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Abstract This study sought to evaluate and propose
adjustments to the water quality monitoring network of
surface freshwaters in the Paraopeba river basin (Minas
Gerais, Brazil), using multivariate statistical methods. A
total of 13,560 valid data were analyzed for 19 water
quality parameters at 30 monitoring sites, over a period
of 5 years (2008–2013). The cluster analysis grouped
the monitoring sites in eight groups based on similarities
of water quality characteristics. This analysis made it
possible to detect the most relevant monitoring stations
in the river basin. The principal components analysis
associated with non-parametric tests and the analysis of
violation of the standards prescribed by law, allowed for
identifying the most relevant parameters which must be
maintained in the network (thermotolerant coliforms,
total manganese, and total phosphorus). The discharge
of domestic sewage and industrial wastewater, that from
mining activities and diffuse pollution from agriculture
and pasture areas are the main sources of pollution
responsible for the surface water quality deterioration
in this basin. The BP073 monitoring site presents the
most degraded water quality in the Paropeba river basin.
The monitoring sites BP094 and BP092 are located
geographically close and they measure similar water
quality, so a possible assessment of the need to maintain

only one of the two in the monitoring network is sug-
gested. Therefore, multivariate analyses were efficient
to assess the adequacy of the water quality monitoring
network of the Paraopeba river basin, and it can be used
in other watersheds.

Keywords Cluster analysis . Principal components
analysis . Networkmonitoring assessment . Brazilian
watershed

Introduction

The monitoring of surface water quality is of extreme
importance for understanding the current situation of
water resources and the main changes that have oc-
curred over time. It also allows for detecting the tempo-
ral and spatial trends of watersheds. Systematic and
periodic monitoring of the water resource conditions
allows for planning interventions for improvements,
identifying clandestine releases, subsidizing inspection,
environmental licensing and the formulation of environ-
mental policies (Finotti et al. 2009; Bilgin and Konanç
2016).

However, the large number of water quality parame-
ters sampled at multiple monitoring stations results in a
high cost to the environmental agency. Therefore, strat-
egies are needed to guide the optimization of the mon-
itoring network, such as the identification of relevant
parameters and stations, which must be maintained. In
this sense, several methodologies are used for the
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evaluation and resizing of surface water quality moni-
toring networks (Dong et al. 2015) such as modeling
(Paliwal et al. 2007), numerical models and algorithms
(Chen et al. 2012; Lee et al. 2014; Park et al. 2006;
Strobl and Robillard 2008), fuzzy logic (Huang et al.
2010; Xu et al. 2012; Wu et al. 2010; Zhao et al. 2011),
artificial neural networks (Khalil et al. 2011), entropy
method (Almeida 2013; Markus et al. 2003; Soares
2001), and proposal of new methods (Telci et al. 2009;
Wang et al. 2006).

The relevance of this work is in the use of multivar-
iate statistical techniques for the proposed adaptation of
the water quality monitoring network of a river basin in
Brazil. These techniques have been applied to water
quality monitoring networks throughout the world with
satisfactory results (Gamble and Babbar-Sebens 2012;
Shrestha and Kazama 2006; Vieira et al. 2012; Zhang
et al. 2009).

The water quality monitoring network of the
Paraopeba river basin (Minas Gerais, Brazil), the focus
of this study, is located in an important economic center
of the Minas Gerais state. Over the last decade, some
water quality parameters have presented elevated fre-
quencies of violation to local legislation permitted
values, such as fecal contamination indicator, phospho-
rus, and manganese (Costa et al. 2017). Thus, the sev-
eral economic activities that are developed on this area
together with the intense urbanization may be responsi-
ble for different impacts on the water resources.

The monitoring network of the Paraopeba river basin
has been active since 1997, and its main objectives are
(1) to know and to evaluate the surface water quality,
disseminating it to users and guiding the establishment
of quality goals; (2) to provide subsidies for the planning
of water resources management, and (3) to verify the
effectiveness of environmental control actions imple-
mented and to propose priorities for action. In almost
20 years of the monitoring program, no evaluation or
resizing tests were conducted for this basin. The high
cost of the monitoring program is an obstacle to its
maintenance and expansion. Thus, optimization of the
network may reduce costs by eliminating unnecessary
sampling or less important parameters and equivalent
monitoring points. Furthermore, some resources may be
applied to other areas in the basin or to the measurement
of parameters of greatest need. Thus, the results of this
work contribute to the planning and integrated manage-
ment of water resources in the basin and can serve as a
guide for work to adapt networks in other river basins.

Materials and methods

Study area

The Paraopeba river basin is an important sub-basin of
the São Francisco river basin. The São Francisco river
basin is one of the most important in Brazil due to the
large water contribution in six states and the Federal
District, being the largest river in Brazil. The Upper São
Francisco region, in which the Paraopeba river basin is
located, is the most degraded region in relation to sur-
face water quality. The drainage area of the Paraopeba
river basin is 12,054 km2, which corresponds to 2.5% of
the state ofMinas Gerais, and it is slightly larger than the
land area of countries like Jamaica and Qatar. The
Paraopeba river has a length of 510 km and almost 2.5
million people live in the basin, which covers 48 mu-
nicipalities (Fig. 1).

The uses of water in the basin vary from the dilution
of domestic and industrial effluents to more noble ones,
such as water supply, fish farming, and recreation. The
use and occupation of soil in the Paraopeba river basin is
quite diverse, which generated large impacts on surface
waters due to different anthropogenic pressures. This
basin also includes one of the most important economic
centers of Minas Gerais that forms the second industrial
pole of the country. There are also activities such as
cattle raising, iron and steel, food and automobile indus-
tries, mining, sand and clay extraction, extensive animal
husbandry, and eucalyptus monocultures.

Monitoring of the surface water quality in the
Paraopeba river basin has been carried out since 1997
by the Minas Gerais Water Management Institute
(IGAM), through the Project “Minas Waters”. From
the implementation of the network in 1997 until 2013,
1509water samples were collected, and 62water quality
parameters were monitored at 33 monitoring sites, with
a quarterly and semi-annual frequency sampling,
obtaining a total of 59,860 valid data points. Due to
the extensive and complex database, previous data se-
lection was required for the application of multivariate
statistics.

Selection of the data for application of multivariate
statistical techniques

Preparation of the database for application of statistical
techniques consisted of the selection of parameters and
monitoring stations while minimizing the missing data.
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Monitoring sites were selected that presented continu-
ous quarterly sampling. Parameters with more than 10%
missing data were disregarded. Parameters whose envi-
ronmental and sanitary significance was low for the
interpretation of water quality were also disregarded.
Parameters with more than 90% censored data (concen-
trations below the limit of detection of the analytical
method of measurement) were not included, as they did
not express variation in water quality during the moni-
toring period. Therefore, these parameters were
highlighted as the least relevant for monitoring in this
basin. The monitoring database selected covered 720
samples of 19 parameters in 30 monitoring sites,
resulting in an analysis of 13,560 valid data points from
the period of 2008 to 2013. The selected parameters
included ammonia-nitrogen (N-NH4

+), chemical oxy-
gen demand (COD), chlorophyll-a (Cl-a), dissolved iron
(Fe), dissolved oxygen (DO), electrical conductivity
(EC), 5-day biochemical oxygen demand (BOD5), ni-
trate nitrogen (N-NO3-), organic nitrogen (Norg), pH,
temperature (TEMP), thermotolerant coliforms (T.
colif.), total chloride (Cl-), total manganese (Mn), total
phosphorus (P), total solids (TS), total suspended solids

(TSS), true color (COL), and turbidity (TURB). The
descriptive statistics (minimum, maximum, median,
mean, and standard deviation) of the water quality pa-
rameters were calculated for each monitoring site. Dis-
tribution of the data was verified by applying the
Shapiro-Wilk normality test at a 5% significance level.

Data treatment and multivariate statistical techniques

Cluster analysis

Cluster analysis was used to group the 30 monitoring
sites according to the spatial similarity of water quality.
The results showed high homogeneity within the group,
and a high heterogeneity between the groups (Lattin
et al. 2011). The hierarchical agglomeration and euclid-
ean distance was used as a measure of similarity. Prior to
the test the data was standardized. This evaluation
sought to identify areas where the water quality is sim-
ilar in the river basin and this statistical technique is
commonly used to access the water quality in water-
sheds throughout the world (Zhang et al. 2009; Gamble
and Babbar-Sebens 2012; Vieira et al. 2012; Guigues

Fig. 1 Localization of Paraopeba river basin, Brazil
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et al. 2013; Bhuiyan et al. 2016; Bilgin and Konanç
2016]. In order to identify significant differences be-
tween the concentrations of water quality parameters
for the groups formed by cluster analysis (CA), non-
parametric statistical tests were applied (Mann-Whitney
(two groups) or Kruskal-Wallis (more than two
groups)), followed by the multiple comparison test
(when applicable), at the significance level (α) of 5%.
Therefore, it was possible to identify which parameters
were responsible for differentiating the groups formed
by the CA.

Principal component analysis

The principal components analysis (PCA) is a comple-
mentary analysis, which seeks to reorganize and show
the multivariate data in order to reduce its size, facilitat-
ing its visualization and analysis (Mingoti 2005; Abdi
andWilliams 2010). This reduction occurs when there is
substantial redundancy between the data, and therefore,
a reduced number of elements can often explain most of
the information (İşçen et al. 2009). In this study, the
PCAwas used to reduce the complexity of the monitor-
ing database, identifying the main parameters responsi-
ble for explaining the greater variability of water quality
and the different sources of pollution acting in each
group formed by the CA.

Evaluation and proposal for optimization
of the monitoring network

The violation percentage of the water quality parameters
was calculated in relation to the standards set in
COPAM (State Environmental Policy Council) and
CERH (State Water Resources Council) Normative De-
liberation 01/2008 (MINAS GERAIS 2008), legislation
that provides environmental guidelines on water bodies
in the state of Minas Gerais, Brazil. The water quality
parameters that presented 50% or more violation in the
analyzed period, called “critical parameters,” were con-
sidered the most important parameters, as well as the
parameters which explained the greater variability of
water quality, as indicated by the PCA. The CA allowed
for identifying differences in water quality monitoring
sites, guiding their selection in the monitoring network.
The parameters which had more than 90% censored data
were considered the least relevant for the monitoring
network.

Results and discussion

Descriptive statistics

The results of descriptive statistics analysis are present-
ed in Table 1. It is possible to note a large amplitude for
most parameters, resulting in high values of standard
deviation and skewness. This asymmetry is common in
environmental data and it was confirmed by the
Shapiro-Wilk test (p < 0.05). In addition, this variation
reinforces the importance of the spatial analysis of the
concentration of these parameters in the Paraopeba river
basin.

Cluster analysis and the Kruskal-Wallis test

For grouping of the 30 surface water quality monitoring
sites of the Paraopeba river basin, the Euclidean distance
of 21.27 was considered, which resulted in the forma-
tion of eight groups as shown in the dendrogram in
Fig. 2.

The dendrogram allows for identifying the monitor-
ing sites that present high homogeneity in water quality
(monitoring sites in the same group) and those with high
heterogeneity (monitoring sites belong to different
groups). The monitoring sites of groups 1, 2, 3, 4, 5,
and 6 (BP073, BP071, BP098, BP084, BP080, BP086,
BP069, and BP069) can be considered the most relevant
in the Paraopeba river basin because they have unique
characteristics, which are different from most other
monitoring sites. Not coincidentally, these sites repre-
sent the bodies of water that obtained the highest fre-
quencies of “very bad” and “bad” on the water quality
index (WQI) between the monitoring sites of the
Paraopeba river basin in the period from 1997 to 2012
(IGAM 2013). Most of these monitoring sites are locat-
ed in the industrial pole region, in the city of Betim,
where water quality is mainly affected by domestic
sewage and industrial effluents. The groups formed by
the CAwere identified geographically in Fig. 3.

The differences between the groups formed by the
CA can be confirmed by the results of the Kruskal-
Wallis non-parametric test, whose objective was to find
significant differences in the concentrations of the pa-
rameters analyzed. The results of the multiple compar-
ison test also confirm that the monitoring stations
BP073 and BP071 (groups 1 and 2, respectively) are
the stations whose surface water quality is more degrad-
ed in the Paraopeba river basin. These stations have the
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highest significant concentrations for Cl−, Cl-a, EC,
COD, P, N-NO3

−, Norg, and TS and the lowest concen-
trations of DO in relation to the other stations (Fig. 4).
Concerning domestic sewage contamination, the con-
centration of T. colif was significantly lower for groups

3, 7, and 8. Most of the T. colif observations in group 1
focused on the detection limit value of the analytical
method, which is 160,000 MPN.100 mL−1. Because of
this, BP073 is highly contaminated by domestic sewage,
and it has presented the highest frequencies (100%) of

Table 1 Descriptive statistics of water quality parameters in the Paraopeba river basin, from 2008 to 2013

Parameters/unit MIN MAX MED MEAN SD Skewness Kurtosis

N-NH4
+ (mg L−1) 0.10 21.4 0.1 1.1 3.2 4.2 17.4

COD (mgDO L−1) 5.0 273.0 13.0 19.1 25.8 5.2 36.1

Cl-a (μg L−1) 0.006 723.3 2.79 9.6 35.6 13.4 239.3

Fe (mg L−1) 0.03 1.8 0.2 0.2 0.2 3.0 13.0

DO (mg L−1) 0.20 9.5 7.0 6.5 1.9 − 1.6 2.0

EC (μS cm−1) 16.1 1483 70.7 113.7 132.3 3.8 22.1

BOD5 (mgDO L−1) 2.0 138.0 2.0 4.2 9.2 8.1 86.8

N-NO3
− (mg L−1) 0.01 9.4 0.3 0.6 0.9 4.7 32.6

Norg (mg L−1) 0.10 11.0 0.4 0.6 0.7 7.1 82.1

pH 5.7 8.5 6.8 6.8 0.5 0.2 − 0.3
TEMP (°C) 17.0 35.2 24.2 24.1 3.1 0.2 − 0.4
T. colif. (MPN.100 mL−1) 2.0 160,000 5000 29,913 49,962 1.9 2.1

Cl− (mg L−1) 0.3 230.0 3.13 7.45 15.11 6.6 71.7

Mn (mg L−1) 0.01 2.8 0.1 0.3 0.4 3.0 10.3

P (mg L−1) 0.01 5.9 0.1 0.2 0.4 6.6 67.4

TS (mg L−1) 24.0 2474.0 107.0 158.6 179.5 5.4 49.1

TSS (mg L−1) 1.0 2239.0 32.0 76.4 158.5 6.5 63.9

COL (HC) 5.0 1704.0 29.0 91.3 172.0 4.5 26.6

TURB. (NTU) 1.2 2512.0 27.0 75.0 162.0 7.0 79.1

MIN minimum, MAX maximum, MED median, SD standard deviation

Fig. 2 Dendrogram showing the
clustering of sampling sites in the
Paraopeba river basin
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“very bad” and “bad” classifications of the water quality
index (WQI) in the Paropeba river basin from 1997 to
2012, according IGAM (IGAM 2013).

From this analysis, it can be inferred that if there is a
need to interrupt or permanently stop the water moni-
toring at some sites, where these sites must be present in
group 7 or 8 because these groups have a larger number
of monitoring sites in which the water quality is similar,
and they present the best water quality in the basin.

Principal component analysis

The results of the PCA explained 63.1 to 82.9% of the
surface water quality variability of each group formed
by the CA, retaining five principal components (PC),
considering factors with eigenvalues greater than one
(Hair et al. 2005). The correlations between variables
and the PC of each group formed by the CA are pre-
sented in Table 2.

Fig. 3 Identification of the groups of monitoring sites in the Paraopeba river basin formed by the cluster analysis
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It can be observed that groups 1, 2, 3, 4, 5, and 6 are
similar in relation to the variables that best correlated
with the first factors. The variables that best explain the
variability of the water quality of these monitoring sites
are related to the presence of organic matter, mainly
from domestic sewage and solids in the water body.
The monitoring site BP073 (group 1) receives domestic
sewage and industrial effluents from the city of Betim, a
large industrial region (IGAM 2014). Station BP071
(group 2) is located just downstream of monitoring site
BP073, so it is also affected by the water quality of the

previous site. EC is also highly correlated with the first
factors in these groups, indicating a high concentration
of dissolved solids in the water body. Groups 1, 2, and 3
present a higher concentration of total solids in relation
to the other monitoring sites as presented by the non-
parametric Kruskal-Wallis test results.

The monitoring sites belonging to group 4 (BP084
and BP080) are located on the same tributary in the
beginning of the river basin. In addition to the parame-
ters related to organic matter and solids, a high correla-
tion of dissolved iron is highlighted in this group, which

Fig. 4 Box-plot of the concentrations of the water quality parameters and results of the Kruskal-Wallis test and themultiple comparisons test
(p < 0.05), considering the groups formed by the cluster analysis
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Fig. 4 (continued)
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Table 2 Principal components analysis for the monitoring sites in the Paraopeba river basin, considering groups formed by the cluster
analysis

Group 1 Group 2

Variables PC1 PC2 PC3 PC4 PC5 Variables PC1 PC2 PC3 PC4 PC5

Cl− 0.697 0.481 − 0.545 − 0.343 0.249 Cl− 0.197 − 0.874 − 0.016 − 0.069 0.356

Cl-a 0.107 − 0.324 − 0.285 − 0.433 0.388 Cl-a 0.392 0.455 0.231 − 0.249 − 0.213
T. colif. 0.085 0.703 − 0.511 0.199 − 0.022 T. colif. 0.484 0.260 − 0.791 0.057 0.359

EC 0.475 0.693 − 0.501 − 0.567 0.139 EC 0.122 − 0.920 0.068 − 0.145 0.362

COL 0.013 − 0.653 0.564 0.298 − 0.683 COL 0.525 0.721 − 0.253 0.666 − 0.516

BOD5 0.875 0.013 − 0.133 0.017 0.327 BOD5 0.790 − 0.061 − 0.005 0.041 0.250

COD 0.922 0.161 0.026 0.112 0.469 COD 0.910 0.164 − 0.151 0.434 − 0.126
Fe 0.369 0.500 0.061 0.364 0.079 Fe 0.733 0.156 − 0.293 0.379 − 0.416
P 0.638 0.110 − 0.002 0.303 0.558 P 0.426 − 0.637 0.072 0.205 0.342

Mn 0.620 − 0.139 − 0.214 − 0.370 0.295 Mn 0.621 0.546 − 0.057 0.171 − 0.234
N-NO3

− − 0.242 0.406 0.287 − 0.208 0.110 N-NO3
− − 0.561 − 0.215 0.110 0.339 − 0.318

N-NH4
+ 0.424 0.769 − 0.220 − 0.315 0.018 N-NH4

+ 0.339 − 0.784 − 0.236 − 0.043 0.333

Norg 0.638 − 0.075 0.225 0.410 0.641 Norg 0.679 0.282 0.096 0.223 − 0.527

DO − 0.733 − 0.471 0.559 0.344 − 0.523 DO − 0.279 0.586 − 0.101 0.213 − 0.514

pH 0.039 0.397 0.262 − 0.507 0.285 pH − 0.633 − 0.383 0.610 0.067 − 0.128
TSS 0.294 − 0.659 0.812 0.269 − 0.209 TSS 0.476 0.867 − 0.253 0.567 − 0.582

TS 0.420 − 0.571 0.771 0.157 − 0.236 TS 0.515 0.837 − 0.259 0.593 − 0.581

Temp. 0.100 − 0.468 − 0.456 − 0.313 − 0.048 Temp. 0.019 0.226 0.565 − 0.575 − 0.142
Turb. 0.036 − 0.681 0.745 0.252 − 0.596 Turb. 0.459 0.828 − 0.272 0.621 − 0.578

Eigenvalue 6.61 3.16 2.80 1.35 1.17 Eigenvalue 6.19 4.68 1.75 1.52 1.26

Variance (%) 34.8 16.6 14.7 7.1 6.2 Variance (%) 32.6 24.6 9.2 8.0 6.6

Cumulative (%) 34.8 51.4 66.2 73.3 79.4 Cumulative (%) 32.6 57.2 66.4 74.4 81.0

Group 3 Group 4

Variables PC1 PC2 PC3 PC4 PC5 Variables PC1 PC2 PC3 PC4 PC5

Cl− 0.423 0.280 0.134 0.276 0.532 Cl− 0.498 − 0.733 0.057 − 0.204 − 0.217
Cl-a 0.246 − 0.192 0.093 − 0.717 0.177 Cl-a 0.091 − 0.210 0.049 − 0.686 − 0.497
T. colif. − 0.326 0.034 − 0.292 − 0.090 0.649 T. colif. − 0.173 − 0.170 − 0.082 0.143 − 0.746

EC 0.904 0.269 − 0.303 0.123 0.050 EC 0.633 − 0.627 − 0.015 0.010 − 0.221
COL − 0.180 0.793 − 0.205 0.235 − 0.088 COL − 0.418 0.270 − 0.708 − 0.267 0.011

BOD5 0.821 0.119 − 0.551 0.238 − 0.073 BOD5 0.684 0.102 − 0.424 0.014 − 0.035
COD 0.779 0.453 − 0.454 − 0.064 − 0.415 COD 0.338 0.023 − 0.587 0.347 0.430

Fe 0.491 − 0.014 − 0.411 0.464 − 0.060 Fe 0.738 0.271 0.017 0.255 0.145

P 0.837 0.221 − 0.764 0.279 0.024 P 0.781 0.082 − 0.339 0.278 0.053

Mn 0.652 0.307 − 0.605 − 0.059 − 0.432 Mn 0.157 0.469 − 0.462 0.462 − 0.236
N-NO3− 0.346 − 0.609 − 0.095 0.012 0.032 N-NO3− − 0.060 − 0.773 0.261 0.100 − 0.016
N-NH4

+ 0.893 0.055 − 0.592 0.062 − 0.287 N-NH4
+ 0.855 0.186 − 0.136 0.291 0.109

Norg 0.796 − 0.068 − 0.260 − 0.090 − 0.158 Norg 0.547 − 0.510 − 0.010 0.387 0.170

DO − 0.691 − 0.148 0.271 0.195 0.319 DO − 0.611 − 0.685 − 0.025 − 0.293 0.046

pH 0.674 − 0.115 − 0.190 0.032 − 0.157 pH − 0.027 − 0.460 − 0.096 0.155 − 0.071
TSS − 0.368 0.728 − 0.268 0.099 0.065 TSS − 0.544 − 0.055 − 0.811 0.182 0.143

TS 0.638 0.561 − 0.222 0.133 0.137 TS − 0.489 − 0.148 − 0.838 0.156 0.118

Temp. − 0.445 0.271 0.467 − 0.616 − 0.347 Temp. − 0.578 0.205 0.199 − 0.134 − 0.238
Turb. − 0.369 0.747 − 0.186 0.153 − 0.001 Turb. − 0.531 − 0.001 − 0.830 0.145 0.109
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can be explained by its proximity to mining activity. The
BP084 site is the only one in the basin in which the iron
concentration is above the limit allowed by the law in
more than half of the samples.

The PC1 of group 5 (BV086) also highlights a corre-
lation with total manganese. According to the Kruskal-
Wallis non-parametric test, this group presents a higher
concentration of manganese in relation to the other

Table 2 (continued)

Eigenvalue 7.30 3.98 1.76 1.24 1.14 Eigenvalue 5.69 3.55 2.42 1.32 1.15
Variance (%) 38.4 20.9 9.2 6.5 6.0 Variance (%) 29.9 18.7 12.7 6.9 6.0
Cumulative (%) 38.4 59.4 68.6 75.2 81.1 Cumulative (%) 29.9 48.6 61.4 68.3 74.3
Group 5 Group 6
Variables PC1 PC2 PC3 PC4 PC5 Variables PC1 PC2 PC3 PC4 PC5
Cl− 0.183 0.255 − 0.613 − 0.408 − 0.406 Cl− 0.676 0.354 − 0.042 − 0.219 − 0.398
Cl-a 0.080 − 0.283 − 0.653 0.221 0.105 Cl-a − 0.120 0.164 − 0.616 − 0.434 0.250
T. colif. 0.227 0.261 0.223 − 0.083 0.465 T. colif. 0.504 − 0.307 − 0.340 0.382 0.059
EC 0.244 0.444 − 0.325 − 0.242 − 0.457 EC 0.854 0.294 0.180 − 0.038 − 0.059
COL 0.480 − 0.719 0.341 0.038 − 0.613 COL 0.012 − 0.823 0.428 − 0.452 − 0.135
BOD5 0.763 0.305 0.262 0.684 0.277 BOD5 0.612 − 0.299 − 0.172 0.474 0.072
COD 0.765 0.313 0.244 0.650 0.381 COD 0.830 − 0.054 − 0.171 0.250 0.025
Fe − 0.424 0.424 0.409 0.167 0.195 Fe 0.505 0.167 0.553 0.075 0.209
P 0.745 0.323 0.283 0.652 0.314 P 0.759 0.057 − 0.046 0.196 0.425
Mn 0.507 − 0.720 0.349 − 0.328 − 0.338 Mn 0.367 − 0.456 0.540 0.332 − 0.316
N-NO3− − 0.265 0.444 0.523 0.037 − 0.013 N-NO3− 0.024 0.396 0.678 0.398 0.141
N-NH4

+ 0.821 0.277 0.448 0.601 0.122 N-NH4
+ 0.755 0.200 0.122 0.074 0.306

Norg 0.782 0.411 0.257 0.569 0.235 Norg 0.608 − 0.130 − 0.136 0.322 0.037
DO − 0.206 − 0.018 − 0.354 0.670 0.045 DO − 0.855 − 0.214 − 0.111 − 0.273 0.172
pH − 0.163 0.201 0.263 0.359 − 0.258 pH − 0.071 0.350 0.337 0.193 0.581
TSS 0.653 − 0.690 0.409 0.011 − 0.498 TSS − 0.054 − 0.866 0.332 − 0.380 0.031
TS 0.691 − 0.583 0.295 − 0.039 − 0.617 TS 0.480 − 0.635 0.375 − 0.435 − 0.084
Temp. 0.220 − 0.501 0.306 0.175 0.266 Temp. − 0.588 − 0.383 − 0.126 − 0.057 0.111
Turb. 0.611 − 0.685 0.459 0.039 − 0.522 Turb. 0.004 − 0.843 0.414 − 0.421 − 0.152
Eigenvalue 5.91 3.50 2.52 1.84 1.52 Eigenvalue 6.99 2.75 2.26 1.60 1.15
Variance (%) 31.1 18.4 13.2 9.7 8.0 Variance (%) 36.8 14.5 11.9 8.4 6.0
Cumulative(%) 31.1 49.5 62.8 72.5 80.5 Cumulative (%) 36.8 51.3 63.1 71.6 77.6
Group 7 Group 8
Variables PC1 PC2 PC3 PC4 PC5 Variables PC1 PC2 PC3 PC4 PC5
Cl− − 0.419 0.613 0.162 − 0.113 − 0.265 Cl− 0.522 0.644 − 0.289 0.135 0.247
Cl-a − 0.194 0.112 0.287 − 0.172 0.231 Cl-a 0.334 0.295 − 0.382 0.355 − 0.012
T. colif. 0.254 0.061 − 0.503 − 0.388 0.252 T. colif. 0.170 − 0.113 − 0.088 − 0.535 − 0.338
EC − 0.439 0.517 0.300 − 0.260 − 0.051 EC 0.515 0.689 − 0.321 0.121 0.299
COL 0.760 0.194 0.042 − 0.005 0.140 COL 0.434 − 0.641 − 0.018 0.292 − 0.090
BOD5 0.268 0.224 − 0.125 − 0.508 0.430 BOD5 0.177 0.338 − 0.352 − 0.124 − 0.034
COD 0.651 0.437 − 0.060 0.094 0.080 COD 0.698 − 0.021 − 0.154 0.336 − 0.304
Fe 0.031 0.001 − 0.436 − 0.245 − 0.420 Fe 0.107 − 0.211 0.088 − 0.593 0.052
P 0.395 0.478 − 0.110 0.067 − 0.256 P 0.650 − 0.072 − 0.055 0.148 − 0.406
Mn 0.784 0.166 − 0.101 0.408 − 0.090 Mn 0.797 − 0.070 0.118 0.344 − 0.126
N-NO3− − 0.380 0.317 0.029 0.349 − 0.193 N-NO3− 0.153 0.495 0.417 − 0.303 0.153
N-NH4

+ − 0.124 0.435 − 0.473 − 0.397 0.040 N-NH4
+ 0.341 0.619 − 0.410 − 0.150 0.177

Norg 0.189 0.723 − 0.149 0.109 0.166 Norg 0.530 0.437 0.103 0.067 − 0.067
DO − 0.400 − 0.094 − 0.519 0.306 0.461 DO − 0.473 0.155 0.519 0.080 − 0.353
pH − 0.324 0.003 0.061 0.189 0.655 pH 0.142 0.350 0.486 0.133 0.329
TSS 0.895 0.372 − 0.135 0.278 0.109 TSS 0.738 − 0.489 0.300 0.434 − 0.415
TS 0.887 0.427 − 0.117 0.234 0.138 TS 0.804 − 0.416 0.240 0.463 − 0.371
Temp. 0.396 − 0.130 0.483 − 0.184 − 0.029 Temp. 0.396 − 0.180 − 0.218 0.060 0.557
Turb. 0.903 0.402 − 0.105 0.245 0.094 Turb. 0.687 − 0.571 0.241 0.364 − 0.347
Eigenvalue 5.16 2.41 1.64 1.42 1.36 Eigenvalue 5.70 2.93 1.60 1.28 1.14
Variance (%) 27.2 12.7 8.6 7.5 7.1 Variance (%) 30.0 15.4 8.4 6.7 6.0
Cumulative(%) 27.2 39.8 48.5 55.9 63.1 Cumulative (%) 30.0 45.4 53.9 60.6 66.6

Italicized values represent high correlation (≥ 0.5)
Double underlined values represent strong correlation (≥ 0.75)
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monitoring stations in the basin, except for group 4,
which presents a higher concentration than group 5. Total
manganese may be the result of mining activities, but it is
also important to consider that the basal concentration of
this mineral in the river is not known, whose concentra-
tion can be highly altered during the rainy seasons. The
BP069 site constitutes group 6 and the high negative
correlation with dissolved oxygen indicates the high de-
gree of deterioration of the watercourse. This monitoring

site receives the impacts from most of the sewage from
the cities of Juatuba and Mateus Leme, where there is a
maximum sewage collection of 65% (IGAM 2013).

Group 7, consisting of 11 monitoring sites, has a
strong correlation with manganese and parameters related
to the presence of dissolved and suspended solids in
water (COL, COD, TSS, TS, and Turb.), indicating that
the main source of pollution is these areas is the transport
of solids to the river, mainly from non-biodegradable

Table 3 Surface water quality standards set in Normative Deliberation COPAM/CERH-MG 01/2008

Parameter Unit Class

1 2 3 4

Biochemical oxygen demand mg L−1 O2 3 5 10 –

Chlorophyll-a μg L−1 10 30 60 –

Density of cyanobacteria cel mL−1 20,000 50,000 100,000 –

Dissolved copper mg L−1 Cu 0.009 0.009 0.013 –

Dissolved iron mg L−1 Fe 0.3 0.3 5.0 –

Dissolved oxygen mg L−1 O2 6 5 4 2

Free cyanide mg L−1 CN 0.005 0.005 0.022 –

Nitrate mg L−1 N 10.0 10.0 10.0 –

Nitrite mg L−1 N 1 1 1 –

Oils and greases 0 0 0 –

pH 6 to 9 6 to 9 6 to 9 6 to 9

Total ammoniacal nitrogen pH ≤7.5 mg L−1 N 3.7 3.7 13.3 –

T. ammoniacal nitrogen 7.5 < pH< 8.0 mg L−1 N 2 2 5.6 –

T. ammoniacal nitrogen 8.0 < pH< 8.5 mg L−1 N 1 1 2.2 –

T. ammoniacal nitrogen pH ≥ 8.5 mg L−1 N 0.5 0.5 1 –

Thermotolerant coliforms org 100 mL−1 200 1000 4000 –

Total arsenic mg L−1 As 0.01 0.01 0.033 –

Total barium mg L−1 Ba 0.7 0.7 1.0 –

Total boron mg L−1 B 0.5 0.5 0.75 –

Total cadmium mg L−1 Cd 0.001 0.001 0.01 –

Total chloride mg L−1 Cl 250 250 250 –

Total chromium mg L−1 Cr 0.05 0.05 0.05 –

Total dissolved solids mg L−1 500 500 500 –

Total lead mg L−1 Pb 0.01 0.01 0.033 –

Total manganese mg L−1 Mn 0.1 0.1 0.5 –

Total nickel mg L−1 Ni 0.025 0.025 0.025 –

Total phosphorus mg L−1 P 0.1 0.1 0.15 –

Total selenium mg L−1 Se 0.01 0.01 0.05 –

Total suspended solids mg L−1 50 100 100 –

Total zinc mg L−1 Zn 0.18 0.18 5 –

True color mgPt L−1 – 75 75 –

Turbidity NTU 40 100 100 –
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organic materials. Note that in this group the concentra-
tion of biodegradable organic matter is smaller than other
groups previously analyzed. These monitoring sites are
located predominantly on the main river channel, in the
lower course, downstream from the region where the
main contaminations of domestic sewage and industrial
effluents are introduced. Therefore, this better condition
of water quality is probably due to dilution of the con-
taminants and pollutants with increase of the river flow.

Correlations similar to those identified for group
7 were found in characterization of the water qual-
ity of the 12 monitoring sites in group 8. Howev-
er, for most of the analyzed parameters, the con-
centrations in group 7 are significantly higher than
that in group 8. Therefore, the stations of group 8
can be considered those of best water quality in
the basin. These monitoring sites are located main-
ly in the upper course of the river basin and in
tributaries of the main river.

Therefore, it can be observed that association of
the results of CA, PCA and non-parametric Kruskal-
Wallis test can lead to an understanding of the
sources of pollution in different regions of the river
basin, as well as identify areas most critical to water
quality. These techniques allow an in-depth study of
the superficial water quality of the river basin,
orienting studies on the resizing of water quality
monitoring networks.

Analysis of violation of the water quality parameters
with regard to the standards set in ND COPAM/
CERH-MG 01/08 and analysis of censured data

The concentrations of water quality parameters mea-
sured in the monitoring program were compared to

the standards sets in ND COPAM/CERH-MG 01/
2008 (Table 3). It was verified that T.colif. was
considered a critical parameter in 82% of the mon-
itoring sites analyzed. That is, the discharge of un-
treated domestic sewage into the water body is still
the main problem with regard to water quality in the
Paraopeba river basin. It is important to emphasize
that this fact does not necessarily result from the
lack of investments in sewage treatment in this pe-
riod, but from the fact that investments made were
not sufficient to substantially reduce the sewage
volume. Additionally, the type of treatment
employed may also not be effective in recovering
the water quality of the basin. In this respect the
parameters total manganese (critical in 67% of the
monitoring stations) and total phosphorus (critical in
30% of the monitoring stations) are highlighted.
These results coincide with those obtained by the
PCA.

Analyzing the number of critical parameters in
the monitoring sites of the Paraopeba river basin,
it is verified that the monitoring sites belonging to
the first groups of the CA (1, 2, 3, 4, 5, and 6)
were those that presented the most critical param-
eters, as shown in Table 4. Thus, the analysis of
critical parameters coincides with the groups
formed by the CA, demonstrating the efficiency
of the multivariate technique for water quality
analysis.

Optimizing the Paraopeba river basin surface water
quality monitoring network

The parameters total chromium, total cadmium, total
selenium, dissolved copper and total boron have 90%

Table 4 Number of critical parameters for each of the monitoring sites in the Paraopeba river basin

Number of critical parameters

8 5 4 3 2 1 0

Monitoring sites BP073 BP069 BP098 BP071 BP024 BP066 BP074 BP022 BP082 BP096 BP094

BP084 BP080 BP027 BP068 BP076 BP026 BP088 BP099

BP086 BP029 BP070 BP079 BP032 BP090

BP036 BP072 BP083 BP078 BP092

Italic and underlined: monitoring sites belong to groups 1 to 6 (cluster analysis)

Upright and underlined: monitoring sites belong to group 7

Upright and no underline: monitoring sites belong to group 8
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or more data censored in more than 85% of the moni-
toring sites evaluated. Therefore, they can be considered
the least relevant in monitoring the quality of surface
waters in the Paraopeba river basin, and their sampling
frequency may be reduced. BP092, BP094, and BP090
are monitoring sites that have the highest number of
parameters sampled with 90% or more of censored data
(12, 13, or 14), considering the monitoring period from
2008 to 2013, indicating low variability of water quality.
The results also suggest an evaluation of the mainte-
nance of BP092 and BP094 in the monitoring network
of the Paraopeba river basin. These monitoring sites are
located geographically close; they have the lowest Eu-
clidean distance of clustering according to CA, have low
number of critical parameters, and have a large number
of censored data. So, it is suggested for the state agen-
cy—IGAM—to evaluate the relevance of the mainte-
nance of both stations in the monitoring network. Per-
haps only one of them would be sufficient to evaluate
the background concentration for some of the elements
on the basin and serve as a basis for comparison of water
quality with other monitoring sites more impacted by
anthropogenic activities. Therefore, a permanently stop
on water monitoring at BP094 should be indicated due
to its geographical proximity to BP092, to the similarity
of water quality on both stations and because there were
no violations to standards in more than 13 years of
monitoring on BP094 site.

Table 5 summarizes the results obtained by the vio-
lation analysis and censored data, presenting the most
important water quality parameters for the monitoring
site (50% or greater violation of legal standards), “V”;
the least relevant (90% or more of censored data), “C”;
and especially those which did not have violations dur-
ing the study period (N), for each one of the 30 moni-
toring sites in the Paraopeba river basin. For the elabo-
ration of this table we considered all parameters sampled
in the monitoring network (including parameters not
considered in multivariate analysis) which have legal
standards in ND COPAM/CERH-MG 01/2008, totaling
29 water quality parameters.

Conclusions

The optimization and resizing of a surface water quality
monitoring network for a river basin should be done
with caution and planning. This work showed that the
association of multivariate statistical techniques with

non-parametric tests and analysis of violating the legal
standards allows for identifying similar monitoring sites
regarding water quality, prioritizing the maintenance of
monitoring stations in the monitoring network, identify-
ing the main parameters that explain the water quality
variability and the main sources of pollution in different
regions of the river basin. This association was efficient
to generate a proposal for optimization and resizing of
the monitoring network.

The parameters thermotolerant coliforms, total man-
ganese, and total phosphorus were considered the most
relevant for the characterization of water quality in the
Paraopeba river basin. On the other hand, total chromi-
um, total cadmium, selenium, total dissolved copper,
and total boron were considered less relevant. The dis-
charge of domestic sewage and industrial wastewater
are the main sources of pollution responsible for the
surface water quality deterioration in the basin. The
monitoring site BP073 has shown the most intense
degradation, while the BP094 site is responsible for
monitoring of the best water quality of the basin. It is
suggested for IGAM an assessment of the need for
maintenance of BP094 in the monitoring network, since
it is located geographically close to BP092, which also
has similar water quality, and both may be expressing
the same information. In this way, the resources spent on
BP094 monitoring could be allocated to areas of greater
need in the basin. It is our wish that this work may guide
the decision-making of public managers in the
Paraopeba river basin, as well as works in other river
basins around the world.
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