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Abstract Water resources planning, development, and
management need reliable forecasts of river flows. In past
few decades, an important dimension has been introduced
in the prediction of the hydrologic phenomenon through
artificial intelligence-based modeling. In this paper, the
performance of three artificial neural network (ANN) and

four support vector regression (SVR) models was inves-
tigated to predict streamflows in the Upper Indus River.
Results from ANNmodels using three different optimiza-
tion techniques, namely Broyden-Fletcher-Goldfarb-
Shannon, Conjugate Gradient, and Back Propagation al-
gorithms, were compared with one another. A further
comparison was made between these ANNs and four
types of SVR models which were based on linear, poly-
nomial, radial basis function, and sigmoid kernels. Past
30 years’monthly data for precipitation, temperature, and
streamflow obtained from Pakistan SurfaceWater Hydrol-
ogy Department Lahore were used for this purpose. Three
types of input combinations with respect to the main input
variables (temperature, precipitation, and stream flow) and
several types of input combinations with respect to time
lag were tested. The best input for ANN and SVRmodels
was identified using correlation coefficient analysis and
genetic algorithm. The performance of the ANN and SVR
models was evaluated by mean bias error, Nash–Sutcliffe
efficiency, root mean square error, and correlation coeffi-
cient. The efficiency of the Broyden-Fletcher-Goldfarb-
Shannon-ANN model was found to be much better than
that of other models, while the SVRmodel based on radial
basis function kernel predicted stream flows with compar-
atively higher accuracy than the other kernels. Finally,
long-term predictions of streamflow have been made by
the best ANN model. It was found that stream flow of
Upper Indus River has a decreasing trend.
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Introduction

The environmental changes have an impact on water
resources that are likely to affect the irrigation system,
hydropower, and several other aspects of life in many
developed and developing countries (Aalinejad et al.
2016; Kawase et al. 2016; Zhao et al. 2016). These
changes are putting stress on management of available
water resources to increase the agricultural productivity,
boost the economy, and ensure food security (Molden
et al. 2016; Sofaer et al. 2016). Proper management of
water resources is highly dependent on accurate
streamflow prediction, which is a challenging process
because of its nonlinear and multidimensional dynamics
(Oyerinde et al. 2016; Woldemeskel et al. 2016; Veraart
et al. 2017; Ghumman et al. 2017; Rauf and Ghumman
2018). Various modeling techniques have been used for
stream flow prediction, e.g., distributed physically based
models, lumped conceptual models, stochastic models,
and black box models. Although the physically based
models use the physical processes involved in the
rainfall-runoff modeling, their successful use is limited
mainly because of some difficulties in measuring param-
eters involved and complexity of the governing equations
(Yousuf et al. 2017). There are problems in the use of
time-series stochastic models due to non-stationary be-
havior and nonlinearity in the data distributions. There-
fore, artificial neural network (ANN), support vector
regression (SVR), and adaptive neuro fuzzy inference
system (ANFIS) models are gaining importance in the
prediction of the hydrologic phenomenon and stream
flow forecasting (Kyada and Kumar 2015; Alfarisy and
Mahmudy 2016; Kovačević et al. 2018). ANNs are
flexible models with respect to the combination of input
variables. These models can efficiently treat the nonline-
arity of the system and are equally effective in accurate
rainfall and streamflow simulations (Goyal et al. 2014;
Wang et al. 2017a, b; Adnan et al. 2017a, b; AlOtabi et al.
2018). Shamim et al. 2016, Rauf et al. 2016, and Rauf
and Ghumman 2018 have used ANNmodels to simulate
monthly stream flow for high altitude catchments in
Pakistan. Flood events have also been predicted using
SVRmodels (Kisi 2015; Ghorbani et al. 2016). However,
data-driven models have several types based on the tech-
niques used for input selection, training process, and
optimization of various parameters/weights.

Selection of an appropriate type of data-driven models
for a given situation is a challenging task (Ali et al. 2017;
Zaini et al. 2018; Mishra et al. 2018; Londhe and

Gavraskar 2018). This paper has compared the perfor-
mance of a few of such techniques out of ANN and SVR
to facilitate the engineers and scientists in choosing a
comparatively accurate streamflow prediction model.
Data-driven models are normally trained for a specific
data and may have applications limited to a specific site.
Hence, there is still a space to work with suchmodels and
explore various aspects related to these models. The
impact of using various record lengths and data sets need
to be studied further, which may definitely be useful for
engineers and researchers working in this field of spe-
cialization. This is the first time these techniques have
been used for streamflow forecasting from the Upper
Indus River Basin (UIRB). To predict themonthly stream
flow, the measured monthly precipitation (P), tempera-
ture (T), and stream flow (Q) with various time (t in
months) lags (Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Tt, Tt-1, Tt-2,
Tt-3, Tt-4, Tt-5, and Qt-1, Qt-2, Qt-3, Qt-4, Qt-5.) were taken
as input variable for streamflow (Qt + 1) as output vari-
able. An important step of this modeling was to identify
the best input combination. The model has high com-
plexity when there are a large number of inputs (Bray and
Han 2004). Hence, an efficient technique is required to
choose the best combination of inputs.

In the present paper, the ability of correlation coeffi-
cient analysis (CCA) and genetic algorithm (GA) has
been investigated to select the best input combination
for ANN and SVR models.

In addition to correlation between input and output with
respect to time lag, there may be as well a variety of input
combination with respect to the main input variables (tem-
perature, precipitation, evaporation, river stage,
streamflow, etc.). Some of the past studies in this regards
include the research of Dhamge et al. (2012), Jajarmizadeh
et al. (2015), Imen et al. (2015), Rauf et al. (2016), Wang
et al. (2017a, b), and Adnan et al. (2017a, b). The literature
provided by these studies shows that development of input
combination with respect to time on the basis of three
variables precipitation, temperature, and streamflow has
rarely been reported. Researchers commonly used the
precipitation and streamflow together and few used
streamflow as a single input parameter. Dhamge et al.
(2012) for example has used rainfall and runoff depth as
input variable. Jajarmizadeh et al. (2015) has used precip-
itation, temperature, and streamflow as input variables.
Aichouri et al. (2015), Rauf et al. (2016), and Wang et al.
(2017a, b) have used precipitation and streamflow as input
variable. Seyam et al. (2017) has used precipitation and
water level as input variable. Tayyab et al. (2016), Mehr
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and Kahya (2017), Yaseen et al. (2017), and Adnan et al.
(2017a, b) have used single variable streamflow as input.

In the present paper, a comparison has been made
for the results of stream flow simulation from three
input types with respect to the main input variables:
(a) temperature, precipitation, and stream flow; (b)
temperature and precipitation; and (c) stream flow
only. The past data regarding monthly temperature,
precipitation, and stream flow for UIRB were used.
The total length of data collected is 30 years, i.e.,
from 1984 to 2014.

Study Area

The Indus River Basin comprises a total area of about
970,000 km2. However, the area selected for this study
covers only Upper Indus Basin (UIB). It contains the
catchment contributing to the upper part of the River Indus
up to the Tarbela Reservoir, covering a basin area of about
175, 000 km2. UIB is surrounded by the world mightiest
three mountain ranges that are the Karakoram, the Hima-
layan, and the Hindukush. This is expanded over the
north-eastern and north-western part of Pakistan. The
climate of the UIB is based on interaction between

monsoon andwesterlies (Lutz et al. 2016). UIB is a region
undergoing a slightly increasing trend of snow cover in
the southern (Western Himalayas) and northern (Central
Karakoram) parts. Stream flow from the UIB is a combi-
nation of snow and glacier melt. The stream flow from
rainfall is contributed from southern part, but snow and
glacier melt are dominant in the northern part of the
catchment (Tahir et al. 2015). The snow-fed sub-catch-
ment of the Astore (sub-basin of UIB) was selected for the
stream flow analysis. Astore catchment is located in the
region ofGilgit-Baltistan and is about 120 km long having
area of 5092 km2. The Astore basin was selected because
it has an important geographical location (southern foot-
hills of theWestern Himalayas. The Indus River has some
tributaries originating from these mountains The Astore
River is one of themajor tributaries of UIB region and any
change in its flow into river Indus will have a considerable
impact on the outflow of River Indus at Tarbela Reservoir.
Figure 1 shows the location of Tarbela Dam at Indus River
in Pakistan. The Astore River contributes an average
annual flow of 228.8 m3/s to river Indus at Doyian. The
Astore River stream flow is influenced by the winter
rainfall at lower elevations which combines with the
winter snowfall forced by Westerlies (Tahir et al. 2015).
The data for this study were collected from the Astore

Fig. 1 Upper Indus Basin (UIB) and Astore catchment
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hydro-climatic station, located at 35° 22′N, 74° 51′Ewith
an elevation of 2394 mwith respect to mean sea level and
the Doyain river gauging station at 35° 45′ N, 74° 30′ E
with an elevation of 1460.

Methodology

The overall methodology is given in Fig. 2. Data regard-
ing temperature, precipitation, and stream flow of upper
Indus River was collected from 1984 to 2014. Three
types of ANN models based on Broyden-Fletcher-
Goldfarb-Shannon (BFGS), conjugate gradient (CG),
and back propagation (BP) algorithms were used to
simulate stream flow.

Artificial Neural Networks

ANN models are used to execute problems having high
complexities. Many investigations have proven that
ANN is a proficient technique for modeling nonlinear
relationships between inputs and desired outputs in hy-
drologic time-series analyses (Humphrey et al. 2016;
Aziz et al. 2017; Yazdani and Zolfaghari 2017). A gen-
eral architecture and flow chart of ANN is shown in
Fig. 3a, b. ANN consists of several “layers” of neurons,
input layer having nodes representing various input

variables, the hidden layer with many hidden nodes,
and an output layer (Fig. 3a). Application of ANN to
stream flow simulation requires selection of best vari-
ables, functions and weights, and optimization tech-
niques, which could generate stream flow. Optimization
techniques require an objective function based on errors
between the simulated and measured stream flows. The
values of parameters of model are changed every time in
optimization process to find a solution such that the
objective function achieves the minimum possible value
(usually called global minimum). There are several tech-
niques to change the parameters of model in every iter-
ation and search the minimum value of objective func-
tion. Derivatives of objective function and constraints are
used in some optimization techniques whereas others do
not require derivatives and constraints. In stream flow
prediction models, the algorithms that are faster in exe-
cution and robust in nature can be used for standard
numerical optimization, e.g., conjugate gradient (CG),
Quasi-Newton (QN), and Levenberg–Marquardt (Beale
1972; Fletcher 1987). The QN method has shown suc-
cessful performance in several studies (Martınez 2000;
Byrd et al. 2016; Leong et al. 2011). The method was
developed by Broyden, Fletcher, Goldfarb, and Shanno
(BFGS). The BFGS algorithm needs more computing in
each repetition and also requires larger storage than CG
method. It is an effective training function for smaller

Step 1: Data collection and analysis (30 years’ monthly data for UIB)

Temperature Precipitation Stream flow

Step 2: Selection of Best Input Combination Regarding Time Lag of Input With 
Respect to Output for ANN and SVR

ANN SVR ANN SVR

CCA

Step 3 Stream flow forecasting (Learning and Training/Calibration)

Kernel

BFGS              CG      BP                        Linear     Polynomial       RBF       

ANN models SVR Models

Step 4: Stream flow forecasting (Validation)   

ANN and SVR (R2, RMSE, Nash-Sutcliffe Efficiency and Mean Bias Error)

GA

C1 C2 C3 C4 Best selected Q 

P + T + Q

P + T

Fig. 2 Step-wise methodology
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networks. Another method called the back propagation
(BP) algorithm is common to train ANN. It is considered
one of the simplest and most commonly used methods
for optimization in ANN (Ganin et al. 2016; Wang et al.

2017a, b; Pellakuri and Rao 2016). In this study, the
results of stream flow prediction for UIB by all the three
training algorithms, i.e., the BFGS, CG, and BP have
been compared.

Fig. 3 a ANN architecture and flow chart. (b) Methodology for predicting the best output using the best input combination for ANN
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An efficient technique is required to select the best
combination of input with respect to time lag. CCA and
GA (Rauf and Ghumman 2018; Ganin et al. 2016; Wang
et al. 2017a, b; Pellakuri andRao 2016)were used to select
the best input combination. The input data of the model
were taken as the observed monthly rainfall, temperature,
and stream flow for UIB. Four possible combinations C1,
C2, C3, and C4 were selected by CCA and one by GA
regarding time lag of input variables with respect to the
corresponding output value of stream flow. The measured
stream flow data for the same river were used as the target
in the ANN model calibration and validation. Data
from1985–2004 was used for the calibration/ training
and learning of ANN and 2005 to 2014 for validation.

Support Vector Regression

SVR is an artificial intelligent-based supervised learning
model. It is a two-layered network. The weights are
nonlinear in the first layer and linear in the second
(Bray and Han 2004). SVR can be applied to regression
problems (Smola 1996; Kecman 2001). A general struc-
ture and flow chart of SVRmodel is shown in Fig. 4a, b.
The basic mathematical function used in SVR is given
by Eq. (1) (Lafdani et al. 2013)

y ¼ f xð Þ ¼ ∑
N

i¼1
αiK xi; xð Þ

� �
−b ð1Þ

In Eq. (1),K is the kernel function,N is the number of
training data points, xi represents vectors used in the
training process, x is an independent vector, andαi and b
are the parameters derived by the objective function
maximization. There are four types of commonly used
kernels, namely linear kernel, polynomial kernel, RBF
kernel, and sigmoid kernel. Additional details may be
seen from (Schölkopf and Smola 2002).

Several codes for SVR are available. The one used in
this study is known as LIBSVM (Chang and Lin 2011),
supported by the National Science Council of Taiwan. The
modeling of SVR was done using MATLAB R2013a.

Genetic Algorithm

GA follows genetic principals by creating various com-
binations of inputs. The best one with respect to reduc-
ing the error in output and complexity of ANN and SVR
models is obtained. GA can perform a global search. It
consists of an iterative process for a constant-size

population of individuals (inputs and weights). The
GA is capable of effectively exploring large search
spaces, which can be used with ANN for determining
the number of hidden nodes and hidden layers, select
relevant feature subsets and the learning rate. It initial-
izes and optimizes the network connection weights of
ANN. Further details can be seen from (Arena et al.
1992; Blanco et al. 2000). The Win Gamma Software
was used in this study to run GA. From the available
options in the Winn Gamma Software, GAwas used for
the identification of better input combination. The de-
fault values given in the software for various variables
were considered for this study. The GA simulations
developed 100 possible input combinations of which
10 best combinations were selected on the basis of least
gamma (Ʈ) and standard error (SE) values. One best
combination was selected out of these combinations for
analysis with lowest Gamma value.

Gamma value (Ʈ) The gamma Ʈ is the estimate of that
part of the variance of the output which cannot be
accounted for by a smooth data model. The gamma is
actually the vertical intercept of the regression line
(Evans and Jones 2002).

Standard Error This is the usual goodness of fit applied
to the regression line. If this number is close to zero, one
has more confidence in the value of the gamma as an
estimate of the noise variance on the given output. The
standard error (SE) is defined as (Krause et al. 2005;
Lafdani et al. 2013).

SE ¼ σ=√n ð2Þ
where σ is the standard deviation of the population and n
is the size (number of observations) of the sample.

The comparatively lower values of Ʈ and SE indicate
that the given combination will produce lower complexity
in modeling with better predicted results of stream flow.

Correlation Coefficient Analysis

A correlation coefficient is a number that quantifies the
statistical relationships between two or more variables.
Here, this relationship has been determined between the
17 input parameters (PPT, temp, and streamflow) and one
output streamflow. The correlation coefficient analysis
was performed using statistical tool available inMS Excel
for the purpose. The correlated values classified as most
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effective correlation values (> 50% correlation) and least
effective correlation values (< 50% correlation). Positive
correlation indicates that for any two variables say Pt-1 and

Qt + 1, both the variables increase and decrease together,
whereas a negative correlation coefficient means that, an
increase in Pt-1 is associated with a decrease in Qt + 1.

Fig. 4 a Structure of SVR model. b The methodology of selecting the best output from the best input combination for SVR modeling
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Correlation coefficients have values always between − 1
and 1. The value − 1 shows a perfect, linear negative
correlation, and 1 shows a perfect, linear positive correla-
tion. The most effective parameters were found to be Pt-3,
Tt, Tt-1, Tt-5, and Qt-1 while Pt-2, Pt-4, Pt-5, Tt-4, Qt-2, and Qt-

4 comes out as the least effective parameters. The input
parameters having most effective correlation with the
output were considered for the development of the input
combinations. Four different input combinations were
developed on this criterion. Similarly, the input combina-
tions were developed for other two input types having two
variables as precipitation and temperature and single var-
iable streamflow only.

Model Performance Evaluation

There are a number of statistical parameters to measure
the performance of the models (Burnham 2002). The
most widely used parameters were adopted in this study
(Krause et al. 2005; Lafdani et al. 2013; Shamim et al.
2016; Rauf et al. 2016).

1. Root mean square errors (RSME)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1

Qp
i −Q

o
i

� �2
n

s
ð3Þ

2. Mean bias error (MBE)

MBE¼∑n
i¼1

Qp
i −Q

o
i

� �
n

ð4Þ

3. The correlation between actual and predicted values
(R2):

R2¼1−
Qo

i −Q
p
i

� �
Qo

i −Qavg

� � ð5Þ

4. Nash–Sutcliffe model efficiency coefficient (NSE)

NSE ¼ 1−
∑n

i¼1 Qo
i −Q

p
i

� �2
∑n

i¼1 Qo
i −Qavg

� �2 ð6Þ

In the above equations, Qp
i represents the predicted

value of streamflow, Qo
i represents the observed values

of stream flow, Qavg is the average of observed stream
flow, and n represents the total number of input samples.

Results and discussion

Input Combinations

Various input combinations assessed by GA for the input
type having all three parameters are shown in Table 1.
Figure 5 illustrates Ʈ and SE variations. It is observed that
the 10101110100110100 (nine inputs as Pt, Pt-2, Pt-4, Pt-5,
Tt, Tt-2, Tt-5, Qt-1, Qt-3 for single output Qt+ 1) was the best
combination of given input variables and was selected for
analysis on basis of least gamma and SE value. It shows
that precipitation and temperature within a time lag of
running month (t) and five previous months(t−5) have an
impact on stream flow Qt+ 1, whereas only two previous
values of stream flow (Qt-1, Qt-3) are linked to Qt + 1.
According to Slater and Villarini (2017), the variability
of precipitation is key parameter for high stream flows.

Table 1 Ten selected input combinations on basis of lowest gamma (Ʈ) and standard error (SE) values developed by GA simulations

Input combinations Mask (Ʈ) SE

Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-2, Tt-5, Qt-1 Qt-3 10101110100110100 0.001274 0.00115

Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-2, Tt-3, Tt-4, Tt-5, Q t-1 Qt-2 Qt-3 10101110111111100 0.001343 0.00062

Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-1, Tt-2, Tt-5, Qt-1 Qt-2 Qt-3 10101111100111100 0.001343 0.00069

Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-1, Tt-2, Qt-1 Qt-2 Qt-3 10101111100011100 0.001473 0.00103

Pt, Pt-2, Pt-4, Pt-5, Tt-1, Tt-2, Tt-3, Tt-5,Qt-1 Qt-2 Qt-3 10101101110111100 0.001477 0.001112

Pt, Pt-2, Pt-4, Pt-5, Tt-1, Tt-2, Tt-3, Tt-4, Tt-5, Qt-1 Qt-2 Qt-3 10101101111111100 0.001488 0.000855

Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-2, Tt-3, Tt-4, Tt-5, Qt-1, Qt-2,Qt-3 10101110111111100 0.001494 0.000589

Pt, Pt-2, P t-4, Pt-5,Tt, Tt-1, Tt-2, Tt-5, Qt-1, Qt-2 Q t-3 10101111100111100 0.001496 0.000710

Pt, Pt-2, Pt-4, Pt-5, Tt-1, Tt-2, Tt-3, Tt-5, Qt-1 Qt-2 Qt-3 10101101110111100 0.001497 0.000694

Pt, Pt-2, Pt-4, Pt-5, Tt-1, Tt-2, Tt-3, Tt-4, Tt-5, Qt-1 Q t-2 Qt-3 10101101111111100 0.001499 0.001326

Note: The best combination is in italics
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The temperature is driving factor for streamflow predic-
tions in seasons and catchment areas having notable snow-
melt. The stream flow of UIB contains glacier melt com-
ponents, flow from rain, and a groundwater component.
So the selected input combination is logical and under-
standable. The correlation values among various input
variables and output in case of CCA are shown in Fig. 6.
Here, the negative (−ve) values of correlation show that

such an input values will give decreasing values of output
Q. Hence, the input variables, Pt-3, Tt, Tt-1, Tt-5, and Qt-1,
correlate highly to the output parameter (Qt + 1). Consider-
ing the most correlating input parameters predicted by
CCA, four input combinations (given in Table 2) were
used in ANN and SVR modeling. It is worth mentioning
that some percentage of subjectivity is involved in
selecting the input combinations on the basis of CCA.

Results of Stream Flows Modeling

ANN models

The R2, RMSE, NSE, and MBE for various-ANN
models from different input combinations for all the
three parameters (P, T, and Q) developed by GA and
CCA are given in Figs. 7, 8, and 9 and Table 3.

Parameter

Fig. 6 Correlation between
different input variables and
streamflow (Qt + 1)
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Fig. 5 Gamma and SE of the data
corresponding to input
combinations

Table 2 Input combinations developed by CCA

Combination Input combination

C1 Pt-2, Pt-3, Pt-4,Tt,Tt-1, Tt-4, Tt-5, Qt-1,Qt-4, Qt-5

C2 Pt-3, Pt-4, Pt-5,Tt, Tt-1,Tt-5, Qt-1 Qt-2 Qt-4 Qt-5

C3 Pt-3, Tt, Tt-1 Tt-2,Tt-5, Qt-1,Qt-5

C4 Pt-2, Pt-3,Tt,Tt-1, Tt-4,Tt-5, Qt-1, Qt-4,Qt-5
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Comparison of observed and predicted stream flow
for the testing phase of various ANN models is
represented by Figs. 10 and 11. Italic values in
Table 3 represent the best values of indices. It is

observed that hardly any model has best values of
all the four indices. One model has the best R2 value
whereas the other has lowest RMSE. One has the
highest NSE and other has the best value of MBE.
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0

2

4

6

8

10

12

0

0.4

0.8

1.2

1.6

C1 C2 C3 C4 GA

M
BE

R2
, R

M
SE

, N
SE

Input Combina�on

R² RMSE NSE MBE

0

2

4

6

8

10

12

0

0.4

0.8

1.2

1.6

C1 C2 C3 C4 GA

M
BE

ES
N,ES

MR,2R

Input Combina�on

R² RMSE NSE MBE

(a) Calibra�on (b) Valida�on

Fig. 8 Errors and correlation coefficient (CG-ANN model)
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Fig. 9 Errors and correlation coefficient (BP-ANN model)
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For example, BFGS-ANN model based on input
combination of CCA-C3 has highest R2 (Fig. 7)
whereas the same model based on GA has the low-
est value of RMSE. A similar situation can be seen
from other figures. Hence, selection/rejection of the
best possible model should not be based on a single
evaluating index. However, the indices in these fig-
ures show that all input combinations produced ac-
ceptable accuracy which demonstrates the high-
efficiency selecting algorithms CCA and GA and
the ANN models. However, the input combination
determined through CCA can be marked as compar-
atively better than that of GA because its perfor-

mance both in training and testing phase is better.
The best ANN model with respect to overall perfor-
mance is the BFGS algorithm. The accuracy de-
pends upon the choice of input and the optimization
method used in ANN. As the efficiency of optimi-
zation method increases, it brings higher accuracy in
the simulated stream flow. It is proven that the
combination of CCA/GA and efficient optimization
technique BFGS improves the performance of ANN
model significant. Similarly, the ANN models were
developed using input combinations for two vari-
ables (P and T) and single variable. The results are
given in Tables 4 and 5.

Table 3 Values of Indices for the best input combination predicted for ANN modeling based on the GA/CCA

Model The best combinations R2 RMSE NSE MBE

CCA BFGS-ANN Pt-3, Tt, Tt-1 Tt-2,Tt-5, Qt-1,Qt-5 0.85 0.616 0.846 0.096

CCA CG-ANN Pt-3, Pt-4, Pt-5,Tt, Tt-1,Tt-5, Qt-1 Qt-2 Qt-4 Qt-5 0.83 0.666 0.820 6.667

CCA BP-ANN Pt-3, Tt, Tt-1 Tt-2,Tt-5, Qt-1,Qt-5 0.84 0.635 0.836 − 0.025

*The best results are highlighted in italics
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Fig. 10 Scatter plot of observed and predicted stream flow by best ANN models for testing data sets
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Fig. 11 Comparison of the observed Vs predicted stream flow by ANN models using GA and CCA
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SVR Models

Results obtained by using four selected kernels in
SVR model based on the input combination select-
ed by GA are compared to that of CCA in
Figs. 12, 13, 14, and 15. The best combinations
determined for the different selected SVR kernel
models are given in Table 6. The SVR with RBF
kernel shows the best results with minimum
RMSE = 1.0 and maximum R2 = 0.811 in case of
combination of nine inputs for single output. The
performance of the SVR-RBF kernel with input
combination C2 from CCA was good in the train-
ing phase, while in the testing phase, the input

combination C4 showed the best results with the
lowest RMSE. The curves of predicted stream
flows (Qt + 1) versus observed stream flows from
Epsilon-SVR models for the testing phase are
shown in Figs. 16 and 17. Similarly, the SVR
models were developed using input combinations
for two variables (P and T) and single variable
(only Q). The results are given in Tables 7 and 8.

Comparison of SVR and ANN Models

The performance of the SVR and ANN models is
compared in Table 9 and Figs. 18 and 19. The
performance of BFGS-based ANN model is better
than SVR (RBF kernel) model. The R2 is 0.846,

Table 4 Values of indices for the best input combination (only P and T) predicted for ANN modeling based on the GA/CCA

Model The best combinations R2 RMSE NSE MBE

CCA BFGS-ANN Pt-3, Pt-4, Tt, Tt-1, Tt-4, Tt-5 0.769 0.773 0.757 17.133

CCA CG-ANN Pt-3, Pt-4, Tt, Tt-1, Tt-4, Tt-5 0.790 0.738 0.779 12.884

CCA BP-ANN Pt-3,Tt, Tt-1, Tt-5 0.773 0.767 0.761 11.131

Table 5 Values of indices for the best input combination (only streamflow) predicted for ANN modeling with GA/CCA

Model The best combinations R2 RMSE NSE MBE

GA BFGS-ANN Qt-1, Qt-3, Qt-4,Qt-5 0.783 0.734 0.781 5.786

GA CG-ANN Qt-1, Qt-3, Qt-4,Qt-5 0.768 0.762 0.764 8.172

GA BP-ANN Qt-1, Qt-3, Qt-4,Qt-5 0.6896 0.915 0.659 9.73
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0.811 and RMSE is 0.616 and 1.0 respectively for
the two models. Furthermore, BFGS-ANN and
SVR (RBF kernel) models have the best NSE
values, 0.846 and 0.800 respectively.

Future Stream Flow Predictions

Figures 20 and 21 show the future precipitation and
stream flow predicted by the ANN model. It is evident

from the figures that the precipitation and stream flow
are almost of the same pattern, indicating that the stream
flow is depending on the precipitation in the region and
any change in precipitation due to climatic variability
will have an effect on stream flow of river Indus The
figures show that precipitation is decreasing from 2015
to 2045, while in the same period, the stream flow is
being increased. This might be due to high snowmelt
caused by the rising temperature during the said period.

Table 6 The best input combinations for SVR models

SVR model The best combinations R2 RMSE NSE MBE

CCA Linear kernel Pt-3, Pt-4, Pt-5,Tt, Tt-1,Tt-5, Qt-1 Qt-2 Qt-4 Qt-5 0.805 0.965 0.804 4.22

CCA Polynomial kernel Pt-3, Tt, Tt-1 Tt-2,Tt-5, Qt-1,Qt-5 0.75 1.40 0.60 − 21.01
CCA RBF kernel Pt-2, Pt-3,Tt,Tt-1, Tt-4,Tt-5, Qt-1, Qt-4,Qt-5 0.811 1.0 0.80 9.87

GA Sigmoid kernel Pt, Pt-2, Pt-4, Pt-5,Tt, Tt-2, Tt-5, Qt-1, Qt-3 0.768 1.06 0.76 5.47

Note: Best results are highlighted in italics
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Fig. 16 Scatter plot of observed and predicted discharge by Epsilon-SVR models
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In the mid-twenty-first century, the precipitation is seen
to be increasing, which is causing an increase in the
stream flow during the period. The figures show the
alarming picture at the end of the century that both
precipitation and stream flow are decreasing till the start
of the twenty-second century.

Summary, Conclusion, and Recommendations

In this study, two types of data-driven techniques, ANN
and SVR were applied to develop models for predicting
stream flow in the UIB. The GA and CCAwere used to
predict the best input combination for stream flow fore-

Table 7 Values of indices for the best input combination (only P and T) predicted for SVR modeling based on the GA/CCA

SVR model The best combinations R2 RMSE NSE MBE

CCA Linear kernel Pt-3, Pt-4, Tt, Tt-1, Tt-4, Tt-5 0.789 0.99 0.90 5.22

CCA Polynomial kernel Pt-3, Pt-4, Tt, Tt-1, Tt-4, Tt-5 0.701 1.81 0.61 − 3.19
CCA RBF kernel Pt-3, Pt-4, Tt, Tt-1, Tt-4, Tt-5 0.762 0.98 0.82 8.51

GA Sigmoid kernel Pt, Pt-1, Pt-2, Pt-3, Pt-5, Tt, Tt-3, Tt-5 0.732 1.26 0.86 8.47

Table 8 Values of indices for the best input combination (only Q) predicted for SVR modeling based on the GA/CCA

SVR model The best combinations R2 RMSE NSE MBE

GA Linear kernel Qt-1, Qt-3, Qt-4,Qt-5 0.74 1.14 0.72 1.67

GA Polynomial kernel Qt-1, Qt-3, Qt-4,Qt-5 0.68 1.70 0.46 − 4.06
CCA RBF kernel Qt-1, Qt-4,Qt-5 0.71 1.22 0.70 12.46

GA Sigmoid kernel Qt-1, Qt-3, Qt-4,Qt-5 0.67 1.37 0.76 7.47

Note: Best values are highlighted in italics
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Fig. 17 Comparison of the observed and predicted stream flow by SVR models using GA and CCA
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casting. The performance of three different ANN and
four SVR models was compared using four statistical
parameters (R2, RMSE,MBE, and NSE). Determination
of the best input combination for nonlinear systems like
streamflow is a complex and challenging process.
Hence, the aim of this study was to determine the most
effective combination of input variables to be used for
data-driven modeling, like ANN and SVR, for short-
term streamflow forecasting.

The SVR-RBF kernel with input combination iden-
tified by CCA had better performance than the other
three SVR models (linear, polynomial, and Sigmoid
kernel) both in the training and testing phase. The results
also showed that BPNN models had better performance
than BFGS-ANN and CG-ANN that of in the training
phase while in the testing phase, BFGS-ANN and CG-
ANN models showed the better results than BPNN
models for input combination identified by CCA. In
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Fig. 18 Comparison between SVR and ANN models for prediction of future discharge

Model Results from best input combination
using three (P, T, and Q) variables

Results from best input combination
using two (P and T) variables

Results from best input
combination using one (Q only)
variable

R2 RMSE NSE MBE R2 RMSE NSE MBE R2 RMSE NSE MBE

BFGS-ANN 0.85 0.616 0.846 0.096 0.769 0.773 0.757 17.133 0.783 0.734 0.781 5.786

CG-ANN 0.83 0.666 0.820 6.667 0.790 0.738 0.779 12.884 0.768 0.762 0.764 8.172

Two layer PB-ANN 0.84 0.635 0.836 − 0.025 0.773 0.767 0.761 11.131 0.690 0.915 0.659 9.73

SVR (linear kernel) 0.81 0.965 0.804 4.22 0.789 0.99 0.90 5.22 0.74 1.14 0.72 1.67

SVR (polynomial kernel) 0.75 1.387 0.601 − 21.01 0.701 1.81 0.61 − 3.19 0.68 1.70 0.46 − 4.06
SVR (RBF kernel) 0.81 1.00 0.800 9.87 0.762 0.98 0.82 8.51 0.71 1.22 0.70 12.46

SVR (Sigmoid kernel) 0.77 1.06 0.76 5.47 0.732 1.26 0.86 8.47 0.67 1.37 0.76 7.47

Note: Best values are highlighted in italics
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Table 9 Comparison of ANN and SVR models using three var-
iables (P, T, and Q), two variables (P and T) and one variable (Q
only) as input combinations



brief, the BFGS-ANN model and SVR model (RBF
kernel) produced the best performance in streamflow
forecasting. The performance of input combination
identified by the CCA is better than that of GA. The
input combination, “Pt-3, Tt, Tt-1 Tt-2, Tt-5, Qt-1, Qt-5,”
showed the best results for BFGS-ANN model.

The input combinations developed for three variables
(P, T, and Q) show comparatively better results than that

from the input combinations developed using two vari-
ables (P and T) and single variable (Q only).

To improve the study further, we recommend that the
results obtained from GA test be compared against other
input selection methods, e.g., principal component analy-
sis and fuzzy system, to predict streamflow through ANN
and SVR models with higher reliability. The results ob-
tained in this study are for the monthly data inputs and can
be improved if daily data are used for the purpose.
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Fig. 19 ANN and SVR models with the best input (simulated and observed stream flow)
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