
called Gx, while in y-direction, it is Gy (Vincent and
Folorunso 2009; Narendra and Hareesh 2011). Both of
them can be combined to find the absolute magnitude
of the gradient in each pixel (|G|) and the orientation
(θ) of that gradient, respectively, with Eqs. 7 and 8 as
follows:

Gj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
ð7Þ

θ ¼ arctan Gy=Gx
� � ð8Þ

Fig. 3 Oil spill stages: a data acquired on 14December 2016, b data acquired on 19December 2016, c data acquired on 20December 2016,
and d data acquired on 26 December 2016
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3 × 3 convolutional filter in x-direction and y-
direction can be given as follows:

xfilter ¼
−1 0 1
−2 0 2
−1 0 1

2
4

3
5 ð9Þ

yfilter ¼
1 2 1
0 0 0
−1 2 −1

2
4

3
5 ð10Þ

Results and discussion

In order to detect the oil spill, the downloaded Sentinel
1A-1B images were processed with the given method-
ology and analyzed in SNAP. The first image was
acquired on 14 December 2016 (Fig. 3a). In this image,
some different contrast areas were observed for the VV
mode. There is no distinct feature related to oil spills.
The wind shadow areas that are generally seen near the
coastal region were observed in the image while oper-
ating in VV mode. Furthermore, these areas may also
occur due to biogenic films, wind speed, and internal
waves. The site of the ship is depicted by the green

circle. In this figure, the ship is far from the incident
region as it loads fish from the fish farm. Afterwards, the
ship moved from the departure point but ran aground on
rocks under the sea. Figure 3b shows the first image,
which was acquired by Sentinel 1B, after the accident.
In this figure, there are varieties of look-alikes, but there
is a region like an arc near the ship indicated by a green
arrow. It may be related to the oil spill event.

The third image is from a time after the ship incident
on 20 December 2016. After the ship incident, it was
reported that the oil was spilled and leaking onto the sea
surface in the shape of an arc (Fig. 3c). In this figure, an
arc-shaped area was observed in the VV mode (green
arrow). It exactly verifies the reported geographical
location of the ship in Ildır Bay (UBAK 2018). The last
image is from a time 8 days after the ship incident on 26
December 2016. There are no black contrast areas relat-
ed with the incident around the ship. The relation be-
tween the oil spill area can be seen as similar black
patches around the ship on 19 and 20 December 2016.
In order to support findings from SAR images, Landsat
8 data was processed by using different image-
processing algorithms.

Thermal infrared sensors sense the oil spill areas
as well. Thermal infrared bands can be converted to
brightness temperatures for easy representation of the

Fig. 4 The brightness temperature values for Landsat 8 thermal band 10 on 20 December 2016
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image. The brightness temperatures can be estimated
by using the values in metadata for the Landsat TIR
band with Planck’s equation (USGS 2018). Figure 4
shows brightness temperature values range from
275.961 K to 293.596 K. The position of the ship is
shown by the white arrow. The track of the oil spill
area can be seen as a line and arc with different
contrast than the area outside the affected area (white
arrow). The regions detected in SAR image can be
seen in the area obtained from thermal image as well.

In order to show the affected area more clearly, two
arbitrary profiles AA′ and BB′ are taken from bright-
ness temperature and are represented in Fig. 5a, b.

Figure 5a, b shows AA′ cross section and BB′ cross
section. In Fig. 5a, minimum brightness temperature
value is about 286.5 K coinciding with oil spill areas
that are shown as red dashed lines. The maximum
values are about 287 and 287.2 K around the oil spill
area. In Fig. 5b, minimum values are about 286.64 and
286.80 K whereas maximum values are about 287.1 and

Fig. 5 a Cross section of AA′ and b cross section of BB′ from brightness temperature images of Landsat 8 thermal band 10 on 20
December 2016
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287.2 K. The minimum values are related with the oil
spill area. Salisbury et al. (1993) estimated the emissiv-
ity of seawater as 0.989 for Landsat Thematic Mapper
(TM) wavelength (10.40–12.50 μm). At this wave-
length, aged crude oil slicks have emissivity of 0.96.
The change in the emissivity of 0.01 results in 0.6 °C
variation in temperature. This situation can be related
with the contrast in brightness temperature in Landsat
TM band 6 resulting in maximum change of up to
1.74 °C at room temperature (Salisbury et al. 1993). In
our study, the changes in brightness temperature are
about 0.6 K which corresponds to emissivity value of
0.01. Oil films on the sea surface can be seen in Landsat
thermal band 10 as dark contrast with low brightness
temperature. Klemas (2010) classified thermal response
with respect to thick or thin layers of oil spill. Klemas
(2010) mentioned that layers thicker than 150 μm ap-
pear hot or bright, whereas layers less than 50 μm thick
appear cool and dark.

In the next step, a morphology dilation filter was
applied to Landsat 8 bands. Red (R), green (G), and
blue (B) (RGB) image is constructed by applying fil-
tered thermal infrared, blue, and coastal/aerosol bands,
respectively. After the filtering procedure, the extent of
the oil spill area can be seen more easily. Figure 6a
depicts RGB image of morphology dilation filter ap-
plied to thermal infrared, blue, and coastal/aerosol
bands. The white arrow in this figure shows the intense
oil spill as silvery areas. The track of the oil spill starts
from the back of the ship following the area as shown by
the white arrow. The convolutional Sobel filter was also
applied to all Landsat bands in order to show the edge of
oil spill area. Figure 6b shows the convolutional Sobel
filter applied to blue, coastal/aerosol, and green bands in
RGB. Sobel filter results show the edge of the affected
area caused by the ship incident.

Moreover, the minimum noise fraction (MNF) meth-
od was applied to 11 bands of Landsat 8 image in order
to show the contribution of all bands for oil spill inci-
dents. This method can be used to distinguish the area
with oil spill that has different contrast from surrounding
areas. Eleven bands of Landsat 8 image were selected as
input resulting in 11 output bands after processing.
Figure 7 depicts RGB image of the MNF output bands
8, 7, and 6. In this figure, oil spill areas are shown with
white arrows. The coastal areas can be seen as green. In
oil spill studies, the most important issue is to separate
oil spill areas from look-alikes. For Sentinel 1 SAR
images, it is hard to separate look-alikes from the real

oil spill area as the backscattering of the radar signal
gives similar dB values as wind effect, algae, and the
coastline. Even though the ground truth data supports
the findings from SAR data, it is important to use
different optical sensors or SAR systems to validate
the results. The coverage, data availability, satellite re-
visit time, and cloud coverage also restrict data process-
ing of oil spills. Moreover, Sentinel 2 and remaining
Landsat 8 data could not be used because of high cloud
coverage in the selected days. There is no ASTER data
for the incident location for related days as well. Differ-
ent filters are efficiently used to highlight the oil spill
area. The coastline can be seen as green color in MNF
results (Fig. 7) and can be addressed as a low depth and
rocky sea bed. This situation can cause false detection of
oil spills. So, this kind of effect can also be considered in
oil spill studies. The ship incident report found in

Fig. 6 RGB images of a morphology dilation filtered thermal
infrared, blue, and coastal/aerosol bands and b convolutional
Sobel filtered blue, coastal/aerosol, and green bands
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UBAK (2018) has detailed information about the oil
spill event as well. Ground truth data from UBAK
(2018) supports our findings.

Conclusions

Satellite-based remote sensing is an effective tool for
emergency situations where it is not possible to perform
fast and effective on-site measurements. There are dif-
ferent satellite missions to monitor the Earth. Sentinel 1
SAR and Landsat 8 satellite can be used to detect oil
spills. Monitoring of the direction and magnitude of
spilled oil on the sea surface, especially due to accidents
involving marine vessels, is very important in terms of
ecosystem and environmental effects. In this study, SAR
and Landsat 8 satellite images were used to determine
the efficiency of oil spill detection. A major environ-
mental disaster caused by an incident in Ildır Bay was
used for detailed analysis. The satellite images for the
related dates in the substages of this incident were
subjected to a number of procedures. The results
showed that the oil spill area can be identified by using
Sentinel 1 data using VV polarized images. The study
showed that the oil spill and slick after a sea incident can
be determined quickly, effectively, and economically
with the aid of satellite images. In addition, different
scenarios, including weather events and marine waves,
should be considered in the analysis in order to use
remote sensing as an effective tool for monitoring oil

spills. The methods in this study can be used to make
quick decisions about reducing environmental impacts
during and after any oil spill event. MNF, morphology,
and convolution filters were successfully applied to
Landsat 8 data for oil spill determination. The results
support the Sentinel 1 processing results.
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