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Abstract Detecting fine-scale spatiotemporal land use
changes is a prerequisite for understanding and
predicting the effects of urbanization and its related
human impacts on the ecosystem. Land use changes
are frequently examined using vegetation indices
(VIs), although the validation of these indices has not
been conducted at a high resolution. Therefore, a hier-
archical classificationwas constructed to obtain accurate
land use types at a fine scale. The characteristics of four
popular VIs were investigated prior to examining the
hierarchical classification by using Purbachal New
Town, Bangladesh, which exhibits ongoing urbaniza-
tion. These four VIs are the normalized difference VI
(NDVI), green-red VI (GRVI), enhanced VI (EVI), and
two-band EVI (EVI2). The reflectance data were obtain-
ed by the IKONOS (0.8-m resolution) andWorldView-2
sensor (0.5-m resolution) in 2001 and 2015, respective-
ly. The hierarchical classification of land use types was
constructed using a decision tree (DT) utilizing all four
of the examined VIs. The accuracy of the classification
was evaluated using ground truth data with multiple
comparisons and kappa (κ) coefficients. The DT
showed overall accuracies of 96.1 and 97.8% in 2001

and 2015, respectively, while the accuracies of the VIs
were less than 91.2%. These results indicate that eachVI
exhibits unique advantages. In addition, the DTwas the
best classifier of land use types, particularly for native
ecosystems represented by Shorea forests and home-
stead vegetation, at the fine scale. Since the conservation
of these native ecosystems is of prime importance, DTs
based on hierarchical classifications should be used
more widely.
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Introduction

Since the construction of new towns within natural
ecosystems can cause the rapid deterioration of endan-
gered and threatened ecosystems and landscape diversi-
ties therein, it is necessary to predict the effects of land
use changes to promote the conservation and restoration
of ecosystems prior to urbanization. Fine-resolution data
are desirable for detecting land use changes as a result of
urbanization; accordingly, the resolution of land use
maps should be sufficiently fine for detecting the effects
of road networks and of related human impacts on
adjacent areas (Nigam 2000; Erener et al. 2012; Akay
and Sertel 2016). However, due to the lack of high-
resolution data, such detailed analyses are scarce
(Fonji and Taff 2014; Kalyani and Govindarajulu
2015). Two satellites, namely, IKONOS and
WorldView-2 (WV2), recently provided high-
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resolution data with a resolution of less than 1 m
(Aguilar et al. 2013). Such a resolution is likely to be
suitable for analyzing land use changes caused by ur-
banization (Nouri et al. 2014), although the effective-
ness of these datasets has not been examined. Therefore,
the prime objective of the present study is to validate the
applicability of these high-resolution satellite data to the
detection of land use changes caused by urbanization.

The vegetation index (VI) was developed to detect
the characteristics of vegetation and land use via the
combination of two or more wavelength bands related
to photosynthesis, i.e., the blue, green, red, and near-
infrared bands (Huete et al. 1999). A high VI indicates a
high vegetation greenness related to the high activities
and low stresses of plants, and vice versa (Rocha and
Shaver 2009). Therefore, VIs are often applied to anal-
yses of land use and vegetation changes, e.g., to detect
spatial variabilities (Matsushita et al. 2007), plant cover
distributions and densities (Myneni et al. 1997; Saleska
et al. 2007), and temporal changes (Lunetta et al. 2006).
To evaluate the greenness of the ground surface, various
VIs have been proposed (Joshi and Chandra 2011;
Barzegar et al. 2015), and they are represented by the
normalized difference vegetation index (NDVI), en-
hanced vegetation index (EVI), two-band enhanced
vegetation index (EVI2), and green-red vegetation index
(GRVI) (Jiang et al. 2007).

The NDVI is widely used to detect land use-land
cover (LULC) changes (Sahebjalal and Dashtekian
2013; Singh et al. 2016). Additionally, measurements
of the NDVI are employed to broadly assess the spatio-
temporal characteristics of LULC, including the vegeta-
tion cover (Kinthada et al. 2014). The principle of the
NDVI is derived from the reflectance characteristics of
photosynthesis, i.e., through an examination of the veg-
etation greenness by using red band signals absorbed by
plants and near-infrared band signals reflected by plants
(Rouse et al. 1974). The weakness of this index lies in
the fact that atmospheric and/or ground surface condi-
tions, such as clouds and soils, often distort its accuracy
(Kushida et al. 2015; Miura et al. 2001). Three indices,
namely, the EVI, EVI2, and GRVI, were developed to
reduce these obstacles, and they are popularly employed
in addition to the NDVI (Phompila et al. 2015). The EVI
enhances the greenness signal of the ground surface,
which includes forest canopy structures, by using the
blue band (Huete et al. 2002) and therefore reduces soil
and atmospheric interference (Holben and Justice 1981).
The EVI2 was modified from the EVI by removing the

blue band to improve the auto-correlative defects of
surface reflectance spectra between the red and blue
wavelengths (Jiang et al. 2008), particularly when the
background soil reflectance fluctuates (Kushida et al.
2015). The GRVI is often applied to evaluate forest
degradation and canopy tree phenology, because this
index is sensitive to changes in the leaf color at the
canopy surface by using green wavelengths (Motohka
et al. 2010).

The effectiveness of each of the abovementioned
VIs has been compared well at coarse scales, e.g., at
30 m with Landsat TM5 data and at 250 m with both
MOD13Q1 and NOAA-AVHRR imagery (Julien et al.
2011). However, only a few studies have been con-
ducted to investigate LULC changes using VI time
series (Markogianni et al. 2013). Land use classifica-
tion schemes using VIs at a fine scale should be
validated prior to examining land use changes, be-
cause the accuracies of these VIs at higher resolutions
have not been examined thoroughly. A new planned
township, namely, Purbachal New Town, is being
prepared on the northeastern side of Dhaka, Bangla-
desh (Rahman et al. 2016a). High-resolution data are
available for a land use comparison between the pre-
and post-urbanization periods. Therefore, the effec-
tiveness of each of the four popular vegetation indices,
namely, the EVI2, EVI, GRVI, and NDVI, were ex-
amined at a high resolution by comparing the two
phases of urbanization (i.e., pre-urbanization and
present-day) in the new township. Each VI has both
strong and weak points with regard to the classifica-
tion of land use types (Dibs et al. 2017). To solve this
issue, a decision tree (DT) was also utilized in this
study. The application of DTs has been increased for
image classification purposes because of their accura-
cy and interpretation capabilities. DTs are effective for
categorizing and selecting each class in a classifica-
tion tree (Laliberte et al. 2007), and they have per-
formed successfully with remotely sensed data for the
analysis of land use changes at coarse resolutions
(Brown de Colstoun et al. 2003; Sesnie et al. 2008),
although their accuracy was not examined for fine
resolutions (high-resolution satellite imagery < 30 m
and very high-resolution ≤ 5 m) (Fisher et al. 2017).

The first objective in this study was to examine the
efficiencies of the VIs with regard to land use classifi-
cation at a fine scale, because their efficiencies may
differ between coarse and fine resolutions. The second
objective was to characterize the VIs for each land type
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and to develop a hierarchical classification using a DT
utilizing the characteristics of the examined VIs. Finally,
the third objective was to characterize the land use
changes induced by urbanization.

Materials and methods

Study area

Purbachal New Town, Bangladesh (23° 49′ 45.53″–23°
52′ 30.72″ N and 90° 28′ 20.18″–90° 32′ 43.26″ E) was
selected as the study area (Fig. 1). At a large scale,
Purbachal New Town is located within eastern-central
Bangladesh between large floodplains (i.e., the Old
Brahmaputra Floodplains) and terraces and is
sandwiched by two rivers, namely, the Balu and

Sitalakkhya Rivers, on the west and east sides. The
maximum mean monthly temperature is 26.3 °C in
August, and the minimum is 12.7 °C in January
(Shapla et al. 2015). The annual precipitation is
2030 mm. The dry season generally ranges from De-
cember to February, and the rainy season lasts from June
to September (Rahman et al. 2016b). The new town
project was established to reduce the overpopulation in
the capital city of Dhaka, the population density of
which was 57,167/km2 in 2011 (Khatun et al. 2015).
The planned area of the new town is 2489 ha (Zaman
2016). The construction started in 1995, and it did not
cease until 2015. Prior to urbanization, the major land
use types were forest (Shorea robusta Gaertner f., in the
Dipterocarpaceae family, locally called Sal forest),
homestead, homestead vegetation, cropland, and vari-
ous others (Rahman et al. 2016a).

Fig. 1 Image of Purbachal New Town in 2015 from the WV2
satellite. Two rivers, namely, the Balu and Sitalakhya Rivers, are
distributed along the west and east sides of the township, respec-
tively. The inset map at the top left shows Purbachal New Town in
the country of Bangladesh. The 182 ground truth locations

recorded via GPS in Purbachal New Town are shown on the
WV2 natural color image using different colored circles for differ-
ent land use types. The land use types were verified to assess the
accuracy of the land use classification via satellite imagery and
reference vegetation maps
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The expansion of urban areas in Bangladesh was
inadequately planned and controlled due to truncated
laws (Hossain 2013). Per the Environmental Conserva-
tion Act of 1995 and the Bangladesh Environmental
Conservation Rules, 1997, the preservation of natural
forests and privately owned commercial forests domi-
nated by Shorea robusta should take priority during the
land development planning of Purbachal New Town.
The major forest products are edible fruits, timber, and
medicines. These preserved forests are expected to sus-
tain endemic and/or invaluable flora and fauna, although
land development activities often neglect these perspec-
tives (Zaman 2016). Although the emphasis during the
pre-planning stage was the in situ preservation of entire
forests, the idea to maintain all of the patches of Shorea
forest was later rejected because those isolated patches
had already been exposed to human activities. To com-
pensate for the loss of forested area, a green belt with a
width of 15 m to be produced through afforestation was
planned for the full perimeter of the township area
(24.2 km2) with a few exceptions. There were no inter-
ferences with the natural drainage systems that had
maintained the pristine ecosystems in the region.

In total, the land use types of the study area were
classified into eight categories (Table 4). Of those land
use types, native forests with a maximum height of 36m
dominated by Shorea robusta have maintained the
highest biodiversity, and they contain numerous endan-
gered species (Gautam and Devoe 2006; Mandal et al.
2013). Therefore, the accurate detection of the distribu-
tion of Shorea forest was the priority for this land use
analysis. The other land use types were homestead (i.e.,
settlement and residential areas), homestead vegetation
(vegetation consisting of trees, shrubs and herbs on and
around the settlement), cropland, grassland, agricultural
low land, bare land, and water bodies. In general, there-
fore, homestead vegetation is larger than homestead.
The homestead vegetation and agricultural low land
types also support a high biodiversity (Hasnat and
Hoque 2016). Currently, the forest ecosystems in the
region are decreasing rapidly due to economical de-
mands and human interferences, such as overexploita-
tion, deforestation, excessive trash buildup, and en-
croachment (Salam et al. 1999; Hassan 2004). Among
the artificial land use types, cropland, the major products
of which are rice, jute and vegetables (e.g., cultivars
consisting of gourds, beans, cabbage, cauliflower and
tomatoes), was distributed broadly prior to urbanization
(Shapla et al. 2015).

IKONOS and WV2 data

The data were obtained from the satellite imagery of
IKONOS at 04:35 (GMT) on May 1, 2001, and at
04:44 on February 16, 2002, prior to urbanization and
from WV2 imagery at 04:41 on December 9, 2015
(Digital Globe - Apollo Mapping, Longmont, Colorado,
USA) at present stage, since IKONOS terminated data
acquisition after 2014 and WV started data collection in
October 2009. The resolutions of the IKONOS andWV2
sensors are 0.8 m (true color) and 0.5 m (natural color),
respectively. All of the images were devoid of clouds.

These remote sensing data were integrated via ArcGIS
(version 10.2). Integrated analyses were conducted after
checking the quality of the pre-processed data to remove
noise and unify the georeferences. These images were re-
projected onto the Bangladesh Transverse Mercator
(BTM) projection to record the statistics of landscape
changes, because of the projected coordinate system in
Bangladesh (Dewan and Yamaguchi 2009).

Evaluation of the vegetation indices and hierarchical
classification

The categories of land use types were matched with the
land use map published by the Ministry of Housing and
Public Works of Bangladesh (Anonymous 2013) with a
few modifications adjusted to recently developed land
use patterns. The modification was made by establishing
three land use types, cropland, grassland and bare land,
all of which were cultivable land in the original map
(Anonymous 2013). Because the map was manufactured
based on various datasets consisting of topographical,
geographical and historical data at a fine scale, this map
was utilized as a reference during the evaluation of land
use classifications.

A total of 11 VIs was investigated to confirm the
accuracy of land use change detection by using error
matrix prior to the construction of DT. These 11 VIs
were NDVI, EVI2, EVI, GRVI, atmospherically resis-
tant vegetation index (ARVI), green difference vegeta-
tion index (GDVI), green normalized difference vegeta-
tion index (GNDVI), difference vegetation index (DVI),
normalized green (NG), ratio vegetation index (RVI)
and enhanced normalized difference vegetation index
(ENDVI). The four examined VIs showed higher than
65% overall accuracy, while the other VIs showed less
than 50%. Therefore, the four VIs, NDVI, EVI2, EVI,
and GRVI were used for the further analysis.
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The four examined vegetation indices were as
follows:

NDVI ¼ NIR−redð Þ= NIRþ redð Þ ð1Þ

GRVI ¼ green−redð Þ= greenþ redð Þ ð2Þ

EVI ¼ G� NIR−redð Þ= NIRþ C1 � red−C2 � blueþ Lð Þ ð3Þ

EVI2 ¼ 2:5� NIR−redð Þ= NIRþ 2:4� redþ 1:0ð Þ; ð4Þ
where near-infrared (NIR), red, green and blue represent
(partially) atmospherically corrected surface reflec-
tances, L denotes the canopy background adjustment
used to address the nonlinear, differential transmittance
of NIR and red wavelength radiances through a canopy,
and C1 and C2 are the coefficients of the aerosol resis-
tance term that uses the blue band to calibrate the aerosol
influences in the red wavelength. The blue wavelength
ranges from 445 to 516 nm on IKONOS and from 450
to 510 nm on WV2, the green wavelength ranges from
506 to 595 nm on IKONOS and from 510 to 580 nm on
WV2, the red wavelength ranges from 632 to 698 nm on
IKONOS and from 630 to 690 nm on WV2, and the
NIR wavelength lies between 757 and 863 nm on
IKONOS and between 765 and 901 nm on WV2.
Therefore, the data collected by WV2 were comparable
to the data acquired using the IKONOS sensor (Table 1).

The NDVI refers to two spectral bands of the photo-
synthetic output, i.e., the red and near-infrared bands
(Huete et al. 1997). The NDVI ranges from − 1 to + 1
and increases with an increase in the vegetation green-
ness. However, the NDVI is skewed by background
reflectances and atmospheric interference (Karnieli
et al. 2013). In addition, the NDVI is saturated in regions
with a high biomass (Miura et al. 2001). To reduce these
disadvantages of the NDVI, multiple VIs modified from
the NDVI have been developed (Phompila et al. 2015).

The GRVI uses green and red bands to assess defor-
estation, forest degradation and canopy tree phenology
(Motohka et al. 2010; Tucker 1979). The GRVI often
focuses on seasonal fluctuations in the greenness by
evaluating the colors of leaves at the canopy surface
using the green band (Nagai et al. 2012).

The EVI was modified from the NDVI by adopting
numerous coefficients within the EVI algorithm (Eq. 3):

L = 1, C1 = 6, C2 = 7.5, and gain factor (G) = 2.5 (Rouse
et al. 1974; Huete et al. 1994). These parameters are
used to improve the sensitivity to high biomass regions
and the vegetation monitoring capability of the EVI by
dissociating the canopy background signal and
diminishing atmospheric influences (Huete et al. 1999).

Although the EVI2 measures the vegetation green-
ness without a blue band (Eq. 4), it resembles the 3-band
EVI when the data quality is high and atmospheric
effects are insignificant (Jiang et al. 2008).

A DT classifier was applied to identify the land use
types using the four examined VIs. The DTwas imple-
mented depending on multiple levels of decisions based
on the properties of the input datasets (Mountrakis et al.
2011).

Accuracy assessment of the land use classification

Validating the land use classification is a prerequisite for
confirming temporal land use changes (Foody 2002).
Ground truth data of stratified land use classes at 182
locations marked with GPS were used for the validation
(Fig. 1). The ground truth points were selected by using
a land use map (Anonymous 2013). These locations and
their adjacent areas were recorded more than once to
inspect the eight land use types. Based on the measure-
ments, the land use types on the maps were repeatedly
reclassified to minimize classification errors. The accu-
racies of the land use classification schemes using the
four VIs and of the hierarchical classification using the
DT classifier were tested using an error matrix repre-
sented by an overall accuracy and a κ coefficient at each
ground truth point. The ESRI ArcMap (version 10.2)

Table 1 The four wavelength bands on IKONOS and WV2
images

Band Wavelength (nm)

IKONOS WV2

Blue Min 445 450

Max 516 510

Green Min 506 510

Max 595 580

Red Min 632 630

Max 698 690

Near-infrared (NIR) Min 757 765

Max 863 901
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software was used for the data processing, including the
statistical analysis.

Relationships between land use types and VIs

One-way analysis of variance (ANOVA) was used to
investigate the significant differences in the VI values
among the land use types. When the ANOVA was
significant, Tukey post hoc multiple comparison tests
were applied to determine the significant differences in
the VIs among the land use types confirmed using
ground truth data (Zar 1999).

Results

Surface reflectances in the VIs

The spatial patterns of the surface greenness in 2001 and
2015 were different among the VIs (Fig. 2). The GRVI
effectively diagnosed the distributions of homestead
vegetation and Shorea forest but often failed to discern
cropland. The EVI detected the grassland distribution
most correctly but could not clearly detect the Shorea
forests. The NDVI differentiated water bodies and bare
land but did not delineate the Shorea forest and home-
stead vegetation land use types, showing that the NDVI
is not appropriate for classifying regions with dense
green vegetation. The EVI2 distinguished vegetated
land use types from non-vegetated land use types and
clearly identified the homestead distribution.

The lowest NDVI value of − 0.05 was obtained for
water bodies due to the lack of vegetation (Fig. 3).
Homestead was detected within a few small patches
with a low NDVI of 0.31 in 2001 and 0.21 in 2015,
confirming that a fine-scale classification is required to
detect these land use types. Homestead vegetation (i.e.,
vegetation enclosing homesteads) showed an NDVI of
0.91 in 2001 and 0.82 in 2015. Croplands had higher a
NDVI than grassland of 0.67 in 2001 and 0.59 in 2015.

The lowest EVI values were shown for water bodies,
while the second-lowest values were displayed over
bare land (Table 2). The EVI did not separate these
two land use types clearly. The EVI of grassland was
an average of 0.37, which is intermediate between the
EVI values for bare land and forests. EVI values be-
tween 0.37 and 0.48 were associated with cropland and
occasionally grassland, while EVI values ranging from

0.48 to 0.57 represented dense and/or deeply green
vegetation.

The highest EVI2 value, i.e., 1, represented dense
vegetation, including homestead vegetation. The EVI2
value for Shorea forest was 0.97, which was the highest
of the examined VIs (0.77 with the NDVI, 0.53 with the
EVI and 0.25 with the GRVI). The EVI2 value for
grassland ranged from 0.10 to 0.49, which is higher than
those obtained with the EVI, NDVI and GRVI. The EVI2
sometimes misclassified cropland as grassland, probably
because of double cropping. An EVI2 value lower than
0.10 indicated poorly vegetated land use types, such as
bare land and sparse grassland. The GRVI demonstrated
an appropriate detection of densely vegetated land use
types, mostly due to the discrimination of Shorea forest
and homestead vegetation. However, the GRVI did not
effectively discriminate among water bodies, bare land
and homestead (Fig. 2). Non-vegetated land, i.e., water
bodies and bare land, showed GRVI values of less than
0.18. Bare land and water bodies showed the lowest
GRVI values of − 0.04 and 0.01, respectively, while water
bodies showed the lowest VI values overall. These results
indicate that the GRVI performed better while
distinguishing dense vegetation than other land use types
characterized by sparse greenness.

In total, the NDVI had higher values than the EVI and
GRVI, particularly when the reflectance was high (Fig. 3).
The GRVI occasionally showed negative values over bare
land when it should have been higher than 0, which was
probably due to soil interference. All of the VIs showed a
clear gap between non-vegetated and vegetated land use
types. However, in areas with a high vegetation, the VIs
exhibited different responses to greenness.

Validation of the VIs

The accuracies of the land type classification schemes
were different among the VIs (Table 3). Each of the four
VIs showed different values among the land use types
(ANOVA, p < 0.0001) (Table 2). All of the VIs showed
stable values over homesteads. The EVI2 and NDVI
responses to grassland and cropland fluctuated, and the
EVI fluctuated largely over Shorea forest and home-
stead vegetation. Although the GRVI responses to
Shorea forest and homestead vegetation were stable,
the GRVI responses were lower than the responses of
the other VIs.

The EVI2 exhibited different pairs of land use types
except for grassland-agricultural low land, agricultural
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low land-homestead and bare land-water body (Tukey
test, p < 0.05). The NDVI exhibited different pairs of land

use types except for homestead vegetation-Shorea forest,
agricultural low land-homestead and grassland-

Fig. 2 Surface greenness distributions evaluated using the four VIs based on multi-temporal information from the IKONOS and WV2
images in 2001 (left side) and 2015 (right side), respectively
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agricultural low land. The homestead vegetation-Shorea
forest and agricultural low land-homestead pairs were not
significantly different in the EVI, although the rest of the
pairs were different. The GRVI was capable of
distinguishing between homestead vegetation and Shorea
forest, but the other three VIs could not differentiate these
two land use types. The GRVI did not reveal significant
differences in the comparisons between the other land use
types (p < 0.05). The GRVI was most effective at differ-
entiating the Shorea forest-homestead vegetation pair;

meanwhile, the EVI2 and NDVI effectively detected
homestead, bare land and water bodies, and the EVI
effectively detected the distributions of agricultural low
land, grassland and cropland.

Hierarchical classification of land use types

A hierarchical land use classification was developed
using a DT classifier with the four VIs (Fig. 4).
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The DT begins with the EVI2, which then separates
the land use types into vegetated and non-vegetated land
use types. The NDVI then separates the non-vegetated
land uses into water bodies and bare land. Meanwhile,
among the vegetated land use types, the EVI2 extracts
the homestead distribution and the EVI detects agricul-
tural low land, grassland and cropland. Among the four
VIs, homestead vegetation and Shorea forest were sep-
arated only through the GRVI.

The DT approach showed the highest accuracy (with
an accuracy greater than 95% and a κ of greater than
0.95, see Table 3) during the land use classification,
indicating that the DT constructed using the four VIs
was the most effective at predicting the land use types

(Fig. 5). The second-highest accuracy and κ values
(91.2% and 0.89, respectively) were exhibited by the
EVI2 measurements from 2015, indicating that the DT
effectively improved the land use classification scheme.

LULC changes

Based on the land use changes from 2001 to 2015
(Fig. 5), the characteristics of the land use changes were
examined (Table 4). Road networks and their adjacent
areas were clearly observed. Homestead vegetation,
grassland, cropland and homestead were the dominant
land use types prior to urbanization, but more than three-
quarters of the area of each land use type was lost

Table 2 Mean and standard error (SE) of each VI for the eight
land use types. All of the VIs obtained in 2001 and 2015 among
the land use types are significantly different (one-way ANOVA,

p < 0.0001). Identical letters indicate that the VIs are not signifi-
cantly different between those land use types (Tukey test, p < 0.05)

Water body Bare land Homestead Agricultural
low land

Grassland Cropland Forest
(Shorea
robusta)

Homestead
vegetation

2001 EVI2 0.04 ± 0.02
a

0.06 ± 0.01
a

0.32 ± 0.00
b

0.42 ± 0.01
c

0.42 ± 0.03
c

0.74 ± 0.01
d

0.96 ± 0.00
e

0.96 ± 0.01
e

NDVI 0.01 ± 0.01
a

0.14 ± 0.01
b

0.30 ± 0.00
c

0.31 ± 0.01
cd

0.42 ± 0.02
d

0.62 ± 0.01
e

0.73 ± 0.01
f

0.79 ± 0.02
f

EVI 0.02 ± 0.01
a

0.09 ± 0.01
b

0.22 ± 0.00
c

0.26 ± 0.01
c

0.34 ± 0.01
d

0.43 ± 0.01
e

0.51 ± 0.01
f

0.51 ± 0.01
f

GRVI 0.01 ± 0.00
a

0.01 ± 0.01
a

0.17 ± 0.00
b

0.27 ± 0.01
cef

0.21 ± 0.00
dfg

0.27 ± 0.01
e

0.23 ± 0.01
f

0.19 ± 0.00
g

2015 EVI2 0.03 ± 0.01
a

0.06 ± 0.01
a

0.32 ± 0.00
b

0.40 ± 0.01
bc

0.42 ± 0.03
c

0.72 ± 0.01
d

0.92 ± 0.01
e

0.95 ± 0.01
e

NDVI − 0.02 ± 0.01
a

0.14 ± 0.01
b

0.25 ± 0.00
c

0.27 ± 0.02
cd

0.41 ± 0.02
d

0.56 ± 0.02
e

0.71 ± 0.01
f

0.77 ± 0.02
f

EVI 0.01 ± 0.00
a

0.08 ± 0.01
b

0.2 ± 0.00
c

0.24 ± 0.01
c

0.33 ± 0.02
d

0.41 ± 0.01
e

0.50 ± 0.01
f

0.48 ± 0.01
f

GRVI 0.01 ± 0.00
a

0.01 ± 0.01
a

0.14 ± 0.00
b

0.18 ± 0.02
bcdf

0.18 ± 0.01
ce

0.26 ± 0.00
f

0.22 ± 0.01
d

0.17 ± 0.00
e

Table 3 Classification accuracies
examined using an error matrix of
κ coefficients

Classification 2001 2015

Overall accuracy (%) κ coefficient Overall accuracy (%) κ coefficient

EVI2 90.1 0.88 91.2 0.89

NDVI 88.5 0.86 89. 6 0.87

EVI 66.5 0.60 67.6 0.61

GRVI 74.2 0.69 77.5 0.73

DT 96.1 0.95 97.8 0.97
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thereafter. Approximately one-half of the area of Shorea
forest was lost subsequent to urbanization. Since the
distribution of bare land increased greatly, the reduction
in the area of each land use type can be derived accord-
ing to an increase in bare land originating from road
construction and other related construction projects, and
the water body area was also increased due to the
excavation of artificial lakes and canals. Grasses colo-
nized in the filed up agricultural low land and conse-
quently, the grassland increased. Since most of the water
bodies were small and/or narrow, those changes were
detectable only at a high resolution.

Discussion

Effectiveness of the VIs and the DT approach

A comparison among the DT and VIs indicates that all
four of the examined VIs showed specific advantages
and disadvantages with regard to the land use classifi-
cation at a fine resolution. The reflectances of the blue
and green wavelengths can characterize the spatiotem-
poral fluctuation patterns of VIs (Huete 1988). The
EVI2 differentiated between vegetated and non-
vegetated land use types without using the blue band.
Only the GRVI classified dense vegetation, i.e., home-
stead vegetation and Shorea forests, probably because
the GRVI is sensitive to the canopy surfaces of forests

(Nagai et al. 2012). Therefore, the GRVI constituted a
prerequisite for the classification of deeply green areas,
i.e., forests, although the overall accuracy of the associ-
ated classification was low.

The EVI2 showed the highest accuracy among the
examined VIs at a fine resolution (Kushida et al. 2015).
However, the EVI2 did not effectively differentiate be-
tween homestead vegetation and Shorea forest. The
EVI2 maintains a high sensitivity and linearity to high
phytomass densities (Rocha and Shaver 2009). Howev-
er, there are many difficulties when using the EVI2 to
conduct a land use classification in tropical/sub-tropical
regions such as Bangladesh, because persistent ever-
green forests show high reflectances both in and out of
season (Cristiano et al. 2014). The accuracy of the
NDVI land classification was slightly lower than that
of the EVI2 results. The NDVI is skewed by the back-
ground reflectance, including those of bright soils and
non-photosynthetic plant organs (i.e., trash and tree
trunks) (Van Leeuwen and Huete 1996). Because the
examined data did not contain a substantial amount of
clouds, the EVI2 and NDVI seemed to synchronize their
fluctuations.

The EVI effectively classified the grassland, cropland
and agricultural low land types, but it did not distinguish
the other land use types, suggesting that the blue band
used only by the EVI influenced the resulting land use
classification. However, the EVI is distorted by the soil
adjustment factor L in Eq. (3), making it more sensitive

Fig. 4 A DT constructed using
the hierarchical classification of
land use types. Numerals with
inequality signs indicate the VI
values that represent the
thresholds of the classifiers
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Fig. 5 Land use maps produced through a hierarchical classifica-
tion using the DT approach. These maps show the temporal
changes in the land use-land cover throughout Purbachal New
Town from 2001 to 2015. a Land use patterns detected using the

IKONOS sensor in 2001. The land use patterns were verified using
a pre-project land use map (Anonymous 2013). b Land use pat-
terns in 2015 were detected using WV2 multi-spectral imagery.
The land use types are represented by their respective colors
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to topographic conditions (Wardlow et al. 2007). There-
fore, the EVI did not seem to function well.

The DT using the four VIs largely improved the
accuracy of the land use classification. The accuracy
of the DT was slightly different between the two sur-
veyed years (96.1% in 2001 and 97.8% in 2015, see
Table 3). One cause of this difference was probably
derived from differences in the quality of the data, i.e.,
with regard to the resolution, photographing conditions
and sensors, from IKONOS in 2001 and from WV2 in
2015.

Temporal land use changes caused by urbanization

This research used highly resolved, multi-temporal sat-
ellite data to develop a methodology for assessing land
use changes. The results of the VIs vary between fine
and coarse resolution. The fine-scale land use classifi-
cation scheme clearly detected fine-scale land use
patches generated by the development of road networks
subsequent to urbanization that cannot be detected dur-
ing coarse-scale analysis. Accordingly, land use classi-
fication schemes are often dependent upon the resolu-
tion (O'Connell et al. 2013). Since roadways are a few
tens ofmeters wide, high-resolution data are required for
the classification of urban landscapes. Fine-scale data
can delineate land cover classes more accurately, be-
cause such data can identify small and/or linear patches
while retaining their shapes (Boyle et al. 2014). Ongo-
ing urbanization has been followed by drastic changes in
the land use types, biodiversity and fragile ecosystems
of urbanized areas (Merlotto et al. 2012; Zhou and Zhao
2013; Pigeon et al. 2006). The urbanization of Purbachal
New Town was characterized by a substantial loss of
homestead vegetation and cultivable land. Furthermore,
approximately one-half of native Shorea forests were

lost, even though the master plan of urbanization con-
sidered their conservation (Hasnat and Hoque 2016).
Land use changes associated with deforestation have
not been detected well. The endangered Shorea forests
are likely to be restored and conserved through the
identification of small and isolated patches using the
fine-scale analysis. The species distribution modeling
should be executed for the restoration of the threatened
ecosystems using the identified distinct small patches.
Also, land transformation model would be implemented
using fine-scale data to show the process of land use
changes (Pijanowski et al. 2002). These approaches are
the pronounced concern for the planners to protect and
preserve the endangered ecosystems from being
extinction.

Imagery acquired by two or more satellites is often
used to examine temporal land use changes depending
on the data availability. This study used two sets of
satellite imagery, namely, from the IKONOS and WV2
sensors. Using multiple sensors can often cause errors in
the land use classification due to heterogeneities in the
spatial resolution of the data (Joshi et al. 2016; Xie et al.
2008). However, integrating the IKONOS and WV2
data resulted in a smaller error and higher accuracy; this
was probably because of the finer resolutions and great-
er overlap of the wavelength bands. Fine-resolution data
may partly resolve such errors by reducing the mis-
matches in the overlays of wavelength bands.

Conclusion

A DT constructed using a hierarchical classification
greatly improved the classification of land use types at
a fine resolution. The DTwas developed using all of the
four examined VIs because each VI demonstrated

Table 4 Changes in the eight
land use types from 2001 to 2015
based on satellite imagery

Land use types 2001 2015
Area (km2) (%) Area (km2) (%)

Water body 0.59 2.37 2.12 8.52

Bare land 0.14 0.56 16.97 68.17

Homestead 3.02 12.13 0.86 3.46

Agricultural low land 0.67 2.69 0.04 0.16

Grassland 1.03 4.14 1.06 4.26

Cropland 6.26 25.15 0.59 2.37

Forest (Shorea robusta) 0.77 3.09 0.42 1.69

Homestead vegetation 12.41 49.86 2.83 11.37
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unique strengths and limitations. For example, the GRVI
showed the lowest overall accuracy, but it was retained
in the DT because the GRVI can effectively classify
areas with a high greenness. The land use classification
scheme using the DT clarified that the changes in
Purbachal New Town are characterized by the effects
of road networks on deeply green ecosystems, which are
unlikely to be detected clearly at coarse resolutions.
Therefore, this research showed a significant monitoring
source to investigate the continuous changes in land use
types and assist the planners and decision makers to
develop land use management plans.
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