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Abstract Hydrology-related studies often require
complete datasets. However, missing data is an un-
avoidable reality. In this regard, the imputed data
could fulfill the same role as the observed ones, while
they are uncertain and just estimated. The aim of this
study is to compare the performance of four simple
imputation variants derived from the principal com-
ponent analysis (PCA) for imputing annual total rain-
fall series obtained from stations located in northeast
Algeria. On the other hand, the study focuses on the
effects on quantiles of annual rainfall data due to
imputations by the former methods. The four variants
are probabilistic PCA, expectation maximization
PCA, regularized PCA, and singular value decompo-
sition PCA. Annual rainfall data from 30 stations for
the period ranging from 1935 to 2004 (69 years) are
used to generate and impute gaps for four different
percentages of missing values (PMV), namely, 10, 20,
30, and 40%. Based on some well-known statistical
indices, the results show that the regularized PCA and
expectation maximization PCA variants perform bet-
ter than the other imputation methods considered in
this study and result in very good to acceptable pre-
dicted quantiles, such as the following: correlation
coefficient is equal to 0.97 with 10% of percentage

of missing values and 0.66 with 40%; the relative error
between observed and predicted quantiles is equal to
4.74% with 10% of percentage of missing values and
3.82% with 40%.

Keywords Algeria . Rainfall . Missing data . Simple
imputation . PCA methods

Introduction

Rainfall is the oldest and most commonly recorded
climate variable and is a very valuable indicator for
studying climate change, water resource management,
irrigation scheduling, flood prevention, and the con-
struction of hydraulic structures (Tabari and Talaee
2011; Tabari et al. 2012; Kebede et al. 2014; Nkiaka
et al. 2016; Melanie and Maria 2018). In addition, in
order to adequately equip these studies, the correct
estimation of hydrological events uses frequency anal-
ysis to predict the rainfall that corresponds to certain
return times T (quantiles) such as floods and low flows
(Karlsson et al. 2016).

According to several articles, many hydrological ap-
plications rely on knowledge of these events. Unfortu-
nately, rainfall data remain limited in both time and
space, which does not always yield reliable estimates
(Cantat 2004). These studies should be based on the
series free of missing data and heterogeneity (Bigot
2002; Faizah et al. 2016). Since there is no perfectly
reliable and continuous dataset, some uncertainty will
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remain (Cantat 2004). But for series with gaps, how and
what is the reliability of the reconstituted series?

Missing data is a common problem in most areas of
scientific research and remains major in Hydrology and
Climatology Science. They may result from different
human and material sources. These errors are critical
because they affect the continuity of precipitation data
and ultimately influence the results of hydrological
models using precipitation as inputs (Lee and Kang
2015). This problem appears to be more widespread in
the developing countries than in the developed coun-
tries, particularly Algeria due to various causes such as
(i) frequent failures in measuring equipment, (ii) the
total closure of some rain stations, and (iii) the gaps on
a daily or monthly scale, therefore lead to gaps on an
annual scale. Therefore, the evaluation ofmissing data is
an important task for designing hydrological models
(Dastorani et al. 2010; Ouarda et al. 2008).

Rubin (1976) defined the missing data according to
three failure mechanisms: data missing completely at
random (MCAR) when the probability that an instance
(case) has a missing value for a variable does not depend
on the known values or missing data. Data missing at
random (MAR) when the probability of an instance with
a missing value for a variable may depend on the known
values but not the value of the missing data itself. Data
are missing not at random (MNAR) when the probabil-
ity that an instance has a missing value for a variable
may depend on the value of that variable (Little and
Rubin 2002).

Missing data may affect the properties of statistical
estimators such as means, variances, or percentages,
which lead to a loss of power and disastrous misleading
conclusions especially for the prediction of extreme
events and quantiles (El Methni 2013). A variety of
techniques have been proposed to replace missing
values with statistical prediction; this process is usually
called Bimputation of missing data^ (Little and Rubin
2002; Audigier et al. 2015).

Various techniques have been used to estimate miss-
ing data mainly simple imputation and multiple impu-
tations (Presti et al. 2010; Audigier et al. 2016).

The first solutions provided by researchers to simply
manage the problem of missing data were to use simple
imputation methods (Audigier et al. 2015). The problem
of simple imputation methods is that no distinction is
made between the observed data and the imputed data.
In 1977, Donald Rubin has proposed idea of multiple
imputation technique. The first theoretical work on

multiple imputations was subsequently launched in
1987 (Little and Rubin 1987). Since 2005, the scientific
community (Van Buuren 2012) has accepted multiple
imputation, and the number of publications on this
subject grows exponentially. Today, multiple imputation
methods are numerous. They differ in particular from
the imputation models they use (Sattari et al. 2017).
Today, most published articles focus on developing
new imputation methods (Brock et al. 2008; Luengo
et al. 2012). But, few studies deal with the effect of the
rainfall series’ imputation methods on the quantiles.

In this study, we have compared and evaluated four
different variants of simple imputation based on princi-
pal component analysis (PCA): probabilistic PCA
(PPCA), expectation maximization PCA (EMPCA),
regularized PCA (RPCA), and singular value decompo-
sition PCA (SVDPCA), according to four evaluation
criteria: root mean square error (RMSE), mean absolute
error (MAE), quadratic error (EQR), and correlation
coefficient (CC). The objective here is not to apply a
statistical method on an incomplete table but to evaluate
the properties of the four simple imputation methods
based on the principal components analysis. Therefore,
we have focused on the quality and effect of prediction
of missing data and quantiles in data processing.

Study area and data

Study area

The study area is the whole northern extent of Algeria,
which is approximately between 34° N and 38° N in
latitude and between 2° W and 8° E longitude. Spread
over 15 watersheds (Fig. 1) characterized by different
climates. The northern zone of Algeria is characterized
by a Mediterranean climate with a cold and rainy winter
and a hot and dry summer. The annual rainfall is on
average 436 mm in the west (Tlemcen), 648 mm in the
center (Dar el Beida), 512 mm in the east (Constantine),
and 1000 mm for the coast (Jijel).

Data

Annual rainfall series from 30 stations were obtained
from the National Meteorological Office (NMO) and
NationalWater Resource Agency (NWRH), and a record
length of 69 years (1936/1937–2004/2005) was consid-
ered. This period is the maximum common time period
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of precipitation data recorded. The information about the
stations are presented in Tables 1 and 2. The geograph-
ical locations of the stations are shown in Fig. 1.

Methods

The data of 30 rainfall stations for the 1935–2004 pe-
riods (69 years) were used to generate and impute

deficiencies according to missing completely at random
(MCAR) hypothesis using the package missMDA of the
free R software (Josse and Husson 2016).

The R software provides a powerful and compre-
hensive system for analyzing data, used in conjunc-
tion with the R-commander (a graphical user inter-
face, commonly known as Rcmdr); it also provides
one that is easy and intuitive to use (Suzuki and
Shimodaira 2006).

Gap generation and principle of the analysis

First of all, gaps were generated with the Library Bmiss
Forest^ (Stekhoven and Bühlmann 2011) ProdNA algo-
rithm missing completely at random BMCAR^ at differ-
ent percentages 10, 20, 30, and 40% from observed data,
so-called reference data. From the original datasets
(without missing values), we introduced in the data a
varying percentage of missing values (from 10 to 40%)
generated MCAR assumption. These simulated missing
values were imputed using four methods and four
evaluation criteria: RMSE, MAE, EQR, and the CC
were measured, and difference between the replaced
values and the original true values was evaluated.

Fig. 1 The stations in the study area

Table 1 Ranges of variables considered in study

Variable Abbreviation Range

Average annual rainfall (mm) AvAR 224.2 to 1013.8

Standard deviation of annual
rainfall (mm)

SdAR 78.6 to 275.5

Maximum annual rainfall (mm) MaxAR 459.4 to 1696.8

Minimum annual rainfall (mm) MinAR 49.7 to 499.4

Latitude Lat 33.58° N to
36.88° N

Longitude Lon 2.61° W to
8.13° E

Altitude (m) Alt 1.76 to 1347
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Imputation

Four PCA simple imputation methods were selected to
cover techniques widely applied in the literature and
representative of various statistical strategies.

Expectation maximization PCA

EM is a general algorithmic approach to manage latent
variable models (including mixtures) popular in large
part because it is typically highly scalable and easy to
implement (Lin 2010).

Probabilistic PCA

PPCA combines an EM approach for PCAwith a prob-
abilistic model. The EM approach is based on the as-
sumption that the latent variables as well as the noise are
normally distributed. In standard PCA data, which is far
from the training set but close to the principal subspace,
may have the same reconstruction error. PPCA defines a
likelihood function such that the likelihood for data far
from the training set is much lower, even if they are
close to the principal subspace. This allows to improve
the estimation accuracy. PPCA is tolerant to amounts of
missing values between 10 to 15%. If more data is

missing, the algorithm is likely not to converge to a
reasonable solution (Stacklies and Redestig 2017).

Regularized PCA

Regularized PCA is based on the regularized iterative
algorithm, which allows to obtain a point estimate of the
parameters and to overcome the major problem of the
unfit (Josse et al. 2012).

Singular value decomposition PCA

This implements the SVD impute algorithm as proposed
by Troyanskaya et al. (2001). The idea behind the algo-
rithm is to estimate the missing values as a linear com-
bination of the k most significant eigengenes. The algo-
rithm works iteratively until the change in the estimated
solution falls below a certain threshold. Each step, the
eigengenes of the current estimate are calculated and
used to determine a new estimate. An optimal linear
combination is found by regressing an incomplete var-
iable against the k most significant eigengenes. If the
value at position j is missing, the value of the eigengenes
is not used when determining the regression coeffi-
cients. SVD impute seems to be tolerant to relatively
high amount of missing data (> 10%).

Table 2 Geographic characteristics of the selected rainfall stations in Northern Algeria

No. Station Latitude (°
N)

Longitude (°
E/W)

Altitude
(m a.s.l.)

No. Station Latitude (°
N)

Longitude (°
E/W)

Altitude
(m a.s.l.)

1 Blida 36.47 2.83 E 256 16 Constantine 36.28 6.61 E 694

2 Alger (Dar El
Beida)

36.68 3.25 E 25 17 Bordj Bou
Arreiridj

36.06 4.76 E 930

3 Djelfa 34.33 3.25 E 1144 18 Mila 36.433 6.267 E 649

4 Tipaza 36.59 2.45 E 12 19 Chelif 36.21 1.33 E 143

5 Tizi Ouzou 36.70 4.05 E 189 20 Tlemcen 35.01 1.46 W 247

6 Ain Defla 36.30 2.23 E 721 21 Tiaret 35.35 1.43 E 1127

7 Oum El
Bouaghi

35.86 7.11 E 891 22 Sidi Belabess 35.20 2.61 W 476

8 Batna 35.567 6.167 E 993 23 Mostaganem 35.88 0.11 E 138

9 Bejaia 36.72 5.07 E 1.76 24 Mascara 35.21 0.15 E 513

10 Tebessa 35.41 8.13 E 813 25 Oran 35.63 0.60 W 90

11 Jijel 36.80 5.78 E 2 26 El Bayadh 33.66 1.00 E 1347

12 Setif 36.18 5.41 E 1038 27 Tissemsilt 35.60 1.833 E 881

13 Skikda 36.88 6.95 E 7 28 Naama 33.58 0.43 W 1149

14 Annaba 36.83 7.81 E 4 29 AinTimouchent 35.3 1.35 W 70

15 Guelma 36.46 7.46 E 228 30 Relizane 35.73 0.55 E 75

m a.s.l. meters above sea level
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Results and discussion

Performance of the estimation methods

In this study, the comparison was made on the
pluviometric series of real data for 10, 20, 30, and
40% gaps. The performances of the estimation methods
used are compared and assessed using four measures of
performance. The RMSE, MAE, EQR, and CC as
criteria to choose the best method of imputation, which
have been selected to cover techniques widely applied in
the literature and representative of various statistical
strategies (Boke 2017). The error measures the differ-
ence between the estimated values (predicted) and their
corresponding observed values. The four error indices
are given according to the following expressions:

RMSE ¼ ∑
n

i¼1

PanObs−PanPredð Þ2
n

" #0:5

ð1Þ

MAE ¼ 1

n
∑
n

i¼1
PanPred−PanObsj j ð2Þ

∑EQR2 ¼ ∑ PanPObs−PanPredð Þ2 ð3Þ

CC ¼
∑n

i¼1 PanObs−Pan
� �

PanPred−Pan
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 PanObs−Pan
� �2

r
∑n

i¼1 PanPred−Pan
� �2

ð4Þ

where (PanObs) is the amount of precipitation ob-
served. (PanPred) is the expected predicted value of
precipitation (in this case, it is the imputed value of
precipitation). (Pan) is the means of precipitation and
n is the number of neighboring station.

The results of the performance of the estimation
methods are shown numerically and graphically.
Table 3 and Fig. 2 show, respectively, numerical and
graphical assessment of simple imputation methods for
various percentages of missing values using as criteria:
RMSE, MAE, EQR, and CC.

For each percentages of missing data (from 10 to
20%), the performance of each estimation of four
methods (PPCA, EM, regularized, and SVD) tends to
decrease for RMSE, EQR, andMAE values, resulting in

Table 3 Comparison of estimation methods based on RMSE, CC, MAE, EQR, and number of principal component (NCP) used with four
different percentages of missing values after imputation

Percentage of missing values Method Number of gaps RMSE CC MAE EQR NPC

10 EM 207 142.98 0.82 103.00 0.07 4

PPCA 147.48 0.81 109.19 0.08 1

Regularized 138.11 0.83 99.51 0.07 4

SVD 149.09 0.81 109.95 0.08 1

20 EM 414 135.98 0.84 98.60 0.06 4

PPCA 148.32 0.80 106.79 0.07 1

Regularized 128.33 0.86 92.56 0.05 4

SVD 150.11 0.80 107.64 0.07 1

30 EM 621 151.28 0.82 108.31 0.08 4

PPCA 151.26 0.81 105.39 0.08 1

Regularized 141.03 0.84 98.80 0.07 4

SVD 154.15 0.80 106.12 0.08 1

40 EM 828 165.74 0.78 120.47 0.09 4

PPCA 147.64 0.82 109.60 0.07 1

Regularized 147.43 0.82 107.78 0.07 4

SVD 168.41 0.76 119.42 0.09 1
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the increment in CC coefficient. While, for each per-
centage from 20 to 40%, the performance of each esti-
mation of four methods (PPCA, EM, regularized, and
SVD) tends to increase for RMSE, EQR, and MAE

values, resulting in the decrease in CC coefficient. The
regularized method is found to be the best for four
estimation methods used, and the EM method is the
second best based on their values of the four error
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Fig. 2 Assessment of simple
imputation methods for various
percentages of missing values
using four measures of
performance criteria. a RMSE. b
MAE. c EQR. d Correlation
coefficient (CC)

569 Page 6 of 14 Environ Monit Assess (2018) 190: 569



indices of 10 to 40%. The lowest performances are
given by the SVD and PPCA methods.

Influence of the imputations on the quantiles

According to the above performance, the regularized vari-
ant proves to be the best for imputation; nevertheless, other
estimates after the filling of a rainfall series are necessary to
predict hydrological events using frequency analysis.

In this context, is it always the best valid imputation
method for quantile estimation?

In order to answer this pertinent question, we have
been interested in the estimation of quantiles.

To avoid calculation for all stations (30 stations), we
preferred to proceed to a hierarchical classification byWard
method based on the results of a principal component
analysis (Brito et al. 2016). The FactoMiner package of
Free Software R was used for this purpose (Lê et al. 2008).

The classification of individuals (stations) into four
classes is based on the use of the mean rains of the
12 months of the year over the period of 69 years as
active variables (the values of the latter are not men-
tioned here). Geographic coordinates (latitude, longi-
tude) as well as altitude and interannual monthly totals
are taken as additional variables (Fig. 3).

Each of the four classes is represented by a station
called BParagon^ (Lê et al. 2008). The paragon is an
individual (station) which characterizes on average all
the characteristics of its corresponding class.

For this purpose, all the analysis will be done only on
the four synoptic stations representative of their classes.

Classification of rainfall stations

After a PCA and classification of rainfall stations ac-
cording to the criteria altitude, attitude, and mean rains
of the 12 months, we allowed to have four clusters.

Clusters 1 and 4, respectively, contain 11 and 3
stations, on the other hand, clusters 2 and 3 each contain
8 stations, respectively, illustrated in Fig. 4 and Table 4.

Each cluster is carried by a synoptic station called
BParagon,^ and the quantiles for the four Paragon
stations (Mascara, Batna, Blida and Jijel) were esti-
mated for return periods of 5, 10, 20, 50, 100, 500,
and 1000 years, using the normal distribution law, for
four PCA imputation variants.

Effect of filling on quantiles

The results and effect of filling on quantiles observed
and predicted are shown. Table 5 shows numerical
values of predicted quantiles according to return pe-
riods for the four Paragon stations (Mascara, Batna,
Blida, and Jijel) based on simple imputation methods
for various percentages of missing values.

For the Maskara station, Table 5(a) shows that the
EM and regularized methods for 10, 30, and 40% of
the missing data give a good estimate of the predicted
quantiles compared to the observed one with an ac-
ceptable positive or negative margin. Also, for 20% of
missing data, these methods give a good estimation
and the same values of predicted quantiles compared
to observed values.

For Batna station, Table 5(b) shows that EM and
regularized methods for 10 and 30% of missing data
give a good estimation and the same values of predicted
quantiles compared to observed quantiles. Also, for 20
and 40% of missing data, these methods give a good
estimation of predicted quantiles compared to observed
ones with an acceptable positive or negative margin.

For Blida station, Table 5(c) shows that EM and
regularized methods for 10 to 40% of missing data
give a good estimation of predicted values of
quantiles compared to observed values with an ac-
ceptable positive or negative margin.

For Jijel station, Table 5(d) shows that EM and
regularized methods for 10 to 40% of missing data
give a good estimation of predicted quantiles com-
pared to observed quantiles with an acceptable posi-
tive or negative margin.Fig. 3 PCA circle of correlations
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Finally, for each percentage of missing data (from
10 to 40%), the regularized method is found to be the
best for four estimation methods used and the EM
method is the second best; the lowest performances
are given by the SVD and PPCA methods based on
their values of the two performance criteria, CC and
relative error (RE) indices.

CC and RE of observed quantiles with quantiles
after filling

CC for the annual rainfall series filled with the variants
of the PCA for 10 to 40% of quantiles observed with
quantiles after filling for Paragon stations (Mascara,

Batna, Blida and Jijel) are illustrated in Table 6. The
values of the CC are acceptable and vary between 0.66
to 0.97 for EM and 0.74 to 0.97 for regularized.

RE for the annual rainfall series filled with the vari-
ants of the PCA for 10 to 40% of observed quantiles
with quantiles after filling for Paragon stations (Mas-
cara, Batna, Blida, and Jijel) are illustrated respectively
in Table 7.

The values of the RE for Mascara station vary be-
tween 1.7 and 3.4% for EM and 0.20 and 3.5% for
regularized (Table 7(a)).

The values of the RE for Batna station vary between
0.17 and 2.71% for EM and 0.46 and 3.64% for regu-
larized (Table 7(b)).

Table 4 Classification of rainfall stations and their paragons

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Ain Defla, Chelif,
Tlemcen, Sidi Belabess,
Mostaganem, Mascara,
Oran, Tissemsilt, Naama,
Timouchent,
Relizane

Djelfa, O.Bouaghi
Batna, Tebessa, Setif
B.B.Arreirdj, Tiaret,
ElBayadh

Blida, Alger, Tipaza
Skikda, Annaba, Guelma,
Constantine,
Mila

Tizi Ouzou, Bejaia, Jijel

Paragon: Mascara Paragon: Batna Paragon: Blida Paragon: Jijel

Fig. 4 Hierarchical cluster
analysis
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Table 5 Quantiles observed and calculated with PCAmethods according to return periods for the fourth station for 10 to 40% of filling, (a)
Mascara, (b) Batna, (c) Blida, and (d) Jijel

(a)

Maskara T (year) 5 10 20 50 100 200 500 1000

Quantiles Observed 434.0 446.6 453.0 456.8 458.1 458.7 459.1 459.3

10% EM 441.5 454.7 461.3 465.3 466.6 467.3 467.7 467.8

Regularized 439.5 452.4 458.9 462.8 464.1 464.8 465.2 465.3

PPCA 438.5 451.2 457.7 461.5 462.8 463.5 463.9 464.0

SVD 438.7 451.5 457.9 461.8 463.1 463.7 464.1 464.3

20% EM 420.3 431.9 437.8 441.4 442.6 443.2 443.6 443.7

Regularized 420.1 431.7 437.5 441.1 442.2 442.8 443.2 443.3

PPCA 412.3 423.7 429.5 433.0 434.1 434.7 435.1 435.2

SVD 412.1 423.5 429.3 432.8 433.9 434.5 434.9 435.0

30% EM 441.2 454.5 461.2 465.2 466.6 467.3 467.7 467.8

Regularized 430.0 442.0 448.0 451.7 452.9 453.5 453.9 454.0

PPCA 471.1 428.0 433.6 436.9 438.0 438.6 438.9 439.0

SVD 417.4 428.4 433.9 437.3 438.4 439.0 439.3 439.4

40% EM 440.7 453.3 459.7 463.5 464.8 465.4 465.8 465.9

Regularized 432.9 444.8 450.8 454.4 455.7 456.3 456.6 456.7

PPCA 417.0 427.3 432.5 435.7 436.7 437.3 437.6 437.7

SVD 419.2 429.6 434.9 438.1 439.2 439.7 440.0 440.1

(b)

Batna T (year) 5 10 20 50 100 200 500 1000

Quantiles Observed 447.0 459.0 465.0 468.6 469.8 470.4 470.8 470.9

10% EM 445.1 456.6 462.4 465.9 467.1 467.6 468.0 468.1

Regularized 445.0 456.5 462.3 465.7 466.9 467.5 467.8 468.0

PPCA 444.0 455.4 461.2 464.7 465.8 466.4 466.8 466.9

SVD 443.1 455.4 461.2 464.7 465.8 466.4 466.8 466.9

20% EM 446.3 457.9 463.7 467.2 468.4 469.0 469.3 469.5

Regularized 444.8 456.2 462.0 465.5 466.7 467.3 467.6 467.7

PPCA 443.1 454.5 460.3 463.8 465.0 465.6 465.9 466.0

SVD 443.2 454.7 460.5 464.0 465.1 465.7 466.1 466.2

30% EM 435.3 446.7 452.5 456.0 457.1 457.7 458.1 458.2

Regularized 435.8 446.8 452.3 455.6 456.7 457.3 457.6 457.7

PPCA 434.8 445.5 450.9 454.1 455.2 455.8 456.1 456.2

SVD 434.5 445.2 450.6 453.9 454.9 455.5 455.8 455.9

40% EM 440.9 451.4 456.7 459.9 461.0 461.5 461.8 461.9

Regularized 433.8 443.8 448.8 451.9 452.9 453.4 453.7 453.8

PPCA 432.1 441.7 446.5 449.4 450.4 450.9 451.2 451.3

SVD 427.7 436.9 441.5 444.3 445.2 445.7 445.9 446.1

(c)

Blida T (year) 5 10 20 50 100 200 500 1000

Quantiles Observed 796.4 824.4 838.6 847.2 850.0 851.5 852.3 852.6

10% EM 762.9 787.9 800.6 808.3 810.9 812.1 812.9 813.2

Regularized 762.2 787.1 799.7 807.4 809.9 811.2 811.9 812.2

PPCA 761.6 786.4 798.9 806.5 809.0 810.3 811.1 811.3

SVD 761.6 786.4 798.9 806.5 809.0 810.3 811.1 811.3
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Table 5 (continued)

20% EM 770.1 795.2 807.9 815.5 818.1 819.4 820.2 820.4
Regularized 766.9 791.6 804.0 811.5 814.1 815.3 816.1 816.3
PPCA 770.9 795.5 808.0 815.5 818.0 819.3 820.0 820.3
SVD 770.9 795.5 808.1 815.7 818.2 819.5 820.2 820.5

30% EM 776.9 805.2 819.5 828.2 831.1 832.6 833.4 833.7
Regularized 771.3 798.1 811.7 820.0 822.7 824.1 824.9 852.2
PPCA 770.4 796.5 809.7 817.7 820.4 821.7 822.5 822.8
SVD 770.7 796.8 810.1 818.0 820.7 822.0 822.8 823.1

40% EM 783.8 812.5 827.0 835.8 838.7 840.2 841.1 841.4
Regularized 766.8 793.3 806.8 814.9 817.6 819.0 819.8 820.1
PPCA 786.9 815.8 830.5 839.3 842.3 844.8 844.7 845.0
SVD 826.1 858.5 884.9 884.8 888.1 889.8 890.8 891.1

(d)
Jijel T (year) 5 10 20 50 100 200 500 1000
Quantiles Observed 1112.6 1242.2 1257.1 1266.1 1269.1 1270.6 1271.5 1271.8
10% EM 1227.3 1256.8 1271.7 1280.6 1283.6 1285.1 1286.0 1286.3

Regularized 1225.3 1254.3 1269.0 1277.8 1280.7 1282.2 1283.1 1283.4
PPCA 1237.2 1267.5 1282.7 1291.9 1295.0 1296.5 1297.5 1297.8
SVD 1241.2 1271.9 1287.5 4296.8 1300.0 1301.5 1302.5 1302.8

20% EM 1187.8 1218.0 1233.2 1242.4 1245.4 1247.0 1274.9 1248.2
Regularized 1183.7 1212.8 1227.4 1236.2 1239.2 1240.7 1241.6 1241.8
PPCA 1189.1 1217.6 1232.0 1240.7 1243.6 1245.0 1245.9 1246.2
SVD 1192.1 1221.0 1235.6 1244.4 1247.3 1248.8 1249.7 1250.0

30% EM 1178.1 1200.3 1211.4 1218.1 1220.4 1221.5 1222.2 1222.4
Regularized 1175.2 1196.9 1207.8 1214.4 1216.6 1217.7 1218.3 1218.6
PPCA 1170.2 1191.7 1202.5 1209.0 1211.1 1212.2 1212.9 1213.1
SVD 1174.3 1196.4 1207.5 1214.5 1216.5 1217.6 1218.3 1218.5

40% EM 1205.5 1230.9 1243.7 1251.5 1254.1 1255.4 1256.1 1256.4
Regularized 1196.9 1221.5 1233.9 1241.4 1243.9 1245.1 1245.9 1246.1
PPCA 1177.8 1201.9 1214.0 1221.3 1223.7 1224.9 1225.7 1225.9
SVD 1168.8 1193.3 1205.6 1213.1 1215.5 1216.8 1217.5 1217.8

Table 6 Correlation coefficient of quantiles observed with quantiles after filling for the fourth station

Paragon % of filling CC EM CC REG CC SVD CC PPCA

Mascara 10 0.97 0.98 0.97 0.97

20 0.88 0.89 0.87 0.86

30 0.89 0.93 0.91 0.91

40 0.78 0.77 0.83 0.82

Batna 10 0.98 0.98 0.97 0.97

20 0.97 0.97 0.98 0.98

30 0.86 0.88 0.89 0.89

40 0.73 0.74 0.79 0.78

Blida 10 0.93 0.93 0.90 0.90

20 0.85 0.85 0.79 0.79

30 0.85 0.87 0.93 0.93

40 0.66 0.74 0.72 0.78

Jijel 10 0.97 0.97 0.95 0.96

20 0.92 0.93 0.86 0.87

30 0.75 0.76 0.68 0.69

40 0.76 0.79 0.66 0.73
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Table 7 Percentage (%) of relative error of quantiles observed with quantiles after filling for the fourth station for 10 to 40% of filling, (a)
Mascara, (b) Batna, (c) Blida, and (d) Jijel

(a)

Maskara T (year) 5 10 20 50 100 200 500 1000

% of Filling PCA Relative error (RE (%))

10% EM 1.70 1.80 1.80 1.90 1.90 1.90 1.90 1.90

Regularized 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30

PPCA 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

SVD 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

20% EM 3.20 3.30 3.30 3.40 3.40 3.40 3.40 3.40

Regularized 3.20 3.30 3.40 3.40 3.50 3.50 3.50 3.50

PPCA 5.00 5.10 5.20 5.20 5.20 5.20 5.20 5.20

SVD 5.00 5.20 5.20 5.30 5.30 5.30 5.30 5.30

30% EM 1.60 1.80 1.80 1.80 1.90 1.90 1.90 1.90

Regularized 0.90 1.00 1.10 1.10 1.10 1.10 1.10 1.20

PPCA 3.90 4.20 4.30 4.40 4.40 4.40 4.40 4.40

SVD 3.80 4.10 4.20 4.30 4.30 4.30 4.30 4.30

40% EM 1.60 1.50 1.50 1.50 1.50 1.50 1.50 1.50

Regularized 0.20 0.40 0.50 0.50 0.50 0.50 0.50 0.50

PPCA 3.90 4.30 4.50 4.60 4.70 4.70 4.70 4.70

SVD 3.40 3.80 4.00 4.10 4.10 4.10 4.20 4.20

(b)

Batna T (year) 5 10 20 50 100 200 500 1000

% of Filling PCA RE (%)

10% EM 0.44 0.52 0.56 0.58 0.59 0.59 0.60 0.60

Regularized 0.46 0.54 0.59 0.61 0.62 0.63 0.63 0.63

PPCA 0.69 0.77 0.82 0.84 0.85 0.85 0.86 0.86

SVD 0.69 0.78 0.82 0.84 0.85 0.865 0.86 0.86

20% EM 0.17 0.24 0.28 0.30 0.31 0.31 0.31 0.31

Regularized 0.51 .059 .064 0.66 0.67 0.67 0.67 0.67

PPCA 0.89 0.96 1.00 1.02 1.03 1.03 1.04 1.04

SVD 0.86 0.93 0.97 0.99 1.00 1.00 1.00 1.00

30% EM 2.62 2.67 2.69 2.70 2.70 2.71 2.71 2.71

Regularized 2.52 2.66 2.73 2.77 2.79 2.79 2.80 2.80

PPCA 2.74 2.94 3.03 3.09 3.11 3.12 3.13 3.13

SVD 2.80 2.99 3.09 3.15 3.16 3.17 3.18 3.18

40% EM 1.38 1.65 1.78 1.86 1.89 1.90 1.91 1.91

Regularized 2.96 3.31 3.48 3.58 3.61 3.63 3.64 3.64

PPCA 3.35 3.77 3.97 4.10 4.14 4.16 4.17 4.17

SVD 4.32 4.81 5.05 5.19 5.24 5.26 5.27 5.28

(c)

Blida T (year) 5 10 20 50 100 200 500 1000

% of Filling PCA RE (%)

10% EM 4.21 4.42 4.53 4.59 4.61 4.62 4.63 4.63

Regularized 4.29 4.52 4.63 4.70 4.72 4.73 4.74 4.74

PPCA 4.36 4.61 4.73 4.80 4.82 4.83 4.84 4.84

SVD 4.36 4.61 4.73 4.80 4.82 4.83 4.84 4.84
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The values of the RE for Blida station vary between
1.32 and 4.63% for EM and 3.15 and 4.74% for regu-
larized (Table 7(c)).

The values of the RE for Jijel station vary between
0.59 and 3.89% for EM and 0.91 and 4.19% for regu-
larized (Table 7(d)).

Conclusion

In the present study, a comparison of four simple
imputation methods (probabilistic PCA, expectation
maximization PCA, regularized PCA, and singular
value decomposition PCA) is performed, based on a
real dataset of different rainfall stations in Algeria
according to the MCAR hypothesis. The validation
of the results and the choice of the best method of
imputation is an important step, so the prediction
performances of the four methods are assessed by
different statistical criteria like root mean square
error, mean absolute error, quadratic error, and

correlation coefficient. The study examined the ef-
fect of the simple imputations on the quantiles of the
rainfall series of 30 stations for the period ranging
from 1935 to 2004 (69 years), located in northeast
Algeria. The results of the imputations for four
different percentages of missing values (PMVs),
namely, 10, 20, 30, and 40%, suggests that the
regularized PCA and expectation maximization
PCA are the best methods which could be used with
success to filling gaps. The singular value decom-
position PCA and the probabilistic PCA methods
(Table 3, Fig. 2) give the lowest performances.
Moreover, the regularized PCA and expectation
maximization PCA methods are the best in estimat-
ing of quantiles compared to the reference observed
one, for the four Paragons determined by the cluster
analysis, and result in very good to acceptable pre-
dicted quantiles regarding the values of CC and RE,
such as (CC = 0.97 with 10% of PMV and CC = 0.66
with 40% of PMV; RE = 4.74% with 10% of PMV
and RE = 3.82% with 40% of PMV).

Table 7 (continued)

20% EM 3.30 3.54 3.66 3.73 3.76 3.77 3.78 3.78
Regularized 3.70 3.98 4.12 4.23 4.25 4.25 4.25 4.26
PPCA 3.20 3.50 3.65 3.74 3.77 3.78 3.79 3.79
SVD 3.19 3.49 3.63 3.72 3.74 3.76 3.77 3.77

30% EM 2.45 2.33 2.27 2.24 2.23 2.22 2.22 2.22
Regularized 3.15 3.18 3.20 3.21 3.22 3.22 3.22 3.22
PPCA 3.26 3.38 3.44 3.48 3.49 3.50 3.50 3.50
SVD 3.22 3.34 3.41 3.41 3.45 3.46 3.46 3.47

40% EM 1.58 1.45 1.38 1.34 1.33 1.32 1.32 1.32
Regularized 3.72 3.77 3.79 3.81 3.82 3.82 3.82 3.82
PPCA 1.19 1.04 0.97 0.93 0.91 0.91 0.90 0.90
SVD 3.73 4.13 4.32 4.44 4.48 4.50 4.51 4.51

(d)
Jijel T (year) 5 10 20 50 100 200 500 1000
% of Filling PCA RE (%)
10% EM 1.21 1.18 1.16 1.15 1.14 1.14 1.14 1.14

Regularized 1.05 0.98 0.94 0.92 0.92 0.91 0.91 0.91
PPCA 2.03 2.04 2.04 2.04 2.04 2.04 2.04 2.04
SVD 2.36 2.40 2.42 2.43 2.43 2.44 2.44 2.44

20% EM 2.04 1.95 1.90 1.88 1.87 1.86 1.86 1.86
Regularized 2.38 2.37 2.36 2.36 2.36 2.36 2.36 2.36
PPCA 1.93 1.98 2.00 2.01 2.01 2.01 2.02 2.02
SVD 1.69 1.71 1.71 1.72 1.72 1.72 1.72 1.72

30% EM 2.84 3.37 3.63 3.79 3.84 3.87 3.88 3.89
Regularized 3.08 3.64 3.92 4.08 4.14 4.17 4.18 4.19
PPCA 3.49 4.07 4.35 4.51 4.57 4.60 4.61 4.62
SVD 3.16 3.69 3.94 4.10 4.15 4.17 4.19 4.19

40% EM 0.59 0.91 1.06 1.15 1.19 1.20 1.21 1.21
Regularized 1.30 1.66 1.84 1.95 1.99 2.01 2.02 2.02
PPCA 2.87 3.25 3.43 3.54 3.58 3.60 3.61 3.61
SVD 3.61 3.94 4.10 4.19 4.22 4.24 4.25 4.25
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