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Abstract Groundwater hazard assessments involve
many activities dealing with the impacts of pollution
on groundwater, such as human health studies and en-
vironment modelling. Nitrate contamination is consid-
ered a hazard to human health, environment and eco-
system. In groundwater management, the hazard should
be assessed before any action can be taken, particularly
for groundwater pollution and water quality. Thus, pol-
lution due to the presence of nitrate poses considerable
hazard to drinking water, and excessive nutrient loads
deteriorate the ecosystem. The parametric IPNOA mod-
el is one of the well-known methods used for evaluating
nitrate content. However, it cannot predict the effect of
soil and land use/land cover (LULC) types on calcula-
tions relying on parametric well samples. Therefore, in
this study, the parametric model was trained and inte-
grated with the multivariate data-driven model with
different levels of information to assess groundwater
nitrate contamination in Saladin, Iraq. The IPNOAmod-
el was developed with 185 different well samples and
contributing parameters. Then, the IPNOA model was
integrated with the logistic regression (LR) model to

predict the nitrate contamination levels. Geographic in-
formation system techniques were also used to assess
the spatial prediction of nitrate contamination. High-
resolution SPOT-5 satellite images with 5 m spatial
resolution were processed by object-based image anal-
ysis and support vector machine algorithm to extract
LULC. Mapping of potential areas of nitrate contami-
nation was examined using receiver operating charac-
teristic assessment. Results indicated that the optimised
LR-IPNOA model was more accurate in determining
and analysing the nitrate hazard concentration than the
standalone IPNOA model. This method can be easily
replicated in other areas that have similar climatic con-
dition. Therefore, stakeholders in planning and environ-
mental decision makers could benefit immensely from
the proposed method of this research, which can be
potentially used for a sustainable management of urban,
industrialised and agricultural sectors.

Keywords Nitrate contamination . IPNOA . GIS .

Logistic regression . Groundwater hazard assessment

Introduction

Groundwater sources are the most crucial, dependable
and valuable sources of water in all climatic regions in
the world (Sacco et al. 2006). The demand for ground-
water continues to increase because of population
growth, agricultural requirements, urbanisation
(Ettazarini 2007) and rapid industrialisation (Pradhan
2009). Groundwater has more benefits than surface
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water. Groundwater exhibits better quality, is less ex-
posed to seasonal and perennial fluctuations and is more
protected from pollutants and infections than surface
water (Green et al. 2008). Hydro-technical facilities for
surface water require larger investment than groundwa-
ter facilities that can be developed gradually (Nampak
et al. 2014). Many models have been developed to
assess groundwater quality and quantity, such as DRAS-
TIC, neuro-fuzzy classifier and SINTAC, which are
designed for groundwater risk and vulnerability assess-
ment (Neshat and Pradhan 2015; Neshat et al. 2015).
The Italian experience with SINTAC was a good exam-
ple, particularly when it was associated with the hazard
parameters for nitrate risk assessment (Sacco et al. 2007;
Capri et al. 2009; Ghiglieri et al. 2009).

Padovani and Trevisan (2002) proposed IPNOA as
the nitrate hazard index (HI) to detect the potential
hazard to groundwater of nitrate contamination from
agricultural activities at the provincial and regional
scales. This approach involves the parametric analysis
of all of the parameters under consideration in the po-
tential groundwater contamination hazard (Raaz
Maheshwari et al. 2012). Then, a progressive score is
allocated to each parameter in accordance with its im-
portance determined through the evaluation (Padovani
and Trevisan 2002). This method is aimed at evaluating
the nitrate HI from domestic sources (Capri et al. 2009).

Leakages from sewage, mishandling of wastewa-
ter effluents, improper denitrification during waste-
water treatment and inadequate curing using
fertilisers and wastes of animals are the major sources
of nitrate contents in groundwater (Zhao et al. 2013).
These sources lead to the contamination of aquifers,
particularly where groundwater replenishment occurs
directly from surface water (DeSimone and Howes
1998; Vikas et al. 2015). Nitrate contamination is
often attributed to human activities on the ground
that involve fertilisation of agricultural products
(Gross 2008). Contaminated groundwater is not eas-
ily remediated after occurrence; thus, prevention is
the most effective strategy in water quality manage-
ment (Kowal and Polik 1987; Re et al. 2017). Ac-
cording to Into (2011), the concentrations of nitrate
contamination in groundwater exceed the standard
limits for freshwater (50 mg N–NO3/L) in Europe in
approximately 22% of planted areas (Sacco et al.
2007). Comparable levels, which can cause cancer
for those who consume such water, were also ob-
served in China and USA (Cantor 1997).

The application of geographic information systems
(GIS) and remote sensing (RS) techniques allows the
exploration of groundwater resources in a range of
hydrogeological settings (Gupta and Srivastava 2010;
Mishra et al. 2014; Nampak et al. 2014). Artificial
intelligence and machine learning in GIS have been
applied to a vast range of industries and applications
with large amounts of data, and deep learning can help
automate the extraction of information from visual
datasets, which was previously impossible (Neshat and
Pradhan 2015; Mezaal et al. 2017). The analysis of large
amounts of hydrogeological data and the simulation of
complex subsurface flow and transport processes can be
conducted using the combination of GIS and RS sys-
tems (Mojaddadi et al. 2009; Althuwaynee et al. 2012,
2014; Bui et al. 2017a, b; Chen et al. 2017; Oh and
Pradhan 2011; Pradhan 2013; Tehrany et al. 2013, 2014,
2015; Umar et al. 2014; Abdulkareem et al. 2018a, b;
Rizeei et al. 2018a, b; Kordestani et al. 2018; Golkarian
et al. 2018).

The integration of RS and GIS techniques to determine
aquifer system suitability in Ghanawas proposed byGum-
ma and Pavelic (2013). The main aim was to improve the
development of groundwater in agricultural and urban
purposes (Alwathaf and El Mansouri 2011). The signifi-
cance of the integration of RS and GIS techniques in the
assessment of groundwater projects has been emphasised
in many studies (Shahid et al. 2002; Sener et al. 2005;
Shaban et al. 2006; Nampak et al. 2014).

Most of the studies related to groundwater pollution
concentrated on vulnerability assessment rather than
hazard evaluation, that is, the high groundwater vulner-
ability does not necessarily represent the high level of
hazard to groundwater (Spalding and Exner 1993; Lake
et al. 2003; Raaz Maheshwari et al. 2012). Generally,
most concentrations of nitrate contamination in ground-
water are from agriculture areas, but residual and indus-
trial areas contribute to nitrate contamination because of
leakages from sewages and discharges from domestic
activities not connected to sewage systems (Boy Roura
2013). The IPNOA model does not consider the soil
types and roles of land use/land cover (LULC) in nitrate
risk and hazard modelling. The IPNOA model runs
based on parametric sample points from wells
(Ghiglieri et al. 2009). The contributing hazard and
control factors (HFs and CFs, respectively) are calculat-
ed with equal degree of importance, which is not an
efficient method of conducting nitrate concentration
analysis.
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In the current research, we tried to overcome the
previous drawbacks of groundwater nitrate modelling.
Therefore, the IPNOA model was used to determine the
nitrate concentration in agricultural lands using HFs and
CFs. The soil type parameter was added to the IPNOA
equation in addition to a detailed LULC extracted from
SPOT-5 satellite imagery to improve the quality of
contributing factors. The IPNOA model was optimised
by the logistic regression (LR) model for the first time to
assign the proper weight to HFs and CFs to deal with
skewness and uncertainty from the standalone IPNOA
model.

Material and methods

Study area

The investigation was conducted in Saladin Province of
Iraq, which is located north of the capital Baghdad.
Saladin Province covers an area of approximately
24,363 km2 and has a population of 1,042,200 persons.
Saladin Province has two main cities, that is, the capital
city Tikrit and the city of Samarra. Saladin Province was
a part of the capital Baghdad before 1976. The study
area is geographically located at 43° 20′ 19.14″ E, 43°
60′ 59.74″ E and 34° 41′ 30.14″N, 34° 28′ 30.74″N. the
area has a variety of LULC types (i.e. urban, bare and
agricultural lands). The study area is composed of sandy
to gravel soil types where average humidity is 33%. The
amount of precipitation ranges from 600 to 800
mm/year, and the annual average temperature ranged
between 15 and 23 °C. The elevation varies from 69 to
178 m. The formation of the study area shows almost
similar lithological composition of limestone material
(Abdula 2016).

Nitrate contamination of groundwater in the study
area is considered moderate with regard to its geological
structure, that is, sandy dunes soil (AL-Dulaimi and
Younes 2017). Several studies conducted in Tehama
Basin have reported nitrate pollution in groundwater,
which is one of the major sources of drinking water
for inhabitants. The high concentration of nitrate is a
result of decomposing organic matters and increasing
use of fertiliser and sewage water because most of the
cities and villages in the study area have inadequate
sanitation system coupled with shallow water content.
Figure 1 illustrates the location of study area.

Datasets

The data used in this work divides into three groups, that
is, independent, dependent and analysis data. The de-
pendent data comprised concentrated groundwater con-
taining nitrate in mg/L sourced from 185 wells. The data
were obtained from hydrogeological and hydrochemical
investigations conducted by the government of Saladin.
The samples were analysed in the laboratory. The field-
data-collection campaign was commenced in 25 No-
vember 2014 and was completed in 31 December
2016. Parameters, such as rainfall, TEM, PH, EC and
TDO, were recorded from the field as dependent data.

High-resolution SPOT-5 satellite image was used to
extract LULC as independent explanatory data (Aal-
shamkhi et al. 2017). Other data, such as well depth
(shallow and deep wells), were also recorded.

Nitrate groundwater quality in Saladin ranged from
1.3 to 203 mg/L, and the average of 46 mg/L was
reported from 185 well samples, of which 65 showed
values higher than 50 mg/L. The inventory points of
nitrate samples were split into two groups, with the first
group being the training group (70%) and the second
group being the testing group (30%) (Fig. 2). The model
was trained using 70% of the samples and tested using
the remaining 30%.

Methods

Three main technical parts comprise the framework of
the current study, that is, satellite image classification,
IPNOA parameter extraction and statistical model con-
struction, as shown in Fig. 3.

Several programs and models were used in this anal-
ysis. ENVI 5.4 was used for satellite image processing,
ArcMap 10.5 was used for spatial modelling and map-
ping and SPSS 9.2 was used for statistical-data-driven
modelling.

LULC extraction

LULC is one of the primary factors that contributes
immensely to the geohazard and risk in groundwater
and surface water (Hossein Mojaddadi et al. 2017). The
nitrates percolate through the soil depending on the type
of soil and LULC. In a densely populated environment,
nitrates from septic tanks seep down and fertilisers from
LULC accumulate and contaminate shallow groundwa-
ter until it exceeds the safe drinking water standard level
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(Wick et al. 2009). For optimum outcome, the variables
and subdivision should be selected precisely because of
the sensitive correlation between nitrate concentration
and LULC (Min et al. 2003).

High-resolution satellite image, such as IKONOS
and SPOT satellite imageries, has been recommended
to extract a detailed LULC map (Aal-shamkhi et al.
2017; Abdullahi et al. 2017). The SPOT-5 satellite im-
age has high-resolution characteristics and provides a 5-
m multispectral resolution. The image was captured in
December 2015. All necessary pre-processing ap-
proaches were implemented on the image (i.e. radiomet-
ric, geometric and atmospheric corrections). In object-
based image analysis (OBIA), multiresolution segmen-
tation is the first step of processing that has three

components, namely, scale, merge and compactness,
which should be defined carefully before applying the
support vector machine (SVM) classifier to the image
(Rizeei et al. 2018a, b). The Taguchi method was
employed to select the best combination of scale, merge
and compactness factors to optimise the segments.
Meanwhile, the radial base function kernel type was
selected as the SVM classifier. The optimal parameters
of segmentation and the applied classifier details are
shown in Table 1.

The extracted LULC map in this study area is
categorised into five classes, namely, urban land, irrigat-
ed agricultural land, bare land, water body and rain-fed
agricultural land. However, the study area is mostly
covered by agricultural lands, as shown in Fig. 4.

Fig. 1 Location of study area

Fig. 2 Inventory points of nitrate
samples in the study area
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Implementation of the IPNOA model

The distribution of nitrogen sources in agricultural lands
exhibits a potential negative effect on groundwater (Bone
et al. 2010). HFs comprise waste treatment sludge (HFfd),
organic fertilisers (HFfo) and non-organic fertilisers (HFfm).
Conversely, CFs are employed to assess the influence of
nitrate activities in terms of site and farm situation in the
area under consideration (Padovani and Trevisan 2002).
Leaching of nitrogen content in soil (CF

a
), agronomic

practices (CFpa), climate (CFc) and irrigation techniques
(CFi) are some of the factors that regulate water balance.
The factors were combined by assigning a score that
classifies the level of nitrogen or the effect (positive,

negative or neutral) of the factors involved in the leaching
of nitrates (CF). The scores assigned to the used factors can
be calculated using the conversion tables shown inTables 2
and 3. The HF score ranges from zero to five, whereas the
CF score ranges from 0.94 to 1.10. A score of zero
represents non-agricultural land usage (urban and natural
environments). Therefore, nitrate contamination from ag-
ricultural hazard is finally estimated by multiplying the
sum of the scores of the HFs by the product of the CFs.

HF of mineral fertilisers The average amount of nitrogen
used for each crop grownwas used to estimate the nitrogen
input frommineral fertilisers (HFfm), which is based on the
agronomic practices plotted on the LULC map.

Mineral fertilizers 

(HFfm)

Pre-processing

Segmentation

Multiresolution

SVM algorithm

IPNOA

Spot-5 Image

Organic fertilizers 

(HFfo)

Sludge           (HFfd)

Soil Nitrogen (CFa)

Climate       (CFc)

Agronomic         

(CFpa)

Irritation Type         

(CFi)

Hazard Factors Control Factors

O
B

IA
 

gnissecorP
ega

mI
LULC

Nitrate 
Concentrations Index

Wells Inventory

Soil Types 

LR model

Nitrate Hazard

Reclassification Field validation

70% training

30% testing

Assign Weighing for 

factors 

Fig. 3 Methodology flowchart
applied in this study

Table 1 OBIA segmentation and classification in details

Segmentation specifications Classification algorithm

Spectral layer
weights

Scale
parameter

Shape Compactness Algorithm Threshold kernel Gamma in
kernel

Penalty
parameter

Green = 2
NIR = 2
Red = 1
Blue = 1

40 0.2 5 SVM 5 RBF 0.03 100
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HF of organic fertilisers The information related to
organic fertilisers on agricultural lands was extracted
from the site survey. Hence, the identification of cattle
farm location, which is responsible for animal waste
(HFfo), is easy. However, only a few were observed to
operate in such farms in the area under consideration
and the disposal of animal waste was easily delineated
geographically. The type and amount of waste and their

corresponding scores were utilised to estimate nitrogen
concentrations in farmlands. The organic fertiliser map
was created based on the geostatistical interpolation
method (i.e. kriging interpolation technique) using the
spatial analyst tool in the GIS framework.

HF of sludge Generally, sludge spreading (HFfd) is not
practiced in all farms in the study area. Therefore, a score
of 1 was assigned to this factor. However, in several farms
near streams, the amount of sludge was assigned a score of
2. Figure 5 shows the combined HFs of mineral fertilisers,
organic fertilisers and sludge, which were implemented by
the spatial analyst tool in ArcMap.

Nitrate contamination originating from agricultural
activities can be estimated by the potential HI (Raaz
Maheshwari et al. 2012).

CF of soil nitrogen content This factor indicated by
nitrates of household origin and agricultural lands are
designed to measure the N loading and leakage from
wastewater pipes. Analytical data are collected during
soil surveys to calculate the soil nitrogen content (CFa).
The total nitrogen content of the arable stratum was
extracted from the data and spatialized during
geostatistical interpolation using the kriging interpola-
tion method (Vendrusculo et al. 2002). Figure 6a shows
the map of soil nitrogen content.

CF of climate The spatial data covering a 20-year time
series (from 1995 to 2015) were used for temperature
and precipitation. In the original procedure, temperature
and rainfall are classified in accordance with the

Fig. 4 Classified LULC map by
OBIA-SVM classifier

Table 2 Hazard factors score contributed in nitrate concentration

Hazard factors (HF) Score

Mineral fertilisers (kg/ha/year) HFfm
0 1

1–25 2

26–100 3

100–180 4

> 180 5

Organic fertilisers (kg/ha/year) HFfo
0 1

1–150 2

151–300 3

300–500 4

> 500 5

Sludge (kg/ha/year) HFfd
0 1

1–150 2

151–500 3

500–1500 4

> 1500 5
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baseline class and assigned a score of one. The amount
of precipitation ranges from 600 to 800 mm/year, and
the annual average temperature ranged between 15 and
23 °C. Therefore, areas with low annual mean temper-
ature and/or high rainfall are regarded as more hazard-
ous, meaning its score is higher than one. However, in
the area under consideration, no spatial changes were
observed in the small area of investigation. According to

IPNOA climate scheme, 0.94 is achieved where rainfall
is less than 600 mm/year and annual mean temperature
is more than 16 °C. The entire area obtained the same
value of 0.98 because no significant variation of rainfall
was observed over the study area (Fig. 6b).

CF of agronomic practices The agronomic practices
CFpa were established based on LULC depending on
field surveys conducted for each crop type. Traditional
agronomic practices, such as fertile irrigation or tillage/
local fertilisation, are usually implemented in several
areas. In certain circumstances, the score of the most
effective agricultural practice is used. Figure 6c shows
the agronomic map of the study area.

CF of irrigation The integration of layer information and
field observation was used to produce the irrigation control
factor (CFi) of LULC. This factor is appropriate for the
irrigation technique because of its capability to transfer
pollutants towards aquifers in direct connection with the
efficiency of irrigation drainage. From the surveys con-
ducted on different irrigation types on agricultural land, the
scores assigned to LULC classes are shown in Fig. 6d. The
detailed LULC extracted from satellite images can consid-
erably enrich the accuracy of the CFi value.

CF of soil characteristics Soil is the major channel for
contaminations to penetrate groundwater, depending on
the type of contaminants and the soil texture. Soil texture
and nitrate contamination exhibit a positive correlation and
are, thus, considered important factors affecting nitrate
concentration in groundwater (DeSimone and Howes
1998). Conversely, soil texture is observed to be related
to water input, nitrate application rate and evapotranspira-
tion, which are regarded as the major factors determining
the nitrate fluxes in groundwater (Liao et al. 2012). In this
study, soil has six types, that is, from sandy to gravel, but
mostly covers the gypsiferous gravel type (Fig. 6e).

The soil type factor is added to the IPNOA model to
improve nitrate concentration analysis. The soil charac-
teristic CF data were collected during the surveys and
the classes were determined based on the soil media, as
shown in Table 3 and Eq. (1).

The hazard index result is achieved by multiplying
the HFs by the CFs, as shown in Eq. (1):

HI ¼ HFf þ HFmþ HFsð Þ � CFa � CFc � CFap

� CFi � CFs; ð1Þ

Table 3 Control factors score contributed in nitrate concentration

Control factor (CF) Score

Soil nitrogen content (%) CFa
> 0.5 0.104

0.22–0.5 0.102

0.15–0.22 0.1

0.1–0.15 0.98

< 0.1 0.96

Climate CFc
Annual precipitation (mm) Annual temperature (c)

> 1200 6–15 1.10

1050–1150 13 1.08

950–1100 14–16 1.06

600–1000 15–16 1.02

500–900 14–16 1.01

500–600 < 16 098

< 600 > 16 0.94

Agronomic practices CFpa
Fertilisation Tillage 1.04

Ferti-irrigation 1.00

Spread fertilisation Traditional tillage 0.98

Leaf fertilisation Minimum tillage 0.96

Local fertilisation No tillage 0.94

Irrigation type CFi
Flood 1.06

Furrow 1.04

Aspersion 1.02

Drip 1.01

No irrigation 1.00

Soil types CFs
Sand and gravel 1.06

Peat 1.04

Quaternary alluvial 1.02

Sandy loam 1.00

Loam 0.98

Silty loam 0.96

Clay loam 0.94
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where the subscripts f, m, s, a, c, ap, i and s represent
fertilisers, manure, sludge, nitrogen content, climate,
agronomic practices, irrigation and soil, respectively.
The total incidence of the CFs is obtained bymultiplying
the single factors to restrict the weight of the parameters.
The HFs are evaluated with respect to the real influence
of the nitrogen load. The range between 0 and 5 is
specified for HF and that between 0.94 and 1.10 is
specified for CF. Finally, the IPNOA is estimated from
the HI through the classification of the resultant values
based on the percentile of the 135,125 possible combi-
nations, which is scaled between 1 and 6 (Capri et al.
2009).

Therefore, the IPNOA raw data are ranked based on
the 135,125 possible combinations into the classes pre-
viously mentioned (Capri et al. 2009) according to their
hazard level shown in Table 4. A value of 1 represents
areas with the least hazard, whereas a value of 6 repre-
sents the most hazardous zone.

Implementation of the LR model

The LR model is considered one of the most commonly
used multivariate statistical models and is often cited as
one of the most efficient data-driven techniques in sev-
eral applications (Pradhan and Lee 2010; Hossein
Mojaddadi et al. 2017). The LR model defines rigid
assumptions, which are considered obstacles to the ap-
proaches used in this study (Benediktsson et al. 1990).
The LR model is also difficult to use in real-life appli-
cations. However, statistical approaches based on LR
could overcome these obstacles and create an easy

approach for analysis that does not need a pre-
assumption and can be used with other bivariate statis-
tical analysis (BSA) methods, such as frequency ratio
(Ayalew and Yamagishi 2005). Although the multivar-
iate LR method is stronger than the other statistical
methods, it still has several disadvantages that hinder
the analysis of the classes of each nitrate conditioning
factor. To overcome these weaknesses, many studies
used LR as bivariate method to solve the problem;
however, LR has some limitations in performing BSA
as it uses the classes as an indicator and does not
consider it in the analysis (Süzen and Doyuran 2004).

The dependent variable in this method is considered a
binary variable that represents the absence or presence
of nitrate (0 and 1, respectively). The binary model is a
model that uses logical expressions to select spatial
features from composite feature layers or multiple ras-
ters. The output of the binary model is in binary format,
that is, 1 (true) for spatial features that meet the selection
criteria and 0 (false) for features that do not. This meth-
od also represents the probability in the range of [0, 1]
on an S-shaped curve. The use of a few parameters with
small pixels is recommended to obtain fast and reliable
results (Bai et al. 2012). With the derived logistic coef-
ficients, the probability (p) of nitrate concentration was
calculated using Eq. (2):

p ¼ 1= 1þ e−zð Þ ð2Þ

where p is the probability of flooding, with the value
between 0 and 1 on an S-shaped curve. z denotes a linear
combination, and it follows that LR involves fitting Eq.
(3) to the data, as follows:

Fig. 5 Combined hazard factors
(HF) index in study area
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Fig. 6 CFs of a soil nitrogen content, b climate, c agronomic practices, d irrigation types, and e soil types
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z ¼ b° þ b1x1 þ b2x2 þ b3x3 þ bnxn ð3Þ
where b° is the intercept of the model, bi (i = 0, 1, 2,…,
n) represents the coefficients of the LRmodel and xi (i =
0, 1, 2,…, n) denotes the conditioning factors (Lee and
Sambath 2006).

Results and discussions

OBIA-SVM-extracted LULC result

As shown in Table 5, most of the study area is covered
by bare land (681.43 km2), followed by irrigated agri-
cultural land (471.15 km2). Rain-fed agricultural land is
the smallest among all classes, showing that the

agricultural industry in Saladin depends on watering
and irrigation systems.

The LULC overall accuracy and kappa coefficient
were calculated as 87.05% and 0.839, respectively,
using the confusion matrix and ground truth points.

Fig. 6 (continued)

Table 4 Hazard indices, IPNOA, and relative classification by
Capri et al. (2009)

Hazard index IPNOA Classification

2.54–3.18 1 Unlikely (u)

3.19–5.88 2 Very low (vl)

5.89–7.42 3 Low (l)

7.43–9.31 4 Moderate (m)

9.32–11.10 5 High (h)

11.11–17.66 6 Very high (vh)
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IPNOA results

When the hazard and control parameters have been
extracted, the nitrate concentration index map is calcu-
lated using the IPNOA model (Fig. 7a) and classified
based on the hazard level scheme, as shown in Fig. 7b.

Correlation analysis was conducted between param-
eters in different forms and methods, and the p values
were used to test the results of statistical analysis effi-
ciency and usually calculated at the 95% significance
level.

No parts of this study area were categorised as high
or very high hazard, whereas most of the study area is in
the safe zone to nitrate hazard (81.54%). However, the
moderate zone to nitrate hazard with less than 1 percent-
age represents the smallest class, as shown in Table 6.

LR optimisation results

Weightage of the conditioning parameters was derived
to determine the significance of the sequence of predic-
tors. The rank of each parameter was determined by LR
in the statistical software Weka and subsequently

Table 5 Extracted LULC areas using OBIA-SVM approach

Code Class name Area, m2 Area, km2

1 Bare land 681,433,748.34 681.43

2 Irrigated agriculture 471,153,764.54 471.15

3 Rain-fed agriculture 3,780,537.50 3.78

4 Urban 61,184,243.34 61.18

5 Water 7,019,962.50 7.02

Total 1,224,872,256.22 1224.87

Fig. 7 a Nitrate concentration
index map and b agricultural
nitrate hazard map using IPNOA
model
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overlaid using spatial analyst tools. Figure 8 shows the
final weightage derived by the LR model for all condi-
tioning parameters.

From the results of LR modelling shown in Fig. 8, all
HFs achieved less than 0.5 weightage, which is consid-
ered insignificant to nitrate concentration. Meanwhile,
CFap achieves the highest value (3.28), which is the
most significant factor to trigger nitrate concentration.
CFa and CFs are ranked second and third, with values of
2.35 and 2.13, respectively. From the calculated
weightages for each parameter using the statistical LR,
the IPNOA model was optimised.

HI ¼ HFf � 0:09ð Þ þ HFm� 0:07ð Þ þ HFs� 0:04ð Þ½ �
� CFn � 2:351ð Þ � CFc � 0:75ð Þ
� CFap � 3:287
� �� CFi � 1:567ð Þ

� CFs � 2:127ð Þ
ð4Þ

Values were computed by the raster calculator of the
ArcGIS software using Eq. (4).

Optimised LR-IPNOA results

For the nitrate concentration index, after calculating the
LR coefficients from eight nitrate contributing factors,
the optimised IPNOAwas calculated (Fig. 9a) and clas-
sified based on the hazard level scheme, as shown in
Fig. 9b.

The classes with moderate potential hazard (major
scores) are in the central part of the plain where the most
productive aquifers as well as irrigated agricultural lands
are situated and are at the same time potential pollution
concentration sources. Figure 9a shows the nitrate con-
centration index generated from the integrated LR and
IPNOA model, and the nitrate index ranges from 2.8 to
8.04 for groundwater. This index indicates the estimated
probability of groundwater at each pixel in the presence
of a given set of conditioning factors.

The quantified information shown in Table 7 indi-
cates that most of the study area is in an unpolluted area
that is unlikely to be affected by the nitrate hazard
(45.35%). Meanwhile, approximately 5 percentage of
the entire area is in the moderate hazard zone for nitrate
concentration.

Table 6 Area of nitrate hazard classes derived from IPNOA model

Score Class Count Area, m2 Area, km2 Percentage

1 Unlikely (u) 39,954,381 998,859,525 998.86 81.54

2 Very low (vl) 6,981,582 174,539,550 174.54 14.25

3 Low (l) 1,577,025 39,425,625 39.43 3.22

4 Moderate (m) 487,012 12,175,300 12.18 0.99

Total 1,225,000,000 1225.00 100.00
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No parts of this study area were categorised as high
or very high hazard, whereas most of the study area is in
the safe zone to nitrate hazard (81.54%). However, the
moderate zone to nitrate hazard with less than 1 percent-
age represents the smallest class, as shown in Table 7.

Comparedwith the results obtained by the standalone
IPNOA model, the area of the moderate zone derived
using the LR-IPNOAmodel is 68 km2 larger. Moreover,
nearly 45% of the study area is classified as Bunlikely to
nitrate hazard^ by the LR-IPNOA model, whereas 81%

Fig. 9 Map showing a nitrate
concentration index and b
agricultural nitrate hazard index
using LR-IPNOA model

Table 7 Area of nitrate hazard classes derived from LR-IPNOA model

Score Class Count Area, m2 Area, km2 Percentage

1 Unlikely (u) 21,239,319 540,982,975 540.98 45.35

2 Very low (vl) 16,645,577 416,139,425 416.14 33.97

3 Low (l) 7,893,120 197,328,000 197.33 16.11

4 Moderate (m) 3,221,984 80,549,600 70.55 4.58

Total 1,225,000,000 1225.00 100
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is classified as the same class by the IPNOAmodel. The
field survey shows that the LR-IPNOA accurately
models the nitrate hazard where more than 5 percentage
of the study area is affected by nitrate pollution.

Validation

According to Shahid et al. (2000), the existing ground-
water borehole wells were used to assess the precision of
the GIS model of the anticipated map of groundwater
potential. (Pradhan 2009) mentioned that validation is
one of the most important processes of modelling, and
without validation, the models will be of no scientific
significance (Neshat et al. 2014).

The validation of groundwater nitrate concentration
was conducted using information extracted from 30% of
inventory wells where 56 different wells were sampled
over the study area. The nitrate concentrations indices,
which were projected by the IPNOA and LR-IPNOA
models, were compared with the sampling measure-
ments for the sake of validation. As shown in Fig. 10,
the calculated area under the curve shows 85.3% and
91.32% success rates of accuracy for nitrate concentra-
tion indices from the IPNOA and LR-IPNOA models,
respectively. This result is reasonable for regional nitrate
hazard analysis, which indicates that the optimised LR-
IPNOA model more accurately determines the nitrate
hazard contamination than the standalone IPNOA
model.

Conclusion

An approach for the complicated issue of groundwater
management was presented in this study. During periods
of acute water shortages in the catchment area, ground-
water remains as the most viable source of potable
drinking water, domestic, irrigation, livestock watering
and industrial usage. Therefore, the protection of
groundwater is of paramount importance.

For the reduction of uncertainty and skewness, the
parametric IPNOA model was empowered by soil and
LULC types and optimised by using the data-driven LR
model. We examined conditioning factors, such as
waste treatment sludge (HFfd), organic (HFfo) and non-
organic fertilisers (HFfm), climate (CFc), nitrogen con-
tent in soil (CFa), irrigation techniques (CFi), agronomic
practices (CFpa) and soil types (HFs), to determine their
degree of contribution to groundwater nitrate hazard.
LULC was depicted from high-resolution SPOT-5 sat-
ellite image using the OBIA-SVM method with 87.5%
overall accuracy.

No part of this study area was categorised as Bhigh^
or Bvery high^ hazard area for nitrate concentration.
However, the moderate zone to nitrate hazard represent-
ed the smallest class. The moderate potential hazard
classes were in the irrigated agricultural plain, where
the most productive aquifers were situated. The
optimised LR-IPNOA predicted a larger area with mod-
erate hazard than the IPNOA model. The field surveys
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showed that the LR-IPNOA accurately modelled the
nitrate hazard concentration, and more than 5% of the
study area was affected by nitrate pollution. With regard
to receiver operating characteristic assessment, the
optimised LR-IPNOA model showed better accuracy
than the standalone IPNOA model for regional nitrate
hazard analysis (i.e. 91.32% and 85.3%, respectively).

Our results showed that CFs and hazard indices do
not contribute equally to nitrate concentration model-
ling. Thus, IPNOA should be integrated with either
machine leaning, deep learning, data-driven or multivar-
iate statistical models to achieve the ideal performance.

This research was necessary because of the rapid
development of human activities in the Saladin area,
which increase water demand during certain times of
the year and/or during periods of drought. This demand
often exceeds the supplies stored in reservoirs. Howev-
er, groundwater pollution remains a challenging phe-
nomenon and must be examined in large scale with
several models at different climate conditions.

References

Aal-shamkhi, A. D. S., Mojaddadi, H., Pradhan, B., & Abdullahi,
S. (2017). Extraction and modeling of urban sprawl develop-
ment in Karbala City using VHR satellite imagery. In Spatial
Modeling and Assessment of Urban Form (pp. 281–296):
Springer.

Abdula, R. A. (2016). Stratigraphy and lithology of Naokelekan
Formation in Iraqi Kurdistan-review. The International
Journal of Engineering and Science (IJES), 5(8), 45–52.

Abdulkareem, J. H., Sulaiman, W. N. A., Pradhan, B., & Jamil, N.
R. (2018a). Long-term hydrologic impact assessment of non-
point source pollution measured through land use/land cover
(LULC) changes in a tropical complex catchment. Earth
Systems and Environment, 2(1), 67–84. https://doi.
org/10.1007/s41748-018-0042-1.

Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N.
R. (2018b). Quantification of runoff as influenced by mor-
phometric characteristics in a rural complex catchment. Earth
Systems and Environment, 2(1), 145–162. https://doi.
org/10.1007/s41748-018-0043-0.

Abdullahi, S., Pradhan, B., & Mojaddadi, H. (2017). City com-
pactness: assessing the influence of the growth of residential
land use. Journal of Urban Technology. 1–26.

AL-Dulaimi, G. A., & Younes, M. K. (2017). Assessment of
potable water quality in Baghdad City, Iraq. Air, Soil and
Wa t e r R e s e a r c h , h t t p s : / / d o i . o r g / 1 0 . 1 1 7 7
/1178622117733441.

Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of
an evidential belief function model in landslide susceptibility
mapping. Computers & Geosciences, 44, 120–135.

Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014).
A novel ensemble bivariate statistical evidential belief func-
tion with knowledge-based analytical hierarchy process and
multivariate statistical logistic regression for landslide sus-
ceptibility mapping. Catena, 114, 21–36.

Alwathaf, Y., & El Mansouri, B. (2011). Assessment of aquifer
vulnerability based on GIS and ARCGIS methods: a case
study of the Sana’a Basin (Yemen). Journal of Water
Resource and Protection, 3(12), 845–855.

Ayalew, L., &Yamagishi, H. (2005). The application of GIS-based
logistic regression for landslide susceptibility mapping in the
Kakuda-Yahiko Mountains, Central Japan. Geomorphology,
65, 15–31.

Bai, S., Wang, J., Zhang, Z., & Cheng, C. (2012). Combined
landslide susceptibility mapping after Wenchuan earthquake
at the Zhouqu segment in the Bailongjiang Basin, China.
Catena, 99, 18–25.

Benediktsson, J. O. N.A., Swain, P. H., &Ersoy, O.K. (1990). Neural
network approaches versus statisticalmethods in classification of
multisource remote sensing data. IEEE Transactions on
Geoscience and Remote Sensing, 28, 540–552.

Bone, J., Head, M., Jones, D. T., Barraclough, D., Archer, M.,
Scheib, C., … Voulvoulis, N. (2010). From chemical risk
assessment to environmental quality management: the chal-
lenge for soil protection. In: ACS Publications.

Boy Roura, M. (2013). Nitrate groundwater pollution and aquifer
vulnerability: the case of the Osona region.

Bui, D. T., Bui, Q.-T., Nguyen, Q.-P., Pradhan, B., Nampak, H., &
Trinh, P. T. (2017a). A hybrid artificial intelligence approach
using GIS-based neural-fuzzy inference system and particle
swarm optimization for forest fire susceptibility modeling at a
tropical area. Agricultural and Forest Meteorology, 233, 32–44.

Bui, D. T., Tuan, T. A., Hoang, N. D., Thanh, N. Q., Nguyen, D.
B., Van Liem, N., & Pradhan, B. (2017b). Spatial prediction
of rainfall-induced landslides for the Lao Cai area (Vietnam)
using a hybrid intelligent approach of least squares support
vector machines inference model and artificial bee colony
optimization. Landslides, 14(2), 447–458.

Cantor, K. P. (1997). Drinking water and cancer.Cancer Causes &
Control, 8(3), 292–308.

Capri, E., Civita, M., Corniello, A., Cusimano, G., De Maio, M.,
Ducci, D., et al. (2009). Assessment of nitrate contamination
risk: the Italian experience. Journal of Geochemical
Exploration, 102(2), 71–86.

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T.,
Duan, Z., & Ma, J. (2017). A comparative study of logistic
model tree, random forest, and classification and regression
tree models for spatial prediction of landslide susceptibility.
Catena, 151, 147–160.

DeSimone, L. A., & Howes, B. L. (1998). Nitrogen transport and
transformations in a shallow aquifer receiving wastewater
discharge: a mass balance approach. Water Resources
Research, 34(2), 271–285.

Ettazarini, S. (2007). Groundwater potentiality index: a strategi-
cally conceived tool for water research in fractured aquifers.
Environmental Geology, 52(3), 477–487.

Ghiglieri, G., Barbieri, G., Vernier, A., Carletti, A., Demurtas, N.,
Pinna, R., & Pittalis, D. (2009). Potential risks of nitrate
pollution in aquifers from agricultural practices in the Nurra
region, northwestern Sardinia, Italy. Journal of Hydrology,
379(3–4), 339–350.

Environ Monit Assess (2018) 190: 633 Page 15 of 17 633

https://doi.org/10.1007/s41748-018-0042-1
https://doi.org/10.1007/s41748-018-0042-1
https://doi.org/10.1007/s41748-018-0043-0
https://doi.org/10.1007/s41748-018-0043-0
https://doi.org/10.1177/1178622117733441
https://doi.org/10.1177/1178622117733441


Golkarian, A., Naghibi, S. A., Kalantar, B., & Pradhan, B. (2018).
Groundwater potential mapping using C5.0, random forest,
and multivariate adaptive regression spline models in GIS.
Envrionmental Monitoring & Assessment, 190, 149.
https://doi.org/10.1007/s10661-018-6507-8.

Green, C. T., Fisher, L. H., & Bekins, B. A. (2008). Nitrogen
fluxes through unsaturated zones in five agricultural settings
across the United States. Journal of Environmental Quality,
37(3), 1073–1085.

Gross, E. L. (2008). Ground water susceptibility to elevated nitrate
concentrations in South Middleton Township, Cumberland
County, Pennsylvania. Shippensburg University of
Pennsylvania.

Gumma, M. K., & Pavelic, P. (2013). Mapping of groundwater
potential zones across Ghana using remote sensing, geo-
graphic information systems, and spatial modeling.
Environmental Monitoring and Assessment, 185(4), 3561–
3579.

Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote
sensing for identification of groundwater potential zones in
the hilly terrain of Pavagarh, Gujarat, India. Water
International, 35(2), 233–245.

Into, H. D. I. G. (2011). Nitrate in Drinking Water.
Kordestani, M. D., Naghibi, S. A., Hashemi, H., Ahmadi, K.,

Kalantar, B., & Pradhan, B. (2018). Groundwater potential
mapping using a novel data-mining ensemble model.
Hydrogeology Journal. https://doi.org/10.1007/s10040-018-
1848-5.

Kowal, A., & Polik, A. (1987). Nitrates in groundwater. In
Environmental Technology (pp. 604–609): Springer.

Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A.,
Sünnenberg, G., et al. (2003). Evaluating factors influencing
groundwater vulnerability to nitrate pollution: developing the
potential of GIS. Journal of Environmental Management,
68(3), 315–328.

Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in
the Damrei Romel area, Cambodia using frequency ratio and
logistic regression models. Environmental Geology, 50(6),
847–855.

Liao, L., Green, C. T., Bekins, B. A., & Böhlke, J. (2012). Factors
controlling nitrate fluxes in groundwater in agricultural areas.
Water Resources Research, 48(6).

Mezaal, M. R., Pradhan, B., Shafri, H., Mojaddadi, H., & Yusoff,
Z. (2017). Optimized hierarchical rule-based classification
for differentiating shallow and deep-seated landslide using
high-resolution LiDAR data. Paper presented at the Global
Civil Engineering Conference.

Min, J. H., Yun, S. T., Kim, K., Kim, H. S., & Kim, D. J. (2003).
Geologic controls on the chemical behaviour of nitrate in
riverside alluvial aquifers, Korea. Hydrological Processes,
17(6), 1197–1211.

Mishra, N., Khare, D., Gupta, K., & Shukla, R. (2014). Impact of
land use change on groundwater—a review. Adv Water
Resour Protect, 2, 28–41.

Mojaddadi, H., Habibnejad, M., Solaimani, K., Ahmadi, M., &
Hadian-Amri, M. (2009). An investigation of efficiency of
outlet runoff assessment. Journal of Applied Sciences, 9(1),
105–112.

Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali,
A. H. B. (2017). Ensemble machine-learning-based
geospatial approach for flood risk assessment using multi-

sensor remote-sensing data and GIS. Geomatics, Natural
Hazards and Risk, 1–23.

Nampak, H., Pradhan, B., &Manap, M. A. (2014). Application of
GIS based data driven evidential belief function model to
predict groundwater potential zonation. Journal of
Hydrology, 513, 283–300.

Neshat, A., & Pradhan, B. (2015). An integrated DRASTICmodel
using frequency ratio and two new hybrid methods for
groundwater vulnerability assessment. Natural Hazards,
76(1), 543–563.

Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2014).
Estimating groundwater vulnerability to pollution using a
modified DRASTIC model in the Kerman agricultural area,
Iran. Environmental Earth Sciences, 71(7), 3119–3131.

Neshat, A., Pradhan, B., & Javadi, S. (2015). Risk assessment of
groundwater pollution using Monte Carlo approach in an
agricultural region: an example from Kerman Plain, Iran.
Computers, Environment and Urban Systems, 50, 66–73.

Oh, H. J., & Pradhan, B. (2011). Application of a neuro-fuzzy
model to landslide-susceptibility mapping for shallow land-
slides in a tropical hilly area. Computers & Geosciences,
37(9), 1264–1276.

Padovani, L., & Trevisan, M. (2002). I nitrati di origine agricola
nelle acque sotterranee: un indice parametrico per
l'individuazione di aree vulnerabili: Pitagora.

Pradhan, B. (2009). Groundwater potential zonation for basaltic
watersheds using satellite remote sensing data and GIS tech-
niques. Open Geosciences, 1(1), 120–129.

Pradhan, B. (2013). A comparative study on the predictive ability
of the decision tree, support vector machine and neuro-fuzzy
models in landslide susceptibility mapping using GIS.
Computers & Geosciences, 51, 350–365.

Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment
and factor effect analysis: backpropagation artificial neural
networks and their comparison with frequency ratio and
bivariate logistic regression modelling. Environmental
Modelling & Software, 25(6), 747–759.

RaazMaheshwari, B. R., Yadav, A. S. R. K., & Sharma, S. (2012).
Nitrate ion contaminated groundwater: its health hazards,
preventive & denitrification measures. Bull Env Pharmacol
Life Scien Volume, 1, 26–33.

Re, V., Sacchi, E., Kammoun, S., Tringali, C., Trabelsi, R., Zouari,
K., & Daniele, S. (2017). Integrated socio-hydrogeological
approach to tackle nitrate contamination in groundwater re-
sources. The case of Grombalia Basin (Tunisia). Science of
the Total Environment, 593, 664–676.

Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2018a). Surface
runoff prediction regarding LULC and climate dynamics
using coupled LTM, optimized ARIMA, and GIS-based
SCS-CN models in tropical region. Arabian Journal of
Geosciences, 11(3), 53.

Rizeei, H. M., Shafri, H. Z., Mohamoud, M. A., Pradhan, B., &
Kalantar, B. (2018b). Oil palm counting and age estimation
from WorldView-3 imagery and LiDAR data using an inte-
grated OBIA height model and regression analysis. Journal
of Sensors, 2018.

Sacco, D., Zavattaro, L., & Grignani, C. (2006). Regional-scale
predictions of agricultural n losses in an area with a high
livestock density. Italian Journal of Agronomy, 1(4), 689–
704.

633 Page 16 of 17 Environ Monit Assess (2018) 190: 633

https://doi.org/10.1007/s10661-018-6507-8
https://doi.org/10.1007/s10040-018-1848-5
https://doi.org/10.1007/s10040-018-1848-5


Sacco, D., Offi, M., De Maio, M., & Grignani, C. (2007).
Groundwater nitrate contamination risk assessment: a com-
parison of parametric systems and simulation modelling.
American Journal of Environmental Sciences, 3, 117–125.

Sener, E., Davraz, A., &Ozcelik,M. (2005). An integration of GIS
and remote sensing in groundwater investigations: a case
study in Burdur, Turkey. Hydrogeology Journal, 13(5–6),
826–834.

Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote
sensing and GIS to determine recharge potential zones: the
case of Occidental Lebanon. Hydrogeology Journal, 14(4),
433–443.

Shahid, S., Nath, S., & Roy, J. (2000). Groundwater potential
modelling in a soft rock area using a GIS. International
Journal of Remote Sensing, 21(9), 1919–1924.

Shahid, S., Nath, S. K., & Maksud Kamal, A. (2002). GIS inte-
gration of remote sensing and topographic data using fuzzy
logic for ground water assessment in Midnapur District,
India. Geocarto International, 17(3), 69–74.

Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in
groundwater—a review. Journal of Environmental Quality,
22(3), 392–402.

Süzen, M. L., & Doyuran, V. (2004). A comparison of the GIS
based landslide susceptibility assessment methods: multivar-
iate versus bivariate. Environmental Geology, 45, 665–679.

Tehrany,M. S., Pradhan, B., & Jebur,M. N. (2013). Spatial prediction
of flood susceptible areas using rule based decision tree (DT) and
a novel ensemble bivariate and multivariate statistical models in
GIS. Journal of Hydrology, 504, 69–79.

Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood sus-
ceptibility mapping using a novel ensemble weights-of-

evidence and support vector machine models in GIS.
Journal of Hydrology, 512, 332–343.

Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015).
Flood susceptibility assessment using GIS-based support
vector machine model with different kernel types. Catena,
125, 91–101.

Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S.
(2014). Earthquake induced landslide susceptibility mapping
using an integrated ensemble frequency ratio and logistic
regression models in West Sumatera Province, Indonesia.
Catena, 118, 124–135.

Vendrusculo, L., Magalhaes, P., & Vieira, S. (2002). Strategies for
soil sampling and multi-layers maps generation through
geostatic tools: development of a computational system.
Paper presented at the World Congress of Computers in
Agriculture and Natural Resources, Proceedings of the
2002 Conference.

Vikas, C., Kushwaha, R., Ahmad, W., Prasannakumar, V.,
Dhanya, P., & Reghunath, R. (2015). Hydrochemical ap-
praisal and geochemical evolution of groundwater with spe-
cial reference to nitrate contamination in aquifers of a semi-
arid terrain of NW India. Water Quality, Exposure and
Health, 7(3), 347–361.

Wick, K., Heumesser, C., & Schmid, E. (2009). Agriculture and
nitrate contamination in Austrian groundwater: an empirical
analysis. Rollen der Landwirtschaft in benachteiligten
Regionen, 19.

Zhao, Y., De Maio, M., & Suozzi, E. (2013). Assessment of
groundwater potential risk by agricultural activities, in
North Italy. International Journal of Environmental Science
and Development, 4(3), 286.

Environ Monit Assess (2018) 190: 633 Page 17 of 17 633


	Assessment...
	Abstract
	Introduction
	Material and methods
	Study area
	Datasets
	Methods
	LULC extraction
	Implementation of the IPNOA model
	Implementation of the LR model


	Results and discussions
	OBIA-SVM-extracted LULC result
	IPNOA results
	LR optimisation results
	Optimised LR-IPNOA results
	Validation

	Conclusion
	References


