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Abstract Air overpressure (AOp) is one of the most
adverse effects induced by blasting in the surface mines
and civil projects. So, proper evaluation and estimation
of the AOp is important for minimizing the environmen-
tal problems resulting from blasting. The main aim of
this study is to estimate AOp produced by blasting
operation in Miduk copper mine, Iran, developing two
artificial intelligence models, i.e., genetic programming
(GP) and gene expression programming (GEP). Then,
the accuracy of the GP and GEP models has been

compared to multiple linear regression (MLR) and three
empirical models. For this purpose, 92 blasting events
were investigated, and subsequently, the AOp values
were carefully measured. Moreover, in each operation,
the values of maximum charge per delay and distance
from blast points, as two effective parameters on the
AOp, were measured. After predicting by the predictive
models, their performance prediction was checked in
terms of variance account for (VAF), coefficient of
determination (CoD), and root mean square error
(RMSE). Finally, it was found that the GEP with VAF
of 94.12%, CoD of 0.941, and RMSE of 0.06 is a more
precise model than other predictive models for the AOp
prediction in the Miduk copper mine, and it can be
introduced as a new powerful tool for estimating the
AOp resulting from blasting.

Keywords Blasting . Air overpressure . Genetic
programming . Gene expression programming

Abbreviations
ANN Artificial neural network
AOp Air overpressure
CoD Coefficient of determination
CPs Computer programs
D Distance between monitoring station and blast

point
EAs Evolutionary algorithms
ETs Expression trees
F Function set
GA Genetic algorithm
GEP Gene expression programming
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GP Genetic programming
ICA Imperialist competitive algorithm
MC Maximum charge used per delay
MLR Multiple linear regression
PSO Particle swarm optimization
RMSE Root mean square error
T Terminal set
USBM US Bureau of Mines
VAF Variance account for

Introduction

Blasting is a broadly used method for rock breakage in
the civil and mining industries. Ground vibration, air
overpressure (AOp), flyrock, and backbreak are con-
sidered as the environmental side effects induced by
blasting. Hence, accurate estimation of these unwanted
effects is crucial (Bhandari 1997; Monjezi et al. 2010;
Rezaei et al. 2011; Mohammadnejad et al. 2013;
Hasanipanah et al. 2015a, b; Jahed Armaghani et al.
2016a). Among these effects, AOp is one of the most
undesirable effects and can produce damage to nearby
structure (Hajihassani et al. 2015). Based on literature,
AOp is produced through a large shock wave from
explosive into the surface which refracted horizontally
(Khandelwal and Singh 2005; Jahed Armaghani et al.
2015). The unspent energy in the explosion gases
above the normal air atmospheric level is defined as
AOp. Based on literature, AOp which is also consid-
ered as air waves is created based on four sources, i.e.,
air-pressure pulse, rock-pressure pulse, gas-pressure
pulse, and stemming-release pulse. More explanations
regarding these four sources can be found in the other
references (Wiss and Linehan 1978; Siskind et al.
1980). AOp is measured by Pascal (Pa) or decibels
(dB) and can be recognized by sound. The lowest
detectable sound for humans is 20 Hz (Kuzu et al.
2009). Therefore, there is no doubt that humans may
not react to sounds of less than 20 Hz. A value of
180 dB is the limit of structural damage possibility; a
range of 130–180 dB can be resulted to break glass. In
addition, an ultimate value of 130 dB can be damaged
to window (or at least window vibrations) (Griffiths
et al. 1978; Rodríguez et al. 2010). So, it is of interest
if values lower than 110 dB are obtained for AOp.
Many parameters affect the intensity of AOp. These
parameters can be divided into three main categories,

i.e., blast design parameters, properties of explosive
materials, and rock mass (Hemphill 1981; McKenzie
1990; Segarra et al. 2010). The first and second groups
are considered as controllable parameters, whereas the
third group is considered as natural and non-
controllable parameters. Blast design parameters such
as burden, stemming, spacing between blastholes,
maximum charge used per delay (MC), total charge,
blasthole diameter, blasthole length, delay timing, sub-
drilling, blasthole inclination, and blasting type (pro-
duction or controlled) are the controllable parameters.
Properties of explosive materials such as type (dyna-
mite, emulsion, and ANFO), density, and strength of
explosive materials are also considered as the control-
lable parameters. In the third group, non-controllable
parameters such as shear, compressive, and tensile
strength of rock mass are related to geological and
geotechnical conditions of rock mass. In the literature,
many attempts have been done for AOp prediction
through empirical models (EMs) (Siskind et al. 1980;
Rodríguez et al. 2007). The EMs were constructed
based on two influential parameters on the AOp,
MC, and distance from blast points. These EMs are
mainly simple and quick; nevertheless, they have low-
performance capacity, as mentioned in many studies
(Hasanipanah et al. 2015b; Jahed Armaghani et al.
2015). Besides, the proper estimation of the AOp is
important for determination of blast safety area. The
artificial intelligence (AI) methods have been widely
highlighted for solving the geotechnical problems
(e.g., Ahmad et al. 2017; Singh et al. 2017; Sharma
et al. 2017a, b, c) and more specifically in the field of
AOp estimation (Singh and Chakrapani 2015;
Ravansalar and Rajaee 2015; Sankararajan et al.
2017; Deo and Şahin 2016; Singh et al. 2016; Verma
et al. 2016; Naderi et al. 2017). In this regard,
Khandelwal and Kankar (2011) developed support
vector machine (SVM) and generalized predictor mod-
el to estimate AOp in three mines, India. They con-
cluded that SVM can predict AOp better than gener-
alized predictor equation. Tonnizam Mohamad et al.
(2012) investigated the application of artificial neural
network (ANN) to estimate blast-induced AOp. In
their study, datasets were gathered from two granite
quarry sites in Malaysia. As a result, it was found that
the ANN can be introduced as a reasonable tool for the
AOp prediction. A hybrid model of ANN and particle
swarm optimization (PSO) algorithm were employed
to predict AOp by Hajihassani et al. (2015). Their
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results indicated that the PSO is a useful algorithm to
design the ANN, and obtained results from PSO-ANN
model is better than ANN and EMs. Another evolu-
tionary algorithm, namely imperialist competitive al-
gorithm (ICA), was used to design ANN in predicting
the AOp by Jahed Armaghani et al. (2016b). They
demonstrated that ICA-ANN is a more acceptable tool
than ANN and other EMs.

Evolutionary algorithms (EAs) are one of the most
applicable and famous stochastic meta-heuristics.
The literature review shows the success use of these
algorithms in different real and complex problems
(Gong et al. 2016; Xu et al. 2016; Qazi et al. 2016;
Zou et al. 2017). Afterwards, a new computation field
was named as evolutionary computation (Back et al.
1997). Genetic programming (GP) and gene expres-
sion programming (GEP) are the subset of EAs that
are developed versions of the genetic algorithm
(GA). The GP and GEP methods are the powerful
tools for function finding in non-linear and highly
complex problems (Ghotbi Ravandi et al. 2013;
Shirani Faradonbeh et a l . 2015, 2016a, b;
Khandelwal et al. 2016, 2017). In the present re-
search work, GP and GEP models are used to devel-
op mathematical predictor functions for estimating
the AOp in Miduk copper mine, Iran. For comparison
purposes, regression analysis and three EMs are also
developed.

Methodology

Genetic programming

GP paradigm is a subset of EAs which applies the
Darwinian principle of evolution to hierarchical com-
puter programs and has produced promising
breakthroughs in various scientific and engineering
applications. GP firstly invented by Cramer (1985) and
then improvedmathematically byKoza (1996). GP is an
advanced version of GA, and their main difference is in
the structure of individuals. The principal components
of GA are binary coded strings, which are called chro-
mosomes and demonstrate proposed solutions to a prob-
lem. In GP, solutions are in the form of computer pro-
grams (CPs) which follow a computer programming
language namely LISP and can be arranged as tree
structures with diverse sizes and shapes. Each CP is a
combination of the terminal set (T) and function set (F).
The terminals are the input parameters and the constant
values that can be defined by GP designer. The function
set consists of mathematical, logical, Boolean, or user-
defined functions that can be determined according to
the nature of the problem and the suggestions of other
scholars (Koza 1996; Ferreira 2001; Hoseinian et al.
2017; Shirani Faradonbeh et al., 2017; Jahed
Armaghani et al. 2018). Some of these functions are
listed as follows (Ferreira 2006):

F ¼ þ;−; *; =;2 ;3 ;Q; 3Rt; sin; cos; tan;Asin;Acos;Atan;Exp; Ln; log; and; or; not; nor;…
� � ð1Þ

where Q is the square root of a number, Asin is the
inverse trigonometric function for sin, and 3Rt is the
cube root of the terminal. Figure 1 shows the process of
GP modeling. GP algorithm starts with the random
generation of initial population (CPs) using one of three
strategies of Grow, Half, and Full. Then, the fitness of
each CPs is evaluated based on the defined fitness
function. The best individuals of the first generation will
be selected by the selection operator to reproduce into
the next generation. There are four different selection
methods including roulette wheel selection, tournament
selection, rank selection, and lexicographic parsimony
pressure selection (Ferreira 2006). Roulette wheel meth-
od, which is also called fitness proportionate selection
method, is more common among others. Suppose that f
(si(t)) is the fitness of individual si in the population at

generation t; then, under roulette wheel selection meth-
od, the individual si will be copied into the next gener-
ation with the probability of P(Sj(t)) as a result of repro-
duction operation (Ferreira 2006).

P S j tð Þ
� � ¼ f si tð Þð Þ

∑M
j¼1 f s j tð Þ

� � ð2Þ

where∑M
j¼1 f s j tð Þ

� �
is the total amount of fitness values

with M number of chromosomes. In the following, the
probability values of chromosomes are calculated as a
sector of the circle and placed on it, and the process of
selection will be done by a selector (see Fig. 2).

Afterwards, the stopping criteria (i.e., the maximum
number of generation or the favorable value for fitness
function) will be checked and if are not met, the process
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will continue. In this stage, two important genetic oper-
ators are applied to the remained individuals to create
the modified CPs. Crossover is one of the genetic oper-
ators that selects two CPs (parents) randomly and ex-
changes some parts of parse trees between them that
lead to the creation of two new children. Another genet-
ic operator is mutation, which has this ability to change
any nodes of parse trees and create modified programs.
The modified CPs caused by the applying genetic oper-
ators on the first population are copied to the next
generation, and again, the fitness of the second genera-
tion will be evaluated. This process will be repeated up
to meet the stopping condition. Although GP has some
preferences to other algorithms, it suffers from some
problems such as generation of infeasible solutions be-
cause of difficulties in applying genetic operators to the
parse trees and uncontrollable code growth. More infor-
mation regarding GP algorithm can be found in the
study conducted by Koza (1996).

Gene expression programming

GA and GP are well-known techniques in the fields of
mining and rock mechanics. Nevertheless, gene expres-
sion programming (GEP) has not been used extensively
in these fields. GEP was introduced by Ferreira (2006)
as a genotype-phenotype system which contains the
simplicity of GA and the abilities of GP. As mentioned
before, GP suffers from shortcomings that GEP can
solve them. In GEP, solutions are chromosomes which
follow the Karva language and then are expressed as
expression trees (ETs) (Ferreira 2001, 2006). A chro-
mosome contains one or more gene (sub-ET). In multi-
genic chromosomes, these sub-ETs are connected to
each other using a linking function (e.g., +, −, ×, /) to
create a big and complex ET. Each gene is made from
two parts of the head (h) which may contain any func-
tions or terminals, and tail (t) that only contains terminal
set. Figure 3a shows an example of a chromosome

Fig. 1 The flow chart of the GP
algorithm (Khandelwal et al. 2017)

Fig. 2 Roulette wheel selection
method (Hoseinian et al. 2017)
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coded in Karva language (K-Expression). In GEP algo-
rithm, the coded chromosomes should be expressed as
ETs (see Fig. 3b). Ferreira (2006) suggested four rules to
the syntactically correct expression of ETs:

Rule 1: The function in the position no. 0 is the root
node of ET.
Rule 2: According to the argument number of func-
tion, each node is divided into several sub-nodes.
For instance, the common functions of −, +, /, and ×
have two arguments (sub-nodes), while Q (square
root) has just one argument. Terminals have no
argument.
Rule 3: According to the order of functions and
terminals along the chromosome, they are embed-
ded from top to down and left to right in each line of
nodes.
Rule 4: The process of ET formation continues
until a line without any function is created.

In GEP, there are some fragments along the chromo-
somes namely non-coding regions which cannot be
expressed as ET (e.g., the position no. 8 in Fig. 3a) but
have a great role in the evolution process and creating
valid solutions. After generating an ET, its mathematical
equation can be extracted (see Fig. 3c). The length of the
head (h) is a parameter that there is no definite way to

determine its optimum value and there is a need to use a
trial and error procedure. The length of the tail can be
calculated using the following equation (Ferreira 2001,
2006; Shirani Faradonbeh et al. 2018):

t ¼ h nmax−1ð Þ þ 1 ð3Þ

where nmax is the maximum number of arguments.
According to Fig. 3, the set of functions is

F = {Q, ∗ , − , +} and the set of terminals is T = {a,
b, c, d, e}. According to F, the nmax = 2 with h = 4,
then t = 4 × (2 − 1) + 1 = 5.

According to Fig. 4, the process of GEP modeling
can be summarized into five below steps:

Step 1: By combining the terminals and functions in a
stochastic manner, the first population of chro-
mosomes is generated.

Step 2: Following the four aforementioned rules, the
chromosomes are presented as ETs and their
mathematical equations are achieved,
respectively.

Step 3: After evaluating the fitness of chromosomes
and checking the termination condition, the
fittest chromosomes are selected and copied
to the next generation.

Step 4: In this step, genetic operators which have key
role in modifying the initial chromosomes are

Fig. 3 The structure of simple
chromosome with different
expressions in GEP. a K-
Expression. b Expression tree
(ET). c Mathematical equation
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applied to the initial population. Ferreira intro-
duced several genetic operators to improve the
performance of GEP. By applying these oper-
ators, the next generation of population is
created.

Step 5: The steps 2 to 4 are repeated until the best
solution is obtained.

The next section introduces the genetic operators in
GEP concisely.

Genetic operators in GEP algorithm

Mutation

Mutation is the operator with wide latitude which can
occur anywhere in the chromosome length provided
that the structure of the chromosome remains con-
stant. In head, mutation can convert any function or
terminal to each other. In tail, mutation can only
convert terminal to another terminal. A range of
(0.01 − 0.1) is suggested for this operator in the liter-
ature (e.g., Ferreira 2006; Shirani Faradonbeh and
Monjezi, 2017).

Inversion

This operator which is restricted to the head of genes
creates a big influence by reversing a small fragment
(e.g., one to three positions). The suggested rate for this
operator is 0.1 (Ferreira 2006).

Transposition

Some transposable fragments jump to other positions
along a chromosome in three different methods: (1)
IS transposition: short fragments with a function or
terminal in the first position transpose to the head of
genes except the root, (2) RIS transposition: short
fragments with function in the first position transpose
to the root of genes, and (3) gene transposition: an
entire gene transposes itself to the beginning of the
chromosome. In contrast to the other forms of trans-
position, in gene transposition, the gene is deleted at
the place of origin. The range of 0.01 to 0.1 is
suggested by scholars for transposition operator
(Ferreira 2006; Khandelwal et al. 2017).

Recombination

Recombination, which is also called crossover, selects
two chromosomes randomly, and using one of three
different methods of one-point recombination, two-
point recombination, or gene recombination replaces
some material between them and generates two new
individuals. The suggested value for the sum of these
three recombination operators is 0.7 (Ferreira 2006).

Case study

In the present research, the studied area is Miduk copper
mine. This mine is one of the most important copper
mines in Iran, which is located approximately 132 km
northwest of Sar-cheshmeh porphyry copper mine in
Kerman province, between 30° 25′ 14″ latitudes and

Fig. 4 The flow chart of GEP
algorithm

351 Page 6 of 15 Environ Monit Assess (2018) 190: 351



55° 10′ 2″ longitudes (see Fig. 5). The mineralogical
combinations in the Miduk mine are given in Table 1.
The total reserve of the deposit is approximately 170 Mt
with 0.85 and 0.25% for copper grade and cut of grade,
respectively. The average bench height and overall slope
angle are 15 m and 38°, respectively. Also, the overall
stripping ratio is 2.4. Blasting operation is performed for
the rock fragmentation in theMiduk coppermine. In this
regard, the mainly used explosive material is ammoni-
um nitrate fuel oil (ANFO). As mentioned earlier, AOp
is considered as an undesirable effect induced by
blasting operation. Therefore, prediction of this environ-
mental effect is essential for the safety issues around the
mines. For achieving the aim of this study, 92 blasting
operations were monitored and the values of AOp were
recorded in terms of decibel (dB) using Minimate Pulse
instrument. Table 2 gives the properties of this instru-
ment. In addition, the values of two influential parame-
ters on the intensity of AOp, i.e., MC and D, were
measured for the total of 92 blasting events. Table 3
summarizes the range of used parameters in this
research.

Prediction of AOp

In this section, the development of GP, GEP, and mul-
tiple linear regression (MLR) models to predict AOp in
Miduk copper mine is described. To model the predic-
tors, the experimental datasets were categorized into two
sets: train and test. Training datasets were applied to
calibrate the models, while testing datasets were applied

to test the validity of the models. In this research, 80 and
20% of the total experimental data (74 and 18 data) were
selected randomly for training and testing aims, in order,
as recommended by Nelson and Illingworth (1990) and
Swingler (1996).

AOp prediction using MLR

MLR is a statistical method which is widely used to
solve many problems in the fields of mining and rock
engineering. In the MLR, a linear equation between two
or more independent variables and one dependent
variable can be fitted. As an example, Sari et al.
(2014) developed multiple regression model to estimate
blast-induced backbreak in the Sungun copper mine.
They showed a high conformity (determination coeffi-
cient = 0.981) between the measured and predicted
backbreak values by multiple regression model. In the
other study, Sharma and Singh (2017) employed regres-
sion models for the predicting unconfined compressive
strength of artificially structured soil, and based on their
obtained results, regression models were acceptable

Fig. 5 The location of the Miduk copper mine

Table 1 The mineralogical combinations in the ore of Miduk
copper mine

Mineral Description Mineral Description

Limonite FeOOH ≈ 0.11% Hematite Fe2O3 ≈ 0.12%
Magnetite Fe3O4 ≈ 0.23% Pyrite FeS2 ≈ 6%
Chalcopyrite CuFeS2 ≈ 0.33% Chalcocite Cu2S ≈ 1%

Environ Monit Assess (2018) 190: 351 Page 7 of 15 351



models in the studied field. Generally, the MLR is
formulated as below:

Y ¼ P0 þ P1X 1 þ…þ PnX n ð4Þ

in which Xi (i = 1,…, n) and Y are input and output
parameters, in order. Also, Pi (i = 0, 1,…, n) present
regression coefficients. As stated previously, consider-
ing training datasets, Eq. 5 was constructed using SPSS
v16 software:

AOp ¼ 127:91þ −0:05� Dð Þ þ 0:014�MCð Þ ð5Þ

In Eq. 5, MC and D are in terms of kilograms and
meters, respectively. More details regarding evaluation
of developed MLR equation are given later.

AOp prediction using empirical models

In the present paper, three EMs were used for predicting
the AOp. National Association of Australian State (
1983) developed an EM for the AOp prediction as
follows:

P ¼
140

ffiffiffiffiffiffiffiffi
MC
200

3

r

D
ð6Þ

where P is overpressure in terms of kilo Pascal. Note
that 1 Pa is 94 dB. In the other research, McKenzie

(1990) used the following equation for predicting
the AOp:

dB ¼ 165−24log
D

MC
1=3

� �
ð7Þ

Also, the US Bureau of Mines (USBM) is used as
the most common EM in many studies (Rosenthal
and Morlock 1987; Cengiz 2008) and is formulated
as follows:

AOp ¼ k
D

MC
1=3

� �n

ð8Þ

Table 2 The properties of the Minimate Pulse

Parameter Value

Linear range 88 to 148 dB

Linear resolution 500 Pa peak

Linear accuracy 0.25 Pa

Liner frequency response 2 to 250 Hz

Table 3 The range of used parameters in this study

Parameter Unit Min Max

Maximum charge weight used per delay kg 215 715

Distance between monitoring station and
blast point

m 211 593

AOp dB 100.6 126.1

Table 4 The parameter values for GP constructed model

GP algorithm parameters Parameter settings

Initial parameters Population size 100

Fitness function RMSE

Initialization method Half

Selection method Roulette wheel

Number of generation 200

Genetic operators Crossover 0.9

Mutation 0.05

Reproduction 0.2

Fig. 6 Parse tree (S-Expression) of the best GP model
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In USBM, k and n are the site constant and can be
computed by regression analysis. For this aim, 74
datasets were applied for constructing the models, and
then, 18 new datasets were applied for evaluating the
performance of the models. Note that, in USBMmodel-
ing procedure of this study, the same datasets performed

in the modeling of MLR, GP, and GEP were applied.
The constructed USBM model in the present paper is
formulated as below:

AOp ¼ 218:5
D

MC
1=3

� �−0:17

ð9Þ

AOp prediction using GP

The most important characteristic of GP and GEP algo-
rithms is the ability to developingmathematical function
between the input parameters and the corresponding
output, while other algorithms such as ANNs fail to do
this. Hence, in the current study, GP and GEP methods
were used to find functions in the form of AOP = f(D,
MC). The parameters of D and MC are independent
parameters, while the AOP is the objective parameter.
In the present study, GPLAB toolbox was utilized to
develop GP model in MATLAB environment. At first,
to avoid the overfitting problem, all 92 datasets com-
piled from Miduk copper mine were normalized be-
tween 0 and 1 using following equation:

X norm ¼ X−Xminð Þ
Xmax−Xminð Þ ð10Þ

Table 5 The parameters of the developed GEP model

GEP algorithm parameters Parameter settings

Initial parameters Number of chromosomes 50

Head size 9

Number of genes 5

Linking function Addition (+)

Fitness function RMSE

Number of generation 3000

Genetic operators Mutation 0.03

Inversion 0.2

IS transposition 0.1

RIS transposition 0.1

Gene transposition 0.1

One-point recombination 0.3

Two-point recombination 0.3

Gene recombination 0.1

Fig. 7 Progression of fitness value for training and testing datasets
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where X is the parameter and Xmin and Xmax are the
minimum and maximum values for X, respectively.
After normalization, the database should be separated
to training and testing sections. The main parameters
of GP include population size, selection method, the
initialization method, the number of generation (iter-
ation), and the values of genetic operators. There is
no definite method to determine the appropriate
values for these parameters, so in this study, the
suggested values by other scholars and trial and error
procedure were used to achieve an optimum combi-
nation of parameters. In both of GP and GEP model-
ing, root mean square error (RMSE) was considered
as a fitness function for evaluating the fitness of
individuals in each iteration.

As mentioned before, the individuals are generated
by combining the terminals and functions. The

parameters of D and MC accompanied by the six ran-
dom constant values were called to the software as the
terminal set (T).

T ¼ D;MC; 9:2744; 1:7261; 2:5175; 4:5290; 0:6039; 4:9850f g ð11Þ
Considering the relationship between input parame-

ters in EMs and previous studies regarding AOp predic-
tion, a function set was defined as follows:

F ¼ þ; −; *; =;2 ;3 ; 3Rt;Q; sin; cos; tan;Atan;Exp;Ln
� � ð12Þ

The population size and the number of generations
were set on 100 and 200, respectively. Several GP
models with different values of parameters were devel-
oped using trial and error procedure to predict AOp. The
best model with the high performance was selected. The
GP parameters of the selected model are listed in

Fig. 8 Variations of CoD during 3000 generations for training and testing datasets

Table 6 K-Expression of genes
related to the best GEP model

d0: D, d1: MC. Italic parts show
the non-coding regions

Gene no. K-Expression

1 d1.X3.*.X3.+.Atan.Sqrt.d1.d0.d1.c1.d1.d1.d1.d0.d1.d1.d1.c0

2 Sin.d0.-.-./.d1.X3.c0.X2.d0.d0.d0.c1.c0.c0.d1.d0.d0.c0

3 Cos.+.d0.-.-.-.*.Cos.c0.c0.c0.c0.d1.c0.c0.d1.d0.c0.c0

4 *.Ln.Sin.c0.+.X2.-.+.X3.d1.d1.d1.c1.d0.c1.d0.d0.c0.d1

5 Sin.+.*.c0.3Rt.d0.Sin.d1.-.d0.d1.d0.d1.d1.c1.d1.c1.d0.c0
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Table 4. Finally, the developed GP equation for AOp
prediction was extracted as follows:

AOp ¼ Atan 1:7261þMCð Þ3
h i

−sin Dð Þ−sin 0:6039ð Þ ð13Þ

The parse tree of the above equation is shown in
Fig. 6. More discussion about the appraisal of the GP
model is given later.

AOp prediction using GEP

For GEP modeling, the GeneXproTools 4.0 software
was used. The same normalized training and testing
datasets used in GP section were employed for GEP
modeling as well. GEP algorithm in comparison to

GP has more parameters that assigning optimum
values for all of them is difficult. In this study,
according to suggested values by Ferreira (2001)
and other scholars (Güllü 2012; Shirani Faradonbeh
et al., 2017; Khandelwal et al. 2017) for genetic
operators, the values of 0.03, 0.2, 0.1, 0.3, and 0.1
were determined for mutation, inversion, three kinds

Fig. 9 Sub-ETs of the best chromosome

Table 7 Performance evaluation of the developed models in this
research

Predictive
model

Training Testing

CoD VAF
(%)

RMSE CoD VAF
(%)

RMSE

Eq. 6 0.908 62.58 35.04 0.918 72.66 32.35

Eq. 7 0.905 70.83 11.72 0.913 80.99 9.01

USBM
(Eq. 9)

0.901 90.88 1.94 0.920 91.54 2.13

MLR
(Eq. 5)

0.902 90.13 1.9 0.903 86.48 2.43

GP 0.915 90.68 0.06 0.928 92.44 0.08

GEP 0.933 93.20 0.05 0.941 94.12 0.06 Fig. 10 Comparison of measured and predicted AOp for GEP
model
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of transposition, recombination (one-point and two-
point), and gene recombination, respectively. Similar
to GP, the RMSE was used as the fitness function to
evaluate the chromosomes. GEP parameters achieved
by several trial and error models are listed in Table 5.
The best chromosome (solution) is a five genic chro-
mosome which belongs to generation no. 2788 (total
number of generations = 3000) with the head and tail
sizes of 9 and 10, respectively. In this chromosome,
the genes are connected to each other using (+) as the
linking function. The variations of fitness function
and coefficient of determination (CoDs) during the
3000 generations are shown in Figs. 7 and 8, respec-
tively. According to Fig. 7, the algorithm has been
stopped at generation no. 2788 after the fitness values
remained constant on 949.942 and 939.362 for train-
ing and testing datasets, respectively.

As mentioned above, the best chromosome con-
sists of five genes and each gene can be presented as
K-Expression (Table 6). According to the defined
rules by Ferreira (2006), these K-Expressions can
be expressed in the form of sub-ETs (see Fig. 9).
Eventually, the mathematical formation of these
sub-ETs was extracted as Eqs. 14–18. Equation 19
shows the general AOp predictor developed by GEP
algorithm.

sub−ET 1 : MC ð14Þ

sub−ET 2 : Sin Dð Þ ð15Þ

sub−ET 3 : Cos Dþ −4:544586ð Þ2−Cos MCð Þ
	 


ð16Þ

sub−ET 4 : Ln 1:023254ð Þ

� Sin 4MC2 þ −5:22644ð Þ3−MC
	 


ð17Þ

sub−ET 5 : Sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin MCð Þ3

p
� D

	 

þ 9:757782

	 

ð18Þ

AOP ¼ sub−ET1ð Þ þ sub−ET2ð Þ þ sub−ET3ð Þ
þ sub−ET4ð Þ þ sub−ET5ð Þ ð19Þ

Results and discussion

To evaluate the effectiveness and accuracy of the pro-
posed models in the predicting AOp, three statistical
indices, i.e., variance account for (VAF), CoD, and
RMSE, were computed. They are defined as follows:

CoD ¼
∑n

i¼1 xim−xmeanð Þ2
h i

− ∑n
i¼1 xim−xip

� �2h i

∑n
i¼1 xim−xmeanð Þ2

h i ð20Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 xim−xip
� �2r

ð21Þ

VAF ¼ 1−
var xim−xip

� �
var ximð Þ

� �
� 100 ð22Þ

in which n is the number of datasets, var is sign of the
variance, xmean is mean of the measured value, and xm
and xp are the measured and predicted AOp values,
respectively. The CoD, RMSE, and VAF equal to 1,
0, and 100%, respectively, indicate the best approx-
imation. The computed statistical indices for the
training and testing datasets are shown in Table 7.
From Table 7, it is found that the accuracy level of
the GEP is higher than GP, USBM, and MLR, Eqs. 6
and 7, respectively. In the other words, the highest
values of VAF and CoD as well as the lowest value of
RMSE were obtained by implementing the GEP. As
an example, Fig. 10 shows the training and testing
results (CoDs) for the GEP model. According to
Fig. 10 and Table 7, it can be seen that the GEP
results have lower errors than those obtained from
other predictive models.

Conclusion

In the present study, the several models, i.e., GP, GEP,
MLR, McKenzine, USBM, and National Association of
Australian State models were employed for predicting
AOp in the Miduk copper mine. For this purpose, 92
blasting events were considered and the values of AOp
as well as two effective parameters on the AOp, i.e., MC
and D, were measured for each event. In the analysis of
this study, 74 and 18 datasets were applied to construct
the models and to verify the constructed models, respec-
tively. Then, to select the best predictive model, three
statistical criteria, i.e., CoD, VAF, and RMSE, were used
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and the obtained results were compared. As a result, the
highest CoD (0.941) and VAF (94.12%) and the lowest
RMSE (0.06) were obtained by GEP. According to the
obtained results, the GEP model is more accurate than
the GP, USBM, MLR, Eqs. 6 and 7, respectively. It is
important to note that developed GP and GEP models in
this study are applicable in estimating air overpressure
values; nevertheless, more accurate results can be ob-
tained when GEP model is utilized, and this model can
be introduced as a newmodel in field of air overpressure
prediction. It should be also noted that the presented
regression and USBM models in this study are specific
to Miduk copper mine and cannot be directly used in
other sites.
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