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Abstract Hyrcanian forests of North of Iran are of
great importance in terms of various economic and
environmental aspects. In this study, Spot-6 satellite
images and regression models were applied to esti-
mate above-ground biomass in these forests. This
research was carried out in six compartments in
three climatic (semi-arid to humid) types and two
altitude classes. In the first step, ground sampling
methods at the compartment level were used to
estimate aboveground biomass (Mg/ha). Then, by
reviewing the results of other studies, the most ap-
propriate vegetation indices were selected. In this
study, three indices of NDVI, RVI, and TVI were

calculated. We investigated the relationship between
the vegetation indices and aboveground biomass
measured at sample-plot level. Based on the results,
the relationship between aboveground biomass
values and vegetation indices was a linear regression
with the highest level of significance for NDVI in
all compartments. Since at the compartment level
the correlation coefficient between NDVI and
aboveground biomass was the highest, NDVI was
used for mapping aboveground biomass. According
to the results of this study, biomass values were
highly different in various climatic and altitudinal
classes with the highest biomass value observed in
humid climate and high-altitude class.
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Introduction

Nowadays, among the most important global concerns
is the increasing trend in atmospheric carbon dioxide,
global warming, and its potential for global climate
change. As the largest surfaces covering the non-
glacial lands of the earth, forest ecosystems absorb large
amounts of atmospheric carbon dioxide via photosyn-
thesis (Lorenz and Lal 2010) and by storing 86% of
carbon dioxide in terrestrial lands and 73% of soil
carbon (Sedjo 1993) forest ecosystems are considered
to be the most important carbon sink or sponge in
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nature, which play a key role in global carbon cycle
(Vashum and Jayakumar 2012), mitigating to global
warming and adaptation with global climate change
(Günlü et al. 2014. So, the process of deforestation
and forest degradation in recent decades could result in
emission of carbon into the atmosphere (Lu et al. 2014).
In order to avoid this process, it is necessary to estimate
the quantities of carbon content in the forests. Above-
ground biomass (AGB) serves as the basic component
in studies of estimation of carbon stocks of forests and
their changes (Gómez et al. 2014), which mainly in-
cludes trees as the most important element of forest
ecosystems and the largest living biomass reserves in
the forests (Lorenz and Lal 2010).

Three main approaches for estimating forest biomass
include field measurements, remote sensing and geo-
graphic information system (Lu 2006). Although it
serves as the most common and the most accurate
technique for estimating biomass, field data seems to
be costly, time-consuming, destructive, and impractical
at large scale (Devagiri et al. 2013; Du et al. 2014; Deb
et al. 2017). Modern RS-based and GIS tools provide a
powerful tool for quick, realistic, practical, and relative-
ly low-cost assessment and monitoring of AGB and
carbon storage and solving the challenges for estimating
AGB in the field (Zhu et al. 2015; Kross et al. 2015;
Hirata et al. 2014; Devagiri et al. 2013; Yadav and
Nandy 2015). Remote sensing data do not directly esti-
mate the biomass values, biomass but is calculated using
a strong statistical relationship between the spectral
responses taken from the sensor, which mainly comprise
various vegetation indices (VIs), and the AGB informa-
tion obtained from ground plots (Clerici et al. 2016;
Kumar et al. 2016; Lee et al. 2017). Generally defined
as mathematical transformations of surface reflection
from sensors by applying of red and infrared spectral
bands (Yan et al. 2013), VIs are among the most impor-
tant and the most commonly applied processing tech-
niques for forest structural attributes (Kalbi et al. 2014).
In recent years, many studies have been carried out
using remote sensing and various satellites, as well as
using different VIs for calculating, predicting, and
monitoring AGB. Each of these systems has its own
advantages and constraints to produce valid and
acceptable estimates at various scales. Clerici et al.
(2016) applied Pleiades-1A and GeoEye-1 satellites
for estimating the AGB and carbon in Colombian forests
(Andes mountainous area) using linear models and VIs
and achieved satisfactory results. In order to modeling

the volume and AGB, Dimitrov and Roumenina (2013)
evaluated the data obtained from the spectral bands and
indices derived from Spot-5 satellite with field data
based on a regression model in Bulgarian pine forests.
Günlü et al. (2014) assessed the relationship between
ABG and spectral bands with VIs from Landsat TM
satellite, using multiple regression models in Anatolian
Mountains of Crimea, and concluded that VIs could
better estimate AGB compared to individual bands.
Dube andMutanga (2016) by studying three Eucalyptus
and Pine plantations in South Africa concluded that
integrating the data extracted from eight bands of
WorldWiew-2 satellite with indices from environment
variables could lead to better and more reliable results
for estimatingAGB values. Kumar et al. (2016) reported
better results for combination of spectral indices of
Landsat-8 satellite data and ALOS-2 radar for estimat-
ing biomass compared to applying these indices
individually.

Iran is considered as LFCC (low forest cover coun-
tries) (Vahedi et al. 2016). As the remnant of Tertiary,
Hyrcanian forests in North of Iran are extended through-
out the south of Caspian Sea and are now increasingly
under the risk of degradation, fragmentation, and con-
version into other forms of land uses (Mohammadi and
Shataee 2010). Therefore, it seems necessity to study
these forests in terms of ecology. This study aims to
present a model for estimating AGB in Hyrcanian for-
ests of North of Iran using SPOT-6 satellite data.

Materials and methods

Study area

Hyrcanian forests are located in a narrow strip in the
south of Caspian Sea extending from east to west on the
northern slopes of Alborz Mountains (Mohammadi and
Shataee 2010), ranging from sea level to a maximum
altitude of 2800 m (a.s.l.) in terms of altitude. North of
Iran is characterized by semi-Mediterranean and tem-
perate and humid climate. Mean annual temperature is
15–18 °C, with annual rainfall varying from 2000mm in
the western parts to 600 mm in the eastern regions.
Hyrcanian forests are classified as deciduous, broad-
leaved, uneven-aged forests with a canopy cover rang-
ing from 40 to 90%, and pure and mixed stands (Marvi-
Mohajer 2005). In this study, three forest areas in the
western (Asalem) (1 and 2), central (Sardabrud) (3 and
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4), and eastern (Kordkuy) (5 and 6) parts of Hyrcanian
forests characterized by virgin forests or forest stands
with the lowest level of man-made disturbance were
selected as the study area (Fig. 1). The climatic and
topographic data for the studied compartments were
extracted and collected from Building a Multiple-Use
Forest Management Framework to Conserve Biodiver-
sity in the Caspian Hyrcanian Forest Landscape
(BMUFMFCBCHFL 2016). Based on the data obtained
from BMUFMFCBCHFL, compartments in this study
are characterized by semi-arid to humid climate types
(according to de Martonne aridity index), temperature
ranging from 12.5 to 20 °C and altitude varying from
600 to 1650 m (Table 2).

Field data and estimating AGB

In order to making a homogeneous conditions in the
study areas and for comparability reason after

creating land form unit maps in compartments, the
altitude classes of 600–800 and 1500–1800 m with a
mean slope of 15 to 45% at northern slope aspects (N,
NE, NW) was mapped on a 1:25000 topography map
and defined in GIS environment. In the next step,
square-shape plots (30 × 30 m) were sampled ran-
domly in summer of 2016 and coordinates of each
plot was recorded using GPS device (Zhu et al. 2015).
In each plot, tree height, diameter at breast height
(DBH), diameter of tree crown in two directions per-
pendicular to each other, log length (tree height from
ground to a point at which the crown starts), and
foliage percentage were measured for all trees
(Vahedi et al. 2016; Haghdoost et al. 2013). Allome-
tric equations proposed by Ponce-Hernandez et al.
(2004) were applied for calculating tree AGB. To do
this, we divided tree were into two parts of stem
and crown for calculating tree biomass according to
tree morphology (Vahedi et al. 2016; Haghdoost

Fig. 1 Geographical location of the studied compartments in Hyrcanian forests of North of Iran
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et al. 2013). Equations for calculating biomass are
presented in Table 1.

Equations 1 and 2 were used for calculating basal
area (BA) and stem volume (Vs) for each tree. Based on
the architecture of each species, form factor in Hyrcani-
an forests is considered as 0.5 on average (Namiranian
2010). Equation 3 was applied to calculate the crown
volume (Vc) for broadleaf species. Correction factor is
related to proportion of foliage in crown volume. One
can obtain an acceptable approximation of canopy struc-
ture by standing beneath the crown or canopy, beside the
trunk, and taking a careful visual appreciation in order to
estimate the actual volume of crown occupied by the
foliage. In the next step, Eq. 5 is used to calculate the
total biomass (stem and crown) of the tree per kg. Wood
density (WDk) in this study was obtained by taking
wood samples (2 cm3) from tree and the ratio of dry
mass of each sample (gr) by placing it in an oven at
105 °C to a fresh volume of the same sample.

Finally, the obtained values of AGB in sampling
plots were summarized and converted to Mg/ha a per
hectare unit (Table 2) (Günlü et al. 2014; Haghdoost
et al. 2013).

Remote sensing data and processing

The estimation of biomass based on remote sensing
technology is a widespread procedure with many steps
(Aricak et al. 2015). After ground data collection, the
next step in this research is the provision of satellite
images. In this study, Spot-6 satellite images with the
resolution of 6 m were used (Table 3). Selected images

corresponded to the inventory in terms of timing with
suitable resolution.

Pre-processing of satellite images

Geometric correction of the images was performed
using a digital ground model of the region derived from
a topographic map of 1:25,000 with a precision of 10 m
(Kalbi et al. 2014; Noorian et al. 2016) and a number of
ground control points based on the Image to Map meth-
od in ENVI 5.1 software (Zhu et al. 2015). Accuracy of
geometric correction was evaluated using road vector
layer and ground control points recorded in GPS (Fallah
et al. 2014). Images with a mean geometric error of less
than 0.5 pixels were corrected. Due to the lack of clouds
in the images, we did not perform atmospheric
corrections.

Processing of satellite images

The most important processing on the images is band
ratio to create VIs. VIs are mathematical transforma-
tions, which are defined based on the different bands of
the sensors and are used to evaluate the bio-
physiological characteristics of plants in multispectral
satellite observations (Wang et al. 2016; Kalbi et al.
2013; Lee et al. 2017). To determine the relationship
between the values of AGB collected from ground data
as a dependent variable and various extracted indices
based on spectral ratios of images as independent vari-
ables are calculated by regression models (Günlü et al.
2014; Yadav and Nandy 2015). These indices were

Table 1 Equations presented for calculating AGB

Equation ID Equation Reference Parameters

1
BA ¼ π

4

� �� DBH2
Vahedi et al. 2016; Haghdoost et al. (2013) Basal area

2 Vs = BA× h × Ffa Vahedi et al. 2016; Haghdoost et al. 2013 Stem volume

3 VC = [π ×Dd2/12] × CF Vahedi et al. 2016; Haghdoost et al. 2013;
Ponce-Hernandez et al. 2004)

Crown volume

4
WDk ¼ Mwk

Vwk

Henry et al. (2010) wood density

5 Biomass = 1000 ×WD × (Vc + Vs) (Ponce-Hernandez et al. 2004) Total tree biomass

average diameter Dd π = 3.141592, tree form factor Ffa, diameter at breast height DBH, tree height h: Dd = (L +W)/2 of crown, fresh
volume Vwk, dry mass Mwk, correction factor CF, crown width W, crown length L
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selected based on previous studies (Wang et al. 2013;
Yan et al. 2013; Clerici et al. 2016). All pixels within
each plot were selected and a mean value of VIs per plot
was obtained by averaging for the three indices (Clerici
et al. 2016). Spectral ratio of VIs was calculated
(Table 4). Figures 2, 3, and 4 show maps for values of
VIs calculated in the studied areas.

Results

Regression analysis of the relationship between biomass
and VIs

Using field data and data obtained from the mean values
of VIs at the sample plots, regression relationships be-
tween biomass and VIs were estimated. To develop the
best regression model, R2, R, RMSE, and P values were
computed (Zhou et al. 2013). The results showed that
the best regression relationship between the studied
variables was a linear relationship and these

relationships had the highest R2 and the highest level
of significance compared to other relationships. The
highest level of significance, as well as the highest R2

value was related to NDVI, followed by RVI with the
lowest value for TVI. The relationship between NDVI
and TVI with AGB was a positive relationship so that
the values of AGB increases with increasing the value of
these indices. This trend is inverse for RVI, so that the
value of AGB decreases with increasing value of this
index. Therefore, the relationship between RVI and
AGB values is negative. For the relationship between
NDVI and the values of AGB in all studied compart-
ments was significant at confidence level of 0.01, indi-
cating a strong positive relationship between NDVI and
AGB values as AGB values increased by increasing
NDVI. Based on the results, R2 coefficient for NDVI
varies from 0.56 to 0.62 in different compartments, so it
can be stated that 0.56 to 0.62 of changes in AGB are
dependent on NDVI. In case of all other VIs, the results
showed that in some compartments, there was a signif-
icant relationship between changes in AGB and these
indices at confidence level of 0.05%. In case of all these
indices, R2 was less than 0.50. Therefore, changes in
AGB were much less dependent on changes in RVI and
TVI indices.

Comparison of regression relationships based
on climate and altitude

As cited in research methodology, this study was carried
out in three different climates and two altitude classes of
middle altitude and high altitude. Based on the results,
the highest level of significance in case of NDVI and
AGB was observed for the regression relationships

Table 2 Compartment number, number of sample plots, average altitude, mean temperature, climate type, and calculated values for biomass

Compartment ID Number of
sample plots

Average
altitude (m)

Annual
precipitation (mm)

Mean temperature (°C) Climate type Aboveground
biomass (Mg/ha)

1 28 1500 1500 12.5–15 Humid 1173.41

2 20 725 1300 15–20 Humid 994.77

3 32 1530 1000 12.5–15 Semi-humid to Humid 666.49

4 24 600 800 15–20 Semi-humid to humid 389.92

5 20 1650 600 12.5–15 Semi-arid to semi-humid 370.75

6 16 750 500 15–20 Semi-arid to semi-humid 367.80

Table 3 Properties of satellite images used in this study

Compartment
ID

Sensor Date (day/
month/year)

Multispectral imagery
resolution

1 SPOT-6 13/08/2016 6 m

2 SPOT-6 13/08/2016 6 m

3 SPOT-6 20/08/2016 6 m

4 SPOT-6 20/08/2016 6 m

5 SPOT-6 15/08/2016 6 m

6 SPOT-6 15/08/2016 6 m
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calculated in semi-arid to semi-humid climatic region in
middle altitude class (6) and the lowest value was found
for humid climate and high-altitude (1) class. In case of
RVI, the highest R2 coefficient of AGB was found in

semi-arid to semi-humid climatic region and high-
altitude (5), and the lowest was related to humid climate
in the middle-altitude class (2). Also, the highest and
lowest R2 coefficients between TVI and AGB was

Table 4 Selected indices for derived from studies on ABG estimation based on remote sensing data

Vegetation index Equation Reference

Normalized difference vegetation index (NDVI) (NIR −RED)/(NIR + RED) (Rouse et al. 1974)

Ratio vegetation index (RVI) RED/NIR (Pearson and Miller 1972)

Transformed vegetation index (TVI)
NDVIþ0:5ð Þ
NDVIþ0:5j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVIþ 0:5j jp (Perry and Lautenschlager 1984)

Fig. 2 NDVI for the studied compartments (a: high-altitude; b: middle-altitude; 1 and 2: Asalem; 3 and 4: Sardabrud; 5 and 6: Kordkuy)
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belonged to regression equations calculated in humid
climate in middle-altitude (2), and humid climate class
in high-altitude (1), respectively, (Table 5).

Choosing the most optimal regression model
for estimating biomass

In order to estimate AGB at compartments, the most
suitable indices for calculating and mapping of AGB
were selected based on R2 coefficient and signifi-
cance level of the regression relationship. According
to the results, NDVI is the most suitable index for
estimating and mapping of AGB in all compartments
because the results showed that the relationship be-
tween NDVI and AGB had the highest level of

significance compared to other indices. As stated
earlier, this is a positive linear relationship which
means that the values of AGB increases with increas-
ing the value of this index (Fig. 5). After selecting the
most suitable relationships between aboveground and
VIs in each of the studied compartments, the AGB
was mapped in terms of Mg/ha unit. Based on the
results, the highest average AGB estimated in com-
partments were found in high-altitude and middle
altitude of compartments 1 and 2 in Asalem region,
followed by average AGB estimated in compart-
ments 3 and 4 of Sardabrud region. The lowest aver-
age AGB estimated were observed in low altitude
and high altitude of compartments 5 and 6 in
Kordkuy region (Fig. 6).

Fig. 3 RVI for the studied compartments (a: high-altitude; b: middle-altitude; 1 and 2: Asalem; 3 and 4: Sardabrud; 5 and 6: Kordkuy)
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After selecting the most optimal regression equations
for mapping biomass, the NDVI is entered to the equa-
tion as an independent variable and the log AGB map is
generated. Then, the estimated log AGB was converted
into Mg/ha unit (Table 6 and Fig. 6).

Discussion and conclusions

In the first step of this study, biomass values at
compartments were estimated using statistical
methods. Based on the results, the highest biomass
was found in the western part (Asalem) and in high
altitude. As in many studies regarding the biomass
value and growth rate of Hyrcanian forests in North

of Iran, ecological and climatic parameters fluctuate
highly from the east to the west in which rainfall
increases considerably, while the length of dry sea-
s o n d e c r e a s e s ( M a r v i - M o h a j e r 2 0 0 5 ;
BMUFMFCBCHFL 2016). Therefore, forests in
the western parts of Hyrcanian area are of a higher
growth rate and biodiversity compared to the eastern
parts (Vahedi et al. 2016; Mohammadi et al. 2017;
Amirnejad et al. 2006), and the results of this study
also indicates that AGB estimated from field inven-
tory increases from east to west. In addition, in this
study, biomass was estimated in two altitude classes
of high altitude and middle altitude. Based on the
results, the AGB estimated was higher in high alti-
tude compared to middle-altitude classes.

Fig. 4 TVI for the studied compartments (a: high-altitude; b: middle-altitude; 1 and 2: Asalem; 3 and 4: Sardabrud; 5 and 6: Kordkuy)
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The results showed that altitude had a significant
effect on AGB so that it was found that AGB increases
with increasing altitude, which can be attributed to
changes in ecological conditions along altitude gradient,
especially changes in temperature and precipitation and
subsequently changes in the species and structure of
Hyrcanian forests. In these forests, despite the decrease
in temperature with increasing the altitude, rainfall in-
creases with increasing altitudes according to observa-
tions and surveys carried out (Marvi-Mohajer 2005;
BMUFMFCBCHFL 2016), and with improvement in
conditions associated with the change in forests species,
the average basal area per hectare increases and subse-
quently the biomass of trees increases. Based on the
studies and forestry plans carried out in these areas,
anthropogenic forest degradation rate as well as pres-
ence of livestock in middle-altitude range of these for-
ests are higher compared to high-altitude range
(BMUFMFCBCHFL 2016; Sefidi et al. 2011). While
some studies have shown a contrasting trend for AGB
with increasing altitude in tropical mountainous forests,

indicating that AGB decreases with increasing altitude
(Girardin et al. 2010). There is a lack of information on
biomass and carbon reserves along the altitude gradient
in the temperate forests of the world (Gairola et al.
2011). In case of the areas studied in the present re-
search, the limited access tomountainous forests, lack of
comprehensive statistical data in the research areas,
impact of different successional stages and the effects
of other site factors involved as well as the process of
degradation and disturbance in Hyrcanian forests of
North of Iran, which, according to many studies, has
been started from low-altitude regions so that one can
find virgin forests in high-altitude areas (Sefidi et al.
2011), can be among the factors influencing on the
results of the present study.

Estimation and mapping of AGB are performed in
forest areas with different goals. The main reason for
this is the identification of sensitive forest areas that are
prone to conservation. Since many parameters of tree
are measured in the study of AGB, field inventory seems
to be inappropriate because of high costs and being

Table 5 Regression equations, R2, R, RMSE, and significance level of the variables at the studied compartments

Compartment ID Compartment name Vegetation index Regression model R2 R p RMSE

1 Asalem high-altitude land forest NDVI Log AGB= 2.62× + 1.74 0.56 0.75 0.000** 0.08

TVI Log AGB= 5.64× − 2.60 0.25 0.50 0.06 0.013

RVI Log AGB= −2.01× + 3.64 0.33 0.57 0.01** 0.012

2 Asalem middle-altitude land forest NDVI Log AGB= 3.01× + 1.58 0.58 0.76 0.000** 0.005

TVI Log AGB= 3.90× − 0.90 0.35 0.60 0.06 0.007

RVI Log AGB= −1.90× + 3.64 0.21 0.46 0.044* 0.009

3 Sardabrud high-altitude land forest NDVI Log AGB= 2.35× + 1.51 0.57 0.75 0.000** 0.003

TVI Log AGB= 3.00× − 0.23 0.28 0.52 0.02* 0.006

RVI Log AGB= −1.74× + 3.31 0.38 0.61 0.000** 0.005

4 Sardabrud middle-altitude land forest NDVI Log AGB= 1.63× + 1.82 0.58 0.76 0.000** 0.007

TVI Log AGB= 1.95× + 0.68 0.31 0.55 0.05* 0.011

RVI Log AGB= −2.22× + 3.42 0.35 0.60 0.02* 0.010

5 Kordkuy high-altitude land forest NDVI Log AGB= 1.94× + 1.55 0.59 0.77 0.000** 0.004

TVI Log AGB= 2.77× − 0.26 0.29 0.54 0.016* 0.007

RVI Log AGB= −2.37× + 3.27 0.40 0.63 0.003* 0.006

6 Kordkuy middle-altitude land forest NDVI Log AGB= 1.59× + 1.76 0.62 0.79 0.000** 0.002

TVI Log AGB= 2.84× − 0.27 0.34 0.58 0.017* 0.004

RVI Log AGB= −1.41× + 3.02 0.37 0.61 0.011* 0.003

Significance level p* = 0.05 p** = 0.01
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time-consuming. Therefore, applying remote sensing
techniques is a good alternative approach for studying
vegetation (Zhu et al. 2015; Kross et al. 2015; Hirata
et al. 2014). Regression models and relationships
between AGB and VIs has been considered as the
most common methods for studying biomass using
remote sensing techniques (Wang et al. 2016; Clerici
et al. 2016; Kumar et al. 2016; Wang et al. 2013;
Yan et al. 2013).

Since the study area in all compartments had the
appropriate cover percentage, the soil background effect
was at its minimum level. Therefore, indices such as

NDVI, RVI, and TVI are considered to be suitable
indices (Wang et al. 2016). According to the findings
of the research in all compartments of the study area,
among the selected indices in this study the NDVI
showed the most suitable relationship with AGB for
estimating AGB followed by RVI. This index, RVI,
had a reverse relationship with the AGB. The results
of study by Clerici et al. (2016) confirmed that the
indices used in the present research are the most suitable
indices for studying biomass in areas with a relatively
good vegetation cover. In the study of Clerici et al.
(2016), RVI showed the highest R2 coefficient with

Fig. 5 The most optimal regression model between biomass and VIs at the studied compartments

352 Page 10 of 14 Environ Monit Assess (2018) 190: 352



AGB. The results presented by Kumar et al. (2016)
showed that EVI, SAVI, and RVI indices showed a
better relationship with AGB compared to NDVI.
Günlü et al. (2014) also demonstrated that the VIs,
especially the EVI could lead to better results for

biomass modeling compared to Landsat individual
bands and NDVI. The most important point regarding
to choosing VIs is the use of suitable VIs for estimating
biomass with respect to climatic conditions and land
cover (Wang et al. 2016; Yavaşlı 2016).

Fig. 6 Mapping of biomass in terms of Mg/ha for the studied compartments (a: high-altitude; b: middle-altitude; 1 and 2: Asalem; 3 and 4:
Sardabrud; 5 and 6: Kordkuy)

Table 6 The most optimal regression model between AGB and NDVI—calculation of AGB in terms of Mg/ha unit

Compartment ID Compartment name Vegetation index Regression model AGB (Mg/ha)

1 Asalem high-altitude land forest NDVI Log AGB= 2.62× + 1.74 10Log AGB

2 Asalem middle-altitude land forest NDVI Log AGB= 3.01× + 1.58

3 Sardabrud high-altitude land forest NDVI Log AGB= 2.35× + 1.51

4 Sardabrud middle-altitude land forest NDVI Log AGB= 1.63× + 1.82

5 Kordkuy high-altitude land forest NDVI Log AGB= 1.94× + 1.55

6 Kordkuy middle-altitude land forest NDVI Log AGB= 1.59× + 1.76
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Conclusion

In this research, considering the characteristics of the
study area and comparing with other studies conducted
in this regard, the most appropriate indices were obtain-
ed for estimating biomass based on regression equa-
tions. The results show that the satellite images used in
this study provide satisfactory results regarding model-
ing of AGB inHyrcanian forests and estimating biomass
by applying remote sensing in order to obtain rapid and
acceptable estimation of these forests using VIs can be a
desirable and cost-effective method to manage and pro-
tect these valuable forests.
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