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Abstract Earlier studies on land change (LC) have
focused on size and magnitude, gains and losses, or land
transfers between categories. Therefore, these studies
have failed to simultaneously show the complete LC
processes. This paper examines LCs in the Legedadie-
Dire catchments in Oromia State, Ethiopia, using land-
category maps with intensity analysis (IA) at three
points in time. We comprehensively analyze LC to
jointly encompass the rate, intensity, transition, and
process. Thirty-meter US Geological Survey (USGS)
Landsat imagery from 1986, 2000, and 2015 (< 10%
cloud) is processed using TerrSet-LCM andArcGIS. Six
categories are identified using a maximum likelihood
classification technique: settlement, cultivation, forest,

water, grassland, and bare land. Then, classified maps
are superimposed on the images to statistically examine
changes with an IA. Considerable changes are observed
among categories, except for water, between 1986–2000
and 2000–2015. Overall land change occurred quickly
at first and then slowly in the second time interval. The
total land area that exhibited change (1st ≈ 54% and
2nd ≈ 51%) exceeded the total area of persistence (1st ≈
46% and 2nd ≈ 49%) across the landscape. Cultivation
and human settlements were the most intensively in-
creased categories, at the expense of grassland and bare
ground. Hence, when grassland was lost, it tended to be
displaced by cultivation more than other categories,
which was also true with bare land. Annual intensity
gains were active for forest but minimal for cultivation,
implying that the gains of forest were associated with in
situ reforestation practices and that the gains in cultiva-
tion were caused by its relatively large initial area under
a uniform intensity concept. This study demonstrates
that IA is valuable for investigating LC across time
intervals and can help distinguish dormant vs. active
and targeted vs. avoided land categories.

Keywords Land change . Classification . Intensity
analysis . Interval . Transition . Dormant

Introduction

Land cover and land use are closely linked. Land cover
includes the attributes of the Earth’s land surface and
immediate subsurface, such as soil, topography, biota,
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built-up areas, and water (Verburg et al. 2009). Thus,
conversions constitute the replacement of one cover
type by another and are measured by a transition from
one land-cover category to another. Land use encom-
passes the purposes for which humans exploit land
cover (Lambin and Geist 2008) and includes the manner
in which the biophysical characteristics of the land are
handled and the primary purpose behind that manipula-
tion (Lambin and Geist 2008). Terrestrial land uses and
land covers, and changes therein, are fundamental to
many of the biophysical processes of environmental
change at any spatial and temporal scale, qualifying
Bland change as a forcing function in global environ-
mental change^ (Turner 2006). Thus, these two con-
cepts, i.e., land-use change and land-cover change, are
referred to as Bland change^ hereafter in this manuscript.

Land change that is observed at any spatiotemporal
scale involves complex synergy with changes that are
seen at other analytical scales (Meyer and Turner 2002).
Anthropogenic effects and natural processes trigger land
changes that can have serious biophysical, ecological,
socioeconomic, and political consequences (Wu et al.
2013). Therefore, recognizing the forms and manner of
land change has become a central aim of studies that
examine the complex interactions of coupled human-
natural systems from a local to global scale (Aldwaik
and Pontius 2013).

At any scale of land-change analysis, describing land-
change patterns through the initial classification of land
categories helps us more deeply understand the under-
lying changes. This approach facilitates the design of
strategies for subsequent actions, including monitoring
environmental changes, forecasting future trends, ana-
lyzing the consequences of land change, and managing
natural resources (Turner II 2002). Therefore, the initial
fundamental technique for characterizing perceived land
change strongly influences the efficiency of land-change
models and outputs (Aldwaik and Pontius 2013).

Many scientific land-change studies examined the
magnitude of land conversion (Boyd & Danson 2005;
Hansen et al. 2008a; Redo et al. 2011) and focused on
one or a few aspects of land-change detection. Such
detection can be the net change of a particular land
category or its rate of change in a certain time interval,
and these studies disregarded the processes and change
transitions (Achard et al. 2002; Rogan & Chen 2004).
This failure to identify transition processes, which are
the main facilitator of land change, could be attributed to
diverging interests and focuses of researchers. Some

researchers concentrated on the net gains or losses of
land change. Others were interested in the patterns of
change from one land category to a succeeding category
over a defined period, where the goal was to determine
how much of the change was increasing, decreasing, or
resisting change. Hence, various models’ utility in
assisting subsequent actions could be compromised.

An ideal unified approach for the detection and anal-
ysis of land change, as suggested by Macleod &
Congalton (1998), follows some important steps. The
first step is detecting whether the changes have
prevailed; the second step is describing the nature of
the change; the third step is quantifying the areal dimen-
sions of the change; and the fourth step is assessing the
spatial patterns and transition process of the change.
Understanding and incorporating such versatile
methods is necessary for enhanced resource manage-
ment and improved decision-making (Aldwaik and
Pontius 2013)

Accurately measuring underlying land-change char-
acteristics and understanding change processes can help
develop management strategies because observed
changes can determine the hydrological and ecological
processes that occur in catchments. Therefore, this re-
search aims to characterize the land-change processes at
three levels of analysis and generate more insightful
information for practitioners and decision makers re-
garding the ongoing land-change processes in the
Legedadie-Dire catchments. The Legedadie-Dire catch-
ments are the primary source of the potable water supply
(55%) to Addis Ababa (the capital of Ethiopia). In recent
decades, Ethiopia in general, and in particular Addis
Ababa near central Ethiopia, has experienced strong
economic growth coupled with infrastructure develop-
ment, population growth, and (sub-) urbanization pro-
cesses (Dadi et al. 2015, 2016). This process is strongly
mirrored in land-use changes in the case study area.
Multiple development processes in both catchments
have substantially altered the land-cover patterns and
catchment parameters. Since the early 1990s, the
Legedadie and Dire areas have undergone rapid socio-
economic development and have increasingly experi-
enced urban influences given their proximity to Addis
Ababa.

Detailed studies that can provide a full picture of
land-change processes in these areas by integrating three
levels of analysis have not yet been performed.
Conducting such studies and generating science-based
evidence can help planners and managers understand

309 Page 2 of 22 Environ Monit Assess (2018) 190: 309



the fundamental patterns of land transformation and
evaluate the extent of stationarity of the changes over
three decades, broken into three points in time, i.e.,
1986, 2000, and 2015. Moreover, the findings of this
study will be used as input for a parallel study that we
are undertaking that aims to design a catchment-specific
joint ecosystem-management plan.

Description of matrices

Matrices can be analyzed on maps of a specific area
for the same set of land categories for at least two
points in time (Gergel & Turner 2000; Munsi et al.
2010). These matrices support a broad range of stud-
ies on land change. The superimposed maps between
any two points in time can generate a cross-tabulation
matrix of rows and columns, where the rows represent
land categories at the initial time and the columns
represent land categories at the subsequent time. The
records reveal the extent of land that transitioned from
the first land category to the following category over a
specified time interval (Pontius and Malizia 2004).
Entries that are outside the diagonal line display land
change and entries along the diagonal line exhibit
land persistence (Takada et al. 2010; Romero-Ruiz
et al. 2011).

The systematic examination of matrices can show the
process in the patterns of detected land change in a
manner that helps determine whether a pattern was
initiated from more intensive or less intensive practices
than from deceptively random or uniform actions. A
straightforward, simple comparison among the records
in the matrices does not indicate the course of observed
patterns of change. Instead, signals of orderly exchanges
between two intervals from matrices can be detected
through systematically screening the size of land change
from each category (Pontius and Malizia 2004). This
technique helps further compare two land categories
with different area proportions and their orderly transi-
tions between categories.

Intensity analysis

Intensity analysis is a quantitatively summarized and
cross-tabulated square transition matrix that is used to
analyze maps of land categories from several points in
time for a site. One matrix summarizes the changes in
each time interval and includes the intensity of land-
transition processes and possible explanations at three

levels of detail: interval, category, and transition. This
matrix helps compare the observed rates or intensity of
changes with a uniform rate or the uniform intensity of
changes that would exist if the annual rate or intensity of
the changes were uniformly distributed across the entire
temporal and spatial extent. Moreover, the need to con-
sider all time steps together for a complete land-change
analysis and assess various forms of land-change tran-
sitions makes intensity analysis a more powerful method
(Aldwaik and Pontius 2012).

For instance, a transition from one land category BX^
(grassland) to another land category BY^ (cropland)
across two consecutive time intervals may exhibit dif-
ferent forms when compared at the first time interval
(FTI) and the second time interval (STI). At least three
possible outcomes could exist. First, the area of transi-
tion from BX^ to BY^ in the FTI may exceed the extent
of the transition in the STI. Second, the transition area in
the FTI may be lower than the size of the transition in
the STI. Third, the area of transition from BX^ to BY^
across the two intervals could be equal to the uniform
intensity and thus perfectly stationary. BStationary^ is
defined as a resemblance in the land-change pattern
between two or more time intervals. Of course, what is
stationary at one level of measurement may not be
stationary in another. Therefore, the major advantage
of this method is its ability to consider all the above
possible details in one comprehensive unified analysis.
Correspondingly, the three levels of intensity analysis
(Aldwaik and Pontius 2012) can describe and provide
convincing reasons for these different forms of land
transition.

Interval level intensity (ILI) analysis provides intro-
ductory information regarding whether land-change-
transition processes occurred quickly or slowly or
whether the overall annual rate of change could have
increased/decreased across the entire landscape. Given
the duration of time between the two time intervals and
the uniformity of change among categories, three poten-
tial justifications may exist at this level of analysis
(Aldwaik and Pontius 2012). First, the overall rate of
change may accelerate in the FTI and thus a greater
likelihood for a larger area transition from category
BX^ to category BY^ may exist in the FTI than in the
STI. Second, the overall rate of change may accelerate
in the STI; thus, a greater likelihood for a larger area
transition from category BX^ to category BY^may exist
in the STI than in the FTI. Third, the overall rate of
change in both time intervals may appear uniform,

Environ Monit Assess (2018) 190: 309 Page 3 of 22 309



suggesting a more comparable transition from category
BX^ to category BY^ across the entire period.

Category level intensity (CLI) analysis can show
additional features in the extent of the area transition
between categories. This approach reveals whether the
transition process between two land categories is active
or dormant, and five potential justifications could exist
at this level of analysis in addition to the three that were
mentioned above. Fourth, category BY^ could have
increased less actively across the entire landscape or
become entirely dormant in the FTI. Fifth, category
BX^ could have decreased less actively across the entire
landscape or become dormant in the FTI, perhaps be-
cause of a process that kept category BX^ steady (such
as strong conservation practices, as in the case of BX^ =
forest). Sixth, intensive gains in category BY^ could
have been greater across the entire landscape in the
FTI than in the STI. Seventh, intensive losses in cate-
gory BX^ could have been greater across the entire
landscape in the FTI than in the STI. Eighth, the gains
in category BY^ may be proportionate to the losses in
category BX^ during the FTI and STI. The fourth and
fifth details of CLI explain why the extent of the area
transition from category BX^ to category BY^ during the
FTI can fall behind that during the STI and reveals that
the categories were dormant. The sixth and seventh
category details justify the likelihood that the area tran-
sition from category BX^ to category BY^ in the FTI
exceeds the level in the STI and indicates that the
categories were active.

Transition level intensity (TLI) analysis can further
explain the extent of area-transition patterns in a manner
that is more specific and technical and determines
whether the transition process is targeting or avoiding
a specific land category. Another five potential justifi-
cations exist at this level of analysis, following the
preceding eight. Ninth, the gain in BY^ could have
targeted BX^ less intensively for takeover during the
FTI compared to the available sizes of BX^ for takeover
by BY.^ This effect can be triggered by a shift in the
preferences and actions of BY^ that lead to the smaller
change in BX^ during the FTI than during the STI.
However, BX^ can still be targeted by other Bnon-Y^
categories for takeover. Tenth, the loss of BX^ avoids
BY^ during the FTI more than during the STI, perhaps
because of factors that are not convenient to BY^
entailed at BX^ than to other categories during the FTI.
Eleventh, the gain in BY^ could target BX^ more inten-
sively for takeover during the FTI than during the STI

compared to the available sizes of BX^ for takeover by
BY.^ Twelfth, the intensive loss in BX^ targets BY^
during the FTI more than during the STI, perhaps be-
cause of factors that force BX^ to recede for BY^ more
than for other categories during the FTI. Thirteenth, the
gain in BY^ during the FTI equally targets BX^ during
the STI. Thus, the extent of area transition from category
BX^ that is targeted by category BY^ during the FTI is
comparable to that during the STI. Targeting a certain
category for intensive loss is realized when the targeted
category becomes suitable for the realization of the
intended change in various forms and scales within
physical to biological and spatial elements, such as
slope, soil fertility, location, structure, adjacency, and
materials.

The ninth and tenth explanations justify the TLI
reasons for the small extent of the area transition from
category BX^ to category BY^ during the FTI compared
to during the STI because of avoidance by the categories
of interest. The eleventh and twelfth descriptions reveal
the reason for the larger extent of the area transition from
category BX^ to category BY^ during the FTI than that
during the STI because of targeting by the categories of
interest.

Generally, intensity analysis between two or more
points in time at the interval, category, and transition
levels meets the requirements to capture the stationarity
of any of the possible factors in an area transition.
Accordingly, this study applies intensity analysis and
assesses the rate, intensity, transition, and uniformity of
land change between categories across two intervals.

Materials and methods

Study area

The catchments, Legedadie (207.3 km2) and Dire
(77.8 km2), are located 30 km to the northeast of Addis
Ababa within the Oromia National Regional State. Geo-
graphically, the Legedadie catchment is situated be-
tween 09° 01′ 50″ – 09° 12′ 56″ N latitude and 38° 56′
35″ – 39° 04′ 13″ E longitude, whereas the Dire catch-
ment lies between 09° 08′ 23″ – 09° 13′ 20″ N latitude
and 38° 49′ 44″ – 38° 57′ 52″ E longitude. Both are
upstream sub-catchments of the big Akaki River, which
flows from northeast to southwest and constitutes the
Awash River basin, one of the major inland drainage
systems in Ethiopia.
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According to the Legedadie-Legetafo city administra-
tion, the original settlement of the current Legedadie area
was founded in 1935 during the Italian invasion and
occupation as a garrison town. According to key infor-
mants, in 1935 when Italians invade Ethiopia, they settled
on hilly land near the Laga-Dadhi River that was owned by
a man called BBasha Ergete.^ After the liberation in 1941,
more people settled into this area, and the Laga-Daadhii
area expanded as a rural-urban settlement. Before the
emergence of the town, these settlements were two sepa-
rate areas under kebele farmers’ associations. Laga Tafoo
was a rural village, while Laga-Dadhi was a rural town in
Berek District. In 1974, land was distributed to the peasant
farmers and extra houses were transferred to the govern-
ment by proclamation during the Derg regime.

These settlements combined to form the single town
of Laga Tafo-Lege Dadhi in July 2006. The town also
received legal recognition as a municipal town under
Berek District in the northern Shewa Zone of the
Oromia National Regional State. Historical sources
show that this town received its present name from the
two major rivers Legetafo and Legedadhi, which border
and pass through the town and its surrounding areas.

Prior to early settlement, Laga-Daadhii (hereafter
Legedadie) and its surrounding areas were once covered
by dense forest and farmlands. The forest consisted of
various indigenous trees, among which BTid^
(Juniperus procera), BGirar^ (Acacia senegal), and
Bshola^ (Ficus sycomorus) are the primary species. This
forest was used as a home for various wild animals,
including hyenas, antelope, foxes, and gazelles. After-
wards, increasing population and the intensification of
farming activities in the area has led to severe
deforestation.

Today, the landscape units that characterize the catch-
ments include volcanic mountains, which range from
2402 to 3240 m above sea level. The major physio-
graphic units are dissected mountains, hills, steep to
undulating foot-slopes, gullies, valleys, and undulating
to flat plains. The main land-cover units consist of
settlements, moderately to intensively cultivated lands,
grassland, eucalyptus-dominated and natural vegetation
areas, bare soil, and water bodies. Most of the catchment
landscapes are utilized for cropping and grazing for
cattle.

Two seasonal patterns of weather that resemble those
in Addis Ababa are exhibited. The weather is relatively
cooler from June to December and warmer from Febru-
ary to May. The mean monthly temperature is between

16 °C in December (the coldest month) and 19 °C in
May (the hottest month) throughout the year. The min-
imum and maximum registered temperatures at the
Addis Ababa Bole station are 9 °C (in December) and
25 °C (from February through May), respectively
(Andualem and Yonas 2008). The mean annual precip-
itation in the catchments is between 1000 and 1300mm.
In terms of the mean monthly precipitation, November
is the driest (17.3 mm) and August is the wettest
(222.3 mm). February is the windiest month, with a
mean monthly wind speed of 15 km/h.

The catchments are characterized by high
population-growth rates of nearly 7% per year. Accord-
ing to the 2011 master plan review (MPR) report,1 the
total population of the Legedadie and Dire catchments
was 51,993. Disaggregated by catchment, the popula-
tion was 38,314 in the Legedadie catchment and 13,679
in the Dire catchment, which were administratively
divided into 24 and 9 rural kebeles, respectively (MPR
2011). Cultivation is the single most important liveli-
hood (MPR 2011). However, the livelihoods of resi-
dents have become diversified with the recent rapid rates
of urbanization, industrial growth, and flower growers
in the area. Themain cultivated crops are cereals (wheat,
teff, and barley). Furthermore, different types of pulses
(lentils, vetch, chickpeas, and fava beans) and vegeta-
bles (such as onions, garlic, and cabbage) are grown.
The application of modern agricultural inputs among the
farming communities in the catchments is rapidly
expanding. The number of farm households that apply
chemical fertilizer and pesticides in the Legedadie
catchment in 2011 alone comprised 50.1 and 9.6%,
respectively (MPR 2011). During the same period,
catchment livestock populations in Tropical Livestock
Units (1 TLU = 250 kg live-weight) were estimated at
39,000 TLU (MPR 2011).

The catchments are economically integrated with the
nation’s capital city of Addis Ababa. Given their loca-
tion within a 30-km radius from the core of the metro-
politan area of Addis Ababa, urban-rural interaction is
more intense than in any other area of the country. The
city has been supplied with natural resources such as
fuelwood, water, and agricultural products (fresh vege-
tables, milk and dairy products, and cereals) alongside

1 MPR (Master Plan Review). 2011. The Federal Democratic Republic
of Ethiopia Catchment Rehabilitation and Awareness Creation for
Geffersa, Legedadie, and Dire Catchment Areas, urban water supply
and sanitation project report
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parks and recreation services from the catchments. The
flow of production, labor, and capital factors between
Addis Ababa and the catchments is particularly impor-
tant. Unskilled labor largely flows from rural areas to the
city, and informal financial institutions (such as Bidir^
and Biqub^) contribute the largest share of capital flows
in both areas. The increased interaction with and access
to the city economy in terms of capital, labor (public and
private), goods, and services will subsequently trigger
the transformation of portions of the catchment to peri-
urban areas.

Image pre-processing and inherent challenges

Each land-cover type absorbs, reflects, or transmits
electromagnetic energy, with the interactions differing
between wavelengths. This pattern is termed as the
Spectral Response Pattern (SRP). The basis for classifi-
cation is thus to find some area of the electromagnetic
spectrum where the interaction is uniquely different
from other land cover that occurs in the image, which
is referred to as the signature. The SRP is a characteristic
of a particular land cover. According to Eastman (2016),
however, consistently determining distinctive signatures
in practice is difficult for the following reasons. (1)
Changes in phonology during the growing period in
most vegetation can lead to highly variable signatures
because of a lack of a consistent SRP. (2) Changes in
moisture and illumination as per the slope or the time of
year can produce significantly different spectral re-
sponse patterns. (3) Most land cover consists of mix-
tures of elementary features that are sensed as single
pixels. For instance, a sensor can detect a combination
of soil and plants in crops as a row-maize cultivation.
Similarly, a mixture of deciduous and coniferous trees in
a forest area can be detected in a single pixel. (4) The
wavelengths in which a given sensor senses may not
always be identical to those in which a land cover is
most distinguishable. Today, several very important
areas of the spectrum can be inspected via multispectral
sensors, particularly for the distinction of vegetation.
Nevertheless, many wavelengths could possibly dis-
criminate many features; for instance, various rocks
are not usually scrutinized, so huge functional areas
have not yet been inspected.

Because of these problems, the remote sensing com-
munity has stressed the development of signatures with
reference to specific examples within the image to be
classified (Frantz et al. 2016) rather than relying on the

use of more general libraries of characteristic spectral
response patterns (Eastman 2016). These very specific
examples are called training sites, which are so named
because they are used to train the classifier on what to
look for. By choosing examples from within the image
itself (usually confirmed by a ground-truth visit, aerial
photo and topographic maps), one can develop signa-
tures that are specific to the available wavelengths (East-
man 2016). One can also avoid problems regarding
variations in both the solar zenith angle and stage of
the growing season (Tan et al. 2014). One can also select
instances that are distinguishing features of the various
cover class combinations that exist (Eastman 2016).

Despite this very pragmatic approach to the classifi-
cation process, this problem remains a decision-based
problem. We ask this process to create a definitive
classification in the presence of considerable variations.
For example, despite differences in the growth stage and
soil background and the presence of intercropping, we
ask the process to distill all variations in maize cropping
into a single maize class (Eastman 2016).

Recently, however, concern has grown on relaxing
this traditional approach in two areas, both of which are
strongly represented in the TerrSet system that this study
applies. The first is the development of soft classifiers,
which are applied in this study, while the second im-
proves the principles of multispectral sensing to
hyperspectral sensing (Eastman 2016; Harsanyi et al.
1994). In the following section, only the former will be
discussed.

Hard versus soft classifiers

Hard classifiers are also called traditional classifiers
because they yield a hard decision regarding the identity
of each pixel. Hard classifiers are so named because they
all reach a hard (i.e., unambiguous) judgment regarding
the category to which each pixel belongs. These classi-
fiers are all based on a logic that describes the expected
position of a class (based on training-site data) in what is
known as band space and then gauges the location of
each pixel to be classified in the same band space
relative to these class positions.

In contrast, soft classifiers propose the extent to
which a pixel belongs to each of the considered classes.
Several factors support the use of soft classifiers. For
instance, rather than deciding a pixel is either cultivation
or grassland, its membership might be ranked within the
land-cover categories, such as 0.57 in the cultivation
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class and 0.43 in the grassland class, whereas a hard
classifier might label the entire pixel as cultivation. One
of the reasons for using a soft classifier is to determine
the mixture of land-cover classes that are present. A
pixel may contain 43% grassland cover and 57% culti-
vation if assume that these two classes are the only
classes that are present; thus, this decision is a classifi-
cation at the sub-pixel level.

Measuring and reporting the strength of evidence in
support of the best conclusion is the second major
reason for using soft classifiers. TerrSet presents distinc-
tive soft classifiers that allow us to conclude, for exam-
ple, that evidence for cultivation is present to a level of
0.26, that for grassland to 0.19 and some unidentified
type to 0.55. This result immediately suggests that the
evidence points to some other unidentified type despite
the similarities between training sites for these two
classes and the pixel.

A third reason for the use of soft classifiers is the use
of models and GIS data layers to enhance the evidence
that is used to reach a final judgment. For example, the
probability that each pixel belongs to a residential land
category can be extracted from the spectral data. Then, a
GIS data layer of roads might be used to generate a map
of distances from roads, and the probability of non-
residential areas might be deduced (areas away from
road networks are not likely to be residential). A stron-
ger statement of the probability that this class exists can
then be produced from these two lines of evidence.
Subsequently, a final hard decision can be achieved by
submitting the individual class-membership statements
to an appropriate hardener, which is a decision proce-
dure that selects the most likely alternative.

Selection and delineation of raining sites

Defining the areas that will be used as training sites for
each land-cover class is the initial stage when
performing a supervised classification. Appropriate care
is taken when defining training sites for each land-cover
class. Accordingly, a band with strong contrast (such as
a near-infrared band) or a color composite is chosen.
Once the strong contrast section is chosen, the image is
displayed on the screen for out-scaling to produce good
contrast and for on-screen digitizing to create vector
files of training-site polygons. Only the areas within
classes that are not mixed with other categories are
chosen when defining a training site for a given land-
cover class, and any pixels that are adjacent to other land

categories are avoided by zooming in the area before
digitizing. Moreover, at least 10 times as many pixels as
bands in each classified image are digitized to accom-
modate enough pixels into a training site for each train-
ing class.

Spatial resolution and data and image classification

Spatial resolution

The information that one wishes to extract from imagery
must be clear at the outset to choose an appropriate data
set. The spatial resolution can be large or small depend-
ing on the purpose for which the remote sensing data
can be processed and used (Carleer et al. 2005; Welch
1982). Each image data set has its advantages and
disadvantages. On the one hand, studies have reported
that processing and classifying low-resolution images
poses a unique set of challenges (Yang 2013; Boyle
et al. 2014). First, low-resolution images usually do
not provide sufficient information because of their small
number of pixels. Most of the texture details are
discarded during data compression. Second, low-
resolution images often have distortions and image arti-
facts, so performing dependable feature detection and
extraction with pixelated textures and shapes becomes
difficult (Yang 2013). Boyle et al. (2014) also noted that
higher-resolution imagery can more accurately delineate
cover classes, retain the patch shape, detect narrower
linear patches, and identify smaller patches over low-
resolution imagery. Such higher-resolution imagery
products, however, are often costly and difficult to ob-
tain, which reduces their use (Boyle et al. 2014).

On the other hand, the common belief that high-
spatial-resolution images will always produce better
interpretations may not always be true (Mahavir 2000).
Although high-spatial-resolution images have been in-
creasingly used to classify urban land cover based on
traditional per-pixel spectral-based classification tech-
niques, this approach often leads to poor classification
performance (Lu et al. 2010). Specifically, the high
spectral variations within the same land cover, the pre-
vailing spectral confusion between various land covers,
and the shadow problem of high-spatial-resolution im-
ages makes classification challenging (Mahavir 2000;
Lu et al. 2010). This challenge primarily originates from
two attributes. First, this type of classification is im-
mensely more detailed than traditional classification
systems because each pixel’s spectral response is linked
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with very specific earth and fabricated objects. Thus, no
inherent generalization exists in low-resolution imagery.
Second, the spectral confusion among different land
covers and the high spectral variations within the same
land cover can limit one’s ability to discriminate be-
tween many Earth and manmade materials, even though
the small pixel size dictates a high degree of classifica-
tion specificity.

On the contrary, low-resolution images filter out
unnecessary details when working at a metropolitan
scale, so images with low spatial resolution are more
useful than images with higher resolution, which makes
classification more straightforward (Mahavir 2000).
Thus, a careful balance must be sought between the
classification purpose, image resolution, number of clas-
ses to be defined, and the ability to discriminate among
the classes.

Data and image classification

Images from the Landsat Thematic Mapper (21 January
1986), Enhanced Thematic Mapper Plus (05 December
2000), and OLI TIRS (23 December 2015), all of which
have 30-m spatial resolution were obtained from the US
Geological Survey (USGS). Ideally, multi-temporal im-
ages for change monitoring should be from the same or
consecutive seasons (Liu et al. 2015). However, large
reflectance variations in vegetation exist because of
phenology during the dry season in the tropics, which
complicates land-cover change monitoring, although
this approach is suitable to obtain cloud-free images
(Liu et al. 2015). Compared to the dry season, the
availability of haze- and cloud-free satellite images is
restricted during the wet season. Dates during the mid-
dle of the dry season were selected to avoid clouds (<
10%) and reduce possible errors from seasonal differ-
ences between the time points.

Areal extent data (northeast of Addis Ababa) were
extracted from Landsat scenes with Path 168 and Row
054. Image processing was conducted with the TerrSet
geospatial monitoring and modeling system (Clark
Labs, Worcester, MA, USA) and ENVI®Classic +
IDL 64-bit image processing and analysis software from
EXELIS Visual Information Solutions and ArcGIS 10.2
(Esri Eastern Africa Ltd., Kenya). Image composites
were obtained using the near-infrared, red, and green
bands of the imagery.

Landsat images had been previously georeferenced
to the Universal Traverse Mercator (UTM) projection

system, Zone 37 N with datum WGS 84, which was
utilized throughout the analysis. A minor atmospheric
correction was conducted by using the Quick Atmo-
spheric Correction (QUAC), which is available with
ENVI classic + IDL image processing. A radiometric
correction was performed in all the Landsat images
before classification. The Landsat imagery was spatially
enhanced using a high-pass filter by traversing a three-
by-three filter over the raster to enhance the passive edge
features in the image. All the maps had the same spatial
extent and the same categories. Each raster contained
310,861 pixels with 885 columns and 754 rows at the
30 m × 30 m resolution.

The land categories that were generated in this study
had soft classifiers applied to them (at the sub-pixel level),
followed by hard classifiers with a segmentation-
classification procedure, a hybrid methodology between
pixel-based and segment-based classification. This ap-
proach enabled us to reduce the challenge of differentiat-
ing ambiguous or similar classes on a single image (East-
man 2016). This procedure followed a supervised clas-
sification approach, with training-site information used
to classify each image pixel. The initial soft classifier at
the sub-pixel level helped determine the degree of mem-
bership to which each pixel belonged to each of the
land-cover types. Thus, this procedure indicates the
various proportions of land-cover representation to a
single pixel instead of limiting the pixel to a single class.
For example, this procedure can suggest that a pixel has
a 0.69 probability of being cultivation, a 0.25 probability
of being grassland, and a 0.06 probability of being bare
land, which a hard classifier would normally label as
cultivation. Unlike the traditional classification proce-
dure, the outputs of a soft classifier are not a single
classified land cover map, but rather they are a set of
images (one image per class) that express for each pixel/
sub pixel the degree of membership in the class in
question, which would help differentiate ambiguous
classes (Eastman 2016).

The land cover was initially classified through soft
classifiers into 148 different clusters/colors of qualita-
tive data relationships in the Terr Set Cluster module.
The soft-classifier results were reevaluated to produce
hard classifications for each pixel/sub pixel class by
using the segmentation procedure. These classifiers
were distinctive hard classifiers in the TerrSet geospatial
monitoring and modeling system. Segmentation is a
process that groups pixels/sub pixels that share a homo-
geneous spectral similarity.
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Three sequential modules were applied for classifi-
cation with this procedure. (1) The SEGMENTATION
module created an image of segments from the set of
images (outputs of the soft classifiers). Hence, the SEG-
MENTATION module grouped adjacent pixels and sub
pixels into image segments according to their spectral
similarity. Specifically, SEGMENTATION employed a
watershed delineation approach to partition input imag-
ery based on their variance. Based on variance similar-
ity, a derived variance image was treated as a surface
image that allocated pixels/sub pixels to specific seg-
ments. A moving window evaluated this similarity and
segments were demarcated based on a stated similarity
threshold. One standard deviation was applied as a
threshold value in this research. Generally, the smaller
the threshold, the more homogeneous the segments
became, and the larger the threshold, the more hetero-
geneous and comprehensive the segments became. (2)
The SEGTRAIN module interactively created training
sites and signatures based on segments from SEGMEN-
TATION. (3) The SEGCLASS module was derived
from maximum likelihood classification, acting as a
majority rule classifier based on the majority class with-
in each segment. The clusters were subsequently classi-
fied into 6 dominant categories.

Information from aerial photographs of the
Legedadie and Sendafa areas (1965, 1:50,000; 1969,
1:11,000; 1984, 1:50,000; and 1994, 1:8000), and a
1:50,000 topographic map of the area were obtained
from the Ethiopian Mapping Agency to assist in the
classification. Images from Google Earth and a recon-
naissance survey that was conducted from December
2014 to April 2015 were used for the overall classifica-
tion process. Recollections of elderly residents and the
general landscape of the land cover during their lifetime
in the catchment were collected during the reconnais-
sance survey, which all facilitated the classification
procedure.

Moreover, the seasonal nature of agriculture in Ethi-
opia and the absence of land fallowing in the study
catchments partially facilitated the classification efforts.
The main agricultural regions in Ethiopia experience
two rainy seasons, the Meher and the Belg, thus pro-
ducing two crop seasons (Alemayehu et al. 2011).
Meher is the main crop season, which extends from
June to August and encompasses crops to be harvested
in September. The Belg is the short rainy season, which
extends from the last week of January to May
(Eggenberger and Hunde 2001) and encompasses crops

to be harvested inMarch (Alemayehu et al. 2011). Thus,
farmers plow their lands in early December for Belg
production. This approach also provides farmers the
advantage of easy tillage right before the soil completely
loses its moisture and becomes dry and hard.

In the central, southern and eastern areas of Ethiopia,
less than 10% of the total grain production is produced
from Belg crops (Eggenberger and Hunde 2001). Nev-
ertheless, Belg rains are crucially important for the
growth of Belg crops, seedbed preparation for short-
and long-cycle Meher crops (main production season
that extends from June to August), and planting of long-
cycle cereal crops (maize, sorghum, millet). Usually,
farmers plow twice before planting their Belg crops
(Eggenberger and Hunde 2001). Thus, plowing usually
begins in early December. The 16-day revisiting time of
Landsat provides an opportunity to capture freshly
plowed cultivation areas. SEGTRAIN can therefore
partially generate images from these areas, which be-
come the bases to develop training sites and signatures
for the identification and classification of cultivated
lands and then enable us to differentiate these areas from
grasslands.

Fallowing is not practiced in the catchment because
of the scarcity of land. Thus, we can avoid any chal-
lenges in terms of distinguishing fallow-cultivated land
from grassland.Moreover, hard upstream exposed rocks
characterize the bare lands in this area because of serious
erosion. Plantations of eucalyptus forest were imple-
mented in certain areas next to bare land to reduce soil
erosion and inhibit the further expansion of bare land.
These trees’ purpose was for conservation, so these
plantation forests are well protected from random access
and harvesting, preventing any freshly slashed planta-
tions. This phenomenon eliminates the presence of am-
biguous classes and facilitates the detection of bare
lands from surrounding eucalyptus plantations or
grassland.

Methodological approach

This study incorporated different approaches to deter-
mine the important aspects of land change in its entirety.
The locations where changes occurred and the magni-
tude of these changes were evaluated through maximum
likelihood classification (object-based change detection
methods). This method combines both spectral and tex-
tural data to extract and assign objects to a specific class
to detect changes by comparing the independently
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classified objects to multi-temporal images (Durieux
et al. 2008). Additionally, the land change characteris-
tics, areal extent, spatial patterns, and transition process-
es were investigated using an intensity analysis of pixel-
by-pixel comparisons between two classified images to
generate a full change matrix. Accordingly, land transi-
tions between categories and across time intervals, pat-
terns in the magnitude of land changes, and specific
land-change transition processes were assessed.

A comprehensive methodological framework that
moved from an interval to a categorical and then a
transition level was used for the intensity analysis
(Fig. 1). The overall land change across the entire period
(three points in time from 1986 to 2015) was divided
into two intervals (from 1986 to 2000 and from 2000 to
2015). Thus, the first level of analysis (interval level)
focused on land change during this stage. As the name
indicates, this level of analysis examined the size and
annual rate of change across two time intervals.

The summation signs in the above boxes (Fig. 1)
indicate the summation of both gross gains and gross
losses (Table 1) when measuring slow vs. fast changes.
The observed annual change intensity was compared to
the uniform intensity that would exist if the annual
changes were uniformly distributed across the entire
time interval. The size and intensity of the gross gains
and losses across categories were subsequently mea-
sured at the category level. The calculated intensities
of the gross gains and losses and the observed intensities
in each category were compared to a uniform intensity
of annual change that would exist if the changes within
each category across intervals were uniformly distribut-
ed over the entire landscape.

Finally, the size and intensity of the transitions
among categories available for each transition were
measured at the transition level. Categories, which were
intensively avoided versus targeted for transition, could
be identified by comparing each transition’s observed

Fig. 1 Methodological flow among the three levels of intensity analysis (from Aldwaik and Pontius Jr 2012)
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intensity to a uniform intensity that would exist if the
transitions were uniformly distributed among the cate-
gories that were available for the transitions. The sta-
tionarity of the changes over the intervals across cate-
gories and among transitions was examined at each
level.

ILI analysis addresses the relative speed of the over-
all annual rate of change, which is indicated as slow vs.
fast (Aldwaik and Pontius 2012; 2013 in press). Equa-
tion 1 provides the percentage of the annual change on
the landscape for each time interval. When the overall
change during all the intervals was uniformly distributed
from the initial to the last time point, the uniform annual
rate of change on the landscape could be determined
(Aldwaik and Pontius 2012) through Eq. 2. If land
change was investigated in terms of the total change
alone, then this approach would fail to justify the effects
of different time intervals on the given land change
(Huang et al. 2012), which also indicates the need to
consider the intensity of the rate of annual change
(Paegelow et al. 2013). The duration of the FTI was
14 years, and the duration of the STI was 15 years.
Although the effect of a one-year difference on the land
change of the study catchments seemed to be insignifi-
cant, this effect was included to better understand when

the change was assessed based on the intensity of the
rate of annual change.

The size and intensity of each category’s gains (Eq.
3) and losses (Eq. 4) during each time interval at the CLI
were examined with the respective equations. Accord-
ingly, the intensity of a category’s annual gain could be
calculated using Eq. 3, and the intensity of the
category’s annual loss could be calculated from Eq. 4.
Equation 5 helps compute the observed intensity of the
annual transition from category i to category n during
the interval [Yt, Yt + 1], which describes the size of
category i at time t. Equation 6 provides the hypothe-
sized intensity of the annual transition from all non-n
categories to category n during the interval [Yt, Yt + 1]
relative to the size of all non-n categories at time t. If Rtin

is greater thanWtn, then the gain in n displaces i; if Rtin is
less than Wtn, then the gain in n does not affect i
(Aldwaik and Pontius 2012).

According to Aldwaik and Pontius (2012, 2013),
transitions from m (Eq. 7) calculate the observed inten-
sity of the annual transition from categorym to category
j during the interval [Yt,Yt + 1] relative to the size of
category j at time t + 1. Equation 8 computes the hy-
pothesized intensity of the annual transition from cate-
gorym to all non-m categories during the interval [Yt, Yt

Table 1 Pixel counts, with underlined numbers on the main diagonal (persistence) and numbers off the main diagonal (Land change) during
two-time intervals: 1986–2000 (in italics) and 2000–2015 (in bold)

Final year of time interval Initial total Gross loss

Cultivation Grass land Bare land Forest Settlement Water

Initial year of time interval Cultivation 64,753 15,909 11,315 10,735 7883 710 111,305 46,552

94,433 14,959 15,964 4317 9206 49 138,928 44,495

Grassland 38,431 26,507 3564 3617 2248 311 74,678 48,171

36,244 8519 2545 1995 3856 17 53,176 44,657

Bare land 19,941 4605 28,428 12,282 6160 320 71,736 43,308

25,450 2105 16,726 691 2783 25 47,780 31,054

Forest 8463 3362 2567 16,314 1857 119 32,682 16,368

9495 2231 6302 23,283 3158 7 44,476 21,193

Settlement 7320 2787 1901 1519 2080 161 15,768 13,688

8991 2428 3257 980 4570 103 20,319 15,759

Water 20 6 5 9 101 4551 4692 141

150 40 225 9 308 5440 6172 732

Final total 138,928 53,176 47,780 44,476 20,329 6172 310,861

174,763 30,282 45,019 31,275 23,881 5641 310,861

Gross gain 74,175 26,669 19,352 28,162 18,249 1621 168,228

80,330 21,763 28,293 7992 19,311 201 157,890
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+ 1] relative to the size of all non-m categories at time
t + 1. If Qtmj is greater than Vtm, then j targets the loss in
m; ifQtmj is less thanVtm, then j avoids the loss inm. The
error at time t + 1 can explain the deviation between
each observed transition intensity and the hypothesized
transition intensity (Pontius et al. 2008).

St ¼ area of change during interval Y t; Y t þ 1½ �=area of study region

duration of interval Y t; Y t þ 1½ � � 100%

¼
∑ J

j¼1 ∑ J
i¼1Ctjj

� �
−Ctjj

� �n o
= ∑ J

j¼1 ∑ J
i¼1Ctij

� �h i

Y tþ1−Y t
� 100%

ð1Þ

St ¼ area of change during all intervals=area of study region

duration of intervals
� 100%

¼
∑T¼1

t¼1 ∑ J
j¼1 ∑ J

i¼1Ctij
� �

−Ctjj
� �n o

= ∑ J
j¼1 ∑ J

i¼1Ctij
� �h i

YT−T1
� 100%

ð2Þ

Gtj ¼
size of annual gain during Y t;Y tþ1

� �

size of j at t þ 1
� 100%

¼ ∑ J
i¼1Ctij

� �
−Ctjj

� �
= Y tþ1−Y tð Þ

∑ J
i¼1Ctij

� 100%

ð3Þ

Lti ¼
size of annual loss of i during Y t;Y tþ1

� �

size of i at t
� 100%

¼
∑ J

j¼1Ctij

� �
−Ctii

h i
= Y tþ1−Y tð Þ

∑ J
j¼1Ctij

� 100%

ð4Þ

Rtin ¼
Size of annual transition from i to n during Y t;Y tþ1

� �

size of i at t
� 100%

¼ Ctin= Y tþ1−Y tð Þ
∑ J

j¼1Ctij
� 100%

ð5Þ

Wtn ¼
size of annual gain of n during Y t;Y tþ1

� �

size of not n at t
� 100%

¼ ∑ J
i¼1Ctin

� �
−Ctnn

� �
= Y tþ1−Y tð Þ

∑ J
j¼1 ∑ J

i¼1Ctij
� �

−Ctnj
� � � 100%

ð6Þ

Qtmj ¼
size of annual transition from m to j during Y t;Y tþ1

� �

size of j at t þ 1
� 100%

¼ Ctmj= Y tþ1−Y tð Þ
∑ J

iþ1Ctij
� 100%

ð7Þ

Vtm ¼ size of annual loss of m during Y t;Y tþ1

� �

size of not m at t þ 1
� 100%

¼
∑ J

jþ1Ctmj

� �
−Ctmm

h i
= Y tþ1−Y tð Þ

∑ J
jþ1 ∑ J

jþ1Ctij

� �
−Ctim

h i � 100%

ð8Þ
Mathematical symbol notation

The variables of the mathematical symbols in the meth-
od are based on the variables in Aldwaik and Pontius Jr
(2013).

T Number of time points
Y Year at time point t
t First time point index in the interval [Yt,Yt + 1],

and t ranging from 1 to T-1
J Number of land-change categories
i Category index at an interval’s first/initial time

point
j Category index at an interval’s last/final time

point
m Losing category index for the selected transition
n Gaining category index for the selected

transition
Ctij Number of elements that transition from category

i to category j during interval [Yt,Yt + 1]
St Annual change during interval [Yt,Yt + 1]
U Annual uniform change during extent [Y1,YT]
Gtj Annual gain intensity of category j during

interval [Yt,Yt + 1] relative to the size of
category j at time t + 1

Lti Annual loss intensity of category i during
interval [Yt,Yt + 1] relative to the size of
category i at time t

Rtin Annual transition intensity from category i to
category n during interval [Yt,Yt + 1] relative to
the size of category i at time t

Wtn Uniform intensity of annual transition from all
non-n categories to category n during interval
[Yt,Yt + 1] relative to the size of all non-n
categories at time t

Qtmj Intensity of annual transition from categorym to
category j during interval [Yt,Yt + 1] relative to
the size of category j at time t + 1

Vtm Uniform intensity of annual transition from
category m to all non-m categories during
interval [Yt,Yt + 1] relative to the size of all non-
m categories at time t + 1
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Results and discussion

All the land categories experienced gains and losses in
different proportions across the two time intervals
(Fig. 2). When land change was assessed at the general
landscape level, cultivation was the leading land-
gaining category (Table 1). Grassland, followed by bare
land were the main losing categories. The gains in
cultivated land were 6675.7 and 7229.7 ha during the
FTI and STI, respectively. These categories also lost
approximately 4189.7 and 4004.5 ha of land during
the FTI and STI, respectively, to other land categories.
Thus, the same land-cover category experienced a net
gain of 2486 ha during the FTI and 3225 ha during the
STI (Table 1). Forest category gains of 2534.6 ha and
losses of 1473 ha occurred during the FTI. For the same
land category, gains of 719.3 ha and losses of 1907.4 ha
occurred during the STI. Therefore, the forest category
experienced a net gain of 1061.5 ha during the FTI and a
net loss of 1188 ha during the STI. Grassland had
2400 ha of gains and 4335.4 ha of losses during the
FTI, and 1958.7 ha of gains and 4019.2 ha of losses
occurring during the STI.

Consequently, this category exhibited a net loss of
1935.2 ha during the FTI and 2060.5 ha during the STI
throughout the study period. At the same time, bare land

exhibited 2546.8 ha of gains and 2794.9 ha of losses
during the STI in addition to 1741.7 ha of gains and
3897.7.2 ha of losses during the FTI, indicating a net
loss of 2156 ha during the FTI and 248.5 ha during the
STI. The settlement category had net gains of 410.5 and
319.9 ha during the FTI and STI, respectively.

The water category exhibited a net gain of 133.2 ha
during the FTI and a net loss of 47.79 ha during the STI.
These changes seem subtle but are significantly large
(net gain of 31.55% and net loss of 8.6%) compared to
the category’s initial total area during each interval (i.e.,
422.28 ha in the FTI and 555.48 ha in the STI). The net
gain in the water category during the FTI was attributed
to the construction (1998) and commissioning (1999) of
new sediment trapping by the Dire dam in the upper
portion of the Legedadie catchment. However, the net
loss afterward might have reflected a reduction in the
reservoir water volume depending on the magnitude of
evaporation and total sediment accumulation. Reser-
voirs’ sedimentation process brings two major changes
that causes reduction in water yield: storage capacity
loss and morphological changes. The storage capacity
reduction increased spillway overflow losses (Michalec
2015; DE ARAÚJO et al. 2006), and the morphological
changes by sedimentation reshapes reservoirs and
makes more shallow and open which induces the water

Percentage of land cover Losses Gains Persistence 

Fig. 2 Percentage of land categories at three time points and changes during two

Environ Monit Assess (2018) 190: 309 Page 13 of 22 309



to warmth quickly and increases evaporation loss (DE
ARAÚJO et al. 2006). A reduction in storage capacity
normally implies a reduction in water availability given
reservoirs less space to store runoff water during the
rainy season, leading to greater spillway overflows
(Michalec 2015; DE ARAÚJO et al. 2006). The spill
overflow was 42.4 and 23.5 Mm3 per year for the
Legedadie and Dire reservoirs, respectively (MPR
2011), which can be considered as a loss for the reser-
voir in terms of water availability. The very steep slopes
in the upper portions of the catchments and poor
environmental-conservation status of the area both aug-
ment soil erosion (Elala 2011). Furthermore, the mod-
erate residence time of reservoirs (nearly 1 year for new
additions of water from rainfall runoff) is sufficient for
sediments to effectively settle, enhancing their trap
efficiency.

ILI analysis

Figure 3 shows the results of the ILI analysis. Signifi-
cant land change occurred across the entire study period
(Fig. 3). The results revealed that the extent of the total
land change was slightly larger during the FTI than that
during the STI, even though the FTI was shorter than the
STI by 1 year. The total land change percentage of the
domain was approximately 54% for the initial (1986–
2000) and 51% for the latter (2000–2015) time intervals.

If land changes across the catchments were uniformly
distributed during all the intervals, then the annual rate
of land change would equal 3.63%, as shown by the
uniform line in Fig. 3. Nevertheless, the rate of change
in the study catchments was not uniform, as shown in
Fig. 3. The right sides of the bars displayed an annual
rate of change that was faster (i.e., 3.87% of the inter-
val’s domain) during the FTI than that during the STI

(i.e., 3.40% of interval’s domain). The STI was 1 year
longer than the FTI, but the land change was relatively
fast and intensive during the FTI than that during the
STI. Thus, the land change process in the catchments
was mainly governed by the intensity of change at some
point during the period rather than the entire time dura-
tion of the intervals. For example, faster land change
during the FTI was not mainly caused by its time dura-
tion but rather by the high intensity of change during this
interval.

The bars for the two intervals did not equal the
uniform line at 3.63%, so the rate of annual change
was not uniformly distributed and thus not perfectly
stationary in the ILI analysis. CLI analysis can further
identify the categories that most contribute to the inten-
sity of change at the interval level (or whether the high
intensity of change at the interval level would encom-
pass all the categories or be limited to certain categories
alone).

CLI analysis

In the graph below (Fig. 4), cultivation exhibited a
noticeable gain during both intervals, whereas obvious
losses were observed in grassland and bare land during
both intervals and in forest during the STI. Grassland
was the category with the largest losses in the two time
intervals, followed by bare land.

The bar graph on the left side shows only the ob-
served gains and losses but does not show the intensities
of these changes. A deeper understanding of systematic
land transitions requires considering the change intensi-
ty (i.e., gain intensity vs. loss intensity), which enables
one to compare the size of a change with the intensity of
change. Therefore, each category’s gain was divided by
the size of the category at the subsequent time for the
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gain intensity. However, each category’s loss was divid-
ed by the size of the category at the initial time for the
loss intensity. The right side of the figure provides
detailed information regarding the change intensity of
a category’s gains and losses. According to the net effect
of the gross gains and losses, cultivation, forest, settle-
ment, and water were the gain categories during the FTI,
while cultivation and settlement were the only gain
categories during the STI.

In both time intervals, cultivation was the largest gain
category. The gross gains in cultivation were 23.9%
(6675.75 ha FTI−1) and 25.8% (7229.7 ha STI−1) of
the domain. Hence, this category, which exhibited the
largest gross gains among the land-cover types during
the FTI, maintained continuous gains, even more so
than other categories during the STI. When disaggre-
gated by the average annual change, this class gained
1.7% (477 ha year−1FTI−1) and 1.73% (482 ha year−1

STI−1) of the domain without considering the annual
average losses.

We must observe the net change as the effect of gains
and losses to more deeply understand the change pro-
cess. Cultivation was generally the net gaining category
throughout the study period, exhibiting net gains of
8.89% (2486 ha FTI−1) and 11.5% (3225 ha STI−1) in
the domain across the time spans. In other words, the
annual average net gain in cultivation was approximately
0.6% (177.7 ha year−1 FTI−1) and 0.8% (215 ha year−1

STI−1) of the domain. However, the annual gain intensity
of cultivation was dormant over both time ranges, as
shown in Fig. 4, which indicates that the significantly
large comparative gain in this category could be partially
attributed to its relatively large area at the initial time.
Thus, if each category gained uniformly, cultivation
would proportionately gain more relative to the size of
its category at the beginning.

Forest had the second largest gained area from the
other land categories during the FTI, followed by settle-
ments throughout the entire period and water during the
FTI. The gross gain in forest was approximately 9.6%

Fig. 4 Annual change area and
annual change intensity between
1986 and 2000 (upper) and be-
tween 2000 and 2015 (lower)
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(2534.6 ha FTI−1), but 6.8% (1907.4 ha STI−1) of the
domain was in its gross loss counterpart. On average,
the forest category possessed 0.6% (181 ha year−1FTI−1)
and lost 0.5% (127 ha year−1STI−1) over the entire
landscape annually. When assessed by the net change
percent, the same land category had a net gain of 3.8%
(1061.5 ha FTI−1) and a net loss of 4.25%
(1188 ha STI−1) in the domain. In other words, forests
exhibited 0.3% net gain (76 ha year−1 FTI−1) and net
loss (79 ha year−1 STI−1) annually. Consistent with this
result, the annual gain intensity in the forest category
was active during the FTI but dormant during the STI.
Thus, the gains and losses in forest during the FTI and
STI were not caused by the relative size and proportion-
ate net change in the forest category but rather with the
strong efforts of reforestation and conversion of degrad-
ed areas by Eucalyptus trees during the initial period of
the FTI. This result is consistent with the massive scale
of afforestation and soil conservation on farms and
public lands that occurred in the country during the Derg
regime and the subsequent countrywide deforestation
soon after the fall of the regime (Eshetu 2013).

Additionally, settlement grossly gained 5.9%
(1642 ha FTI−1) and 6.2% (1738 ha STI−1), whereas
water gained 0.5% gross (146 ha FTI−1) in the domain.
Therefore, the annual gains in these categories as a per-
centage of the domain were 0.4% for settlement in both
intervals (117 ha year−1 FTI−1 and 116 ha year−1 STI−1)
and 0.04% for water during the FTI.

When disaggregating by net change, settlement had a
net gain of 1.5% (410.5 ha FTI−1) and 1.1%
(319.7 ha STI−1) of the domain. In other words, the same
land category annually experienced a net gain of 0.1%
during each time interval (i.e., 29 ha year−1 FTI−1 and
21 ha year−1 STI−1) in the domain. Similarly, water had a
net gain of 0.5% (133.2 ha FTI−1) of the domain during
the FTI. Settlement was the most active category during
both time intervals in terms of annual gain intensity,
which implies that this category was gaining actively
and more intensively despite its relatively small size at
the initial time. Water gained with greater intensity dur-
ing the FTI than during the STI. However, the gain in
water was entirely dormant during both time intervals.
The gain in water during the FTI was, therefore, a
reflection of the newly built-up and the commissioning
of the Dire reservoir in 1998, which represents a one-
time possession that led to the dormancy of the category.

Considering the net effects of the changes, the grass-
land, bare land, and forest categories were among the

major loss categories on the landscape. Grassland and
bare land remained the principal loss categories during
both the FTI and STI, whereas forest was lost during the
STI. Within the total domain, grassland grossly lost
15.5% (4335.6 ha FTI−1) and 14.4% (4019 ha STI−1)
and bare land lost 13.9% (3897.8 ha FTI−1) and 10%
(2794.9 ha STI−1). When interpreting the results annu-
ally, grassland lost 1.1% (310 ha year−1 FTI−1) and 1%
(268 ha year−1 STI−1) on average. Similarly, the average
annual losses in the bare land category as a percentage
of the domain were estimated at 1% (278 ha year−1

FTI−1) and 0.7% (186 ha year−1 STI−1). These losses
were larger during the FTI than during the STI. These
categories experienced both losses and gains, so we
must investigate the net effects of these losses to better
understand the change process. When assessed based on
the net change, grassland had a net loss of 6.9%
(1935 ha FTI−1) and 7.4% (2060.5 ha STI−1), whereas
bare land had a net loss of 7.7% (2156 ha FTI−1) and
0.9% (2,48.5 ha STI−1) within the total domain. Alter-
natively, grassland had a net annual loss of 0.5% during
each interval (138 ha year−1 FTI−1 and 137 ha year−1

STI−1), whereas bare land lost 0.6% (154 ha year−1

FTI−1) and 0.1% (16 ha year−1 STI−1) within the total
domain. The annual loss intensities of the grassland and
bare land categories were active during all the time
intervals, indicating that the changes were not caused
by their proportionate size at the initial time but rather
by being intensively targeted by other categories.

Forests exhibited losses only during the STI. The
gross loss for this category was approximately 6.8%
(1907.4 ha STI−1), which indicates an estimated average
annual loss in this category of 0.5% (127 ha year−1

STI−1) when not considering the net effect of changes.
When considering the net effects of changes (including
gains), forests lost a net of 4.3% (1188 ha STI−1) within
the domain, which implies that the average annual net
loss of forest during the same time interval was approx-
imately 0.3% (79 ha year−1 STI−1). Nevertheless, the
loss intensity of forest during the STI was dormant,
which signifies that forest loss may have occurred dur-
ing a specific short time step within this interval instead
of throughout this interval.

Categories with the largest annual gain may not have
the most active annual intensity of gains. At the same
time, categories with the greatest annual losses may not
have the most dormant annual intensity losses. For
example, the bar for the gain of cultivation to the left
extended far beyond the other bars, indicating the largest
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annual gain in the category within both time intervals;
however, its bar for the annual gain intensity extended
short of the uniform line, signifying that it was dormant
across all the time intervals. The large gain in this
category, therefore, was attributed to its large area at
the initial time. Hence, when all the categories gained
uniformly with the same intensity, this category might
have also experienced the largest gains relative to its
initial size. Similarly, the bar for the annual gains in
settlement to the left was shorter than the other bars,
indicating smaller gains than in other categories within
these intervals. However, the bar to the right for the
annual gain intensity extended beyond the uniform line,
implying that its gain intensity was very active during
both intervals and indicating that this intensity analysis
provided insight to explain the relative sizes for the
losses and gains. Therefore, we should investigate the
intensity side of the bar graph to assess whether the
massive annual change was simply caused by the large
size of the categories or the intensiveness of changes
within the categories.

The isolated examination of losses or gains without
considering the net effects of changes may cause a given
category to appear to be the largest gainer or loser. For
example, in Fig. 4, settlement appeared to lose while
bare land seemed to gain during the STI. However,
when assessed with the net effects of changes, the for-
mer category was the absolute gainer, whereas the latter
category experienced purely losses.

Stationarity at the category level

At the CLI analysis, none of the land categories exhib-
ited perfect stationarity because each category’s change
during the intervals did not equal the annual uniform
change during the intervals. In other terms, a category’s
annual intensity bar did not end up at the uniform
intensity line. However, stationarity existed in some
categories losses or gains depending on the extent of
their annual change intensity though imperfectly. Ac-
cordingly, both the gains and losses in the water and
cultivation categories remained dormant during both
intervals. Similarly, the gains and losses in settlement
were active during all the intervals. Therefore, these
categories were stationary in terms of the annual inten-
sity of both gains and losses, but they were not perfect.
Additionally, the annual intensity of losses in forest were
dormant, whereas those for bare land and grassland were
active during both intervals. Thus, forest, bare land, and

grassland were stationary in terms of the annual inten-
sity of losses. In terms of the annual intensity of gains,
forest was active during the FTI but dormant during the
STI. Similarly, bare land and grassland were dormant
during the FTI and active during the STI. Therefore,
these categories were not stationary in terms of their
annual gain intensities.

TLI analysis

Land change in terms of gains and losses across the
catchments predominantly appeared between cultivated
land (gains) and grassland (losses). Thus, TLI analysis
was utilized to focus on the transition from other cate-
gories to cultivation and the transition from grassland to
all other categories. In short, transition to cultivation was
assessed first, followed by transition from grassland.

Transition Bto^ cultivation

Figure 5 shows the rate and transition intensity of cate-
gories that cultivation displaced annually. According to
the size of the area that cultivation gained annually,
gains were observed from grassland and then from bare
land, followed by settlement and forest (left side of
Fig. 5).

Similarly, the annual transition intensity indicated the
strength of the transitions and revealed that cultivation
targeted grassland during both time intervals and, to
some extent, bare land (STI) and settlement (FTI).
Hence, substantial gains in cultivation from grassland
during both time intervals and from bare land during the
STI were not caused by these categories’ relatively large
area at the initial time but rather by the gains in cultiva-
tion causing these categories to intensively lose area
(right side of Fig. 5). The large area transition from bare
land to cultivation during the FTI, which is represented
by the annual transition on the graph, was not practically
reflected by the annual transition intensity on the same
graph. Thus, unlike the STI, the large area losses from
bare land to cultivation during the FTI were attributed to
its relatively large area at the initial time. Thus, if all the
categories lost uniformly, then bare land would lose
more annually relative to its size.

The annual transition intensity of the graph also
indicated that settlement was displaced by cultivation
during the FTI but not during the STI. However, the bar
graph of the annual transition area of settlement ap-
peared short, indicating that even though this category
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was targeted, its contribution was small relative to its
initially small total area. The loss in this category to
cultivation during the FTI was difficult to discern. Nev-
ertheless, we expect that this result might have been
associated with the resettlement program during the
construction of the Dire dam water-supply project,
which was involved in the expropriation of settlement
land for the construction of the dam and a closure site for
a sanitary zone during the FTI. Although full data could
not be obtained, the resettlement program for the con-
struction of the Dire dam water-supply projects
displaced many households (Bayrau and Bekele 2007).
The resettled residents were provided, among other
compensations, 6 Eth. birr per sq. m, 250 sq. m of land
per household and 2000 Eth. Birr per household for
disturbances (Bayrau and Bekele 2007). Later, the clo-
sure fences have damaged because of a lack of proper
monitoring which let the locals to use part of the sanitary
zone for cultivation, as observed during the field cam-
paign used part of the sanitary zone for cultivation.

Stationarity during the transition to cultivation At the
level of transition to cultivation, no categories were
perfectly stationary over time because none of the annual
transition intensities equaled the annual uniform intensi-
ty. However, the gains in cultivation from grasslandwere
stationary over time in the intensity analysis’ definition

of the term. This result occurred because the gain in
cultivation targeted grassland during all the intervals.
However, bare land was avoided during the FTI and
targeted during the STI. Settlement was targeted during
the FTI and avoided during the STI for appropriation by
cultivation. Therefore, the transition to cultivation from
bare land and settlement was not stationary over time.
Similarly, forest and water (impossible to cultivate) were
entirely avoided by cultivation for appropriation during
the entire period; therefore, the transition to cultivation
from these categories was stationary.

Transitions Bfrom^ grassland

Figure 6 displays the results for the transitions from
grassland during both intervals, including the gains from
grassland for each of the gain categories. In terms of the
size of the annual transition, when grassland shrunk, the
largest transition was to cultivation, followed by smaller
transitions to bare land, settlement and forest. Similarly,
in terms of the annual transition intensities, the bars for
cultivation extended far to the right of the uniform line
during both the FTI and STI. However, the transition-
intensity bars for the remaining categories remained
short of the uniform line during both the FTI and STI.
Any grassland losses occurred tended to be mostly to
cultivation compared to any other categories across the

Fig. 5 Annual transition area and annual transition intensity to cultivation in the two time intervals: 1986–2000 and 2000–2015
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entire time interval. Thus, the intensive loss of grassland
targeted cultivation and avoided other categories over all
the time intervals. Hence, substantial gains in cultivation
from grassland did not occur because of this category’s
relatively large percentage on the landscape at the initial
time but mainly because of grassland being intensively
displaced by cultivation while avoiding other categories.

Stationarity during transitions from grassland When
grassland intensively decreased, any transitions in-
volved were targeting the cultivation category during
both the FTI and STI, and avoided all other categories
across the two intervals. Therefore, all the transitions
from grassland to other categories indicated stationarity
across the two time intervals. However, none of these
transitions were perfectly stationary.

Implications

Land change is necessary and essential for economic
development and social progress (Wu 2008). Land
change is perhaps the most pervasive socioeconomic
force that drives changes and provides many economic
and social benefits but often comes with substantial
costs to the environment and the degradation of ecosys-
tems. Deforestation, the expansion of built-up areas,
settlements, cultivation, and other human activities can
substantially alter the landscape. Such disturbances of

the land affect important ecosystem processes and ser-
vices that end up with wide-ranging and long-term
consequences. For example, cultivation practices have
potentially severe ecosystem consequences and can
cause water pollution. Runoff from agricultural lands
is a leading source of water pollution (Lubowski et al.
2006). Thus, the conversion of grasslands and forests to
cultivation exacerbates such consequences.

Urbanization obviously negatively affects water
quality because of increased sewagewater and industrial
wastewater (Wagner et al. 2013). Urban runoff often
transports toxic contaminants, sediment, and nutrients
and can cause both water pollution and large variations
in stream flow and water temperatures (Lubowski et al.
2006). Thus, the conversion of farmland and forests to
urban development further intensifies these problems.
Deforestation and the loss of grass cover affect the
hydrological cycle and increase soil erosion, runoff,
and flooding, which lead to siltation and water pollution.

The Legedadie and Dire reservoirs, which are the
major sources of potable water to the nation’s capital
city, Addis Ababa, are currently experiencing severe
pollution. The high pollution and sedimentation in these
reservoirs leads to water-supply shortages in the city.
Thus, land-change processes in the catchment facilitate
the physical removal of soil (Gebresamuel et al. 2010)
and accelerate the deterioration of the reservoirs’ water
quality and quantity (Kebede 2012). According to the

Fig. 6 Annual transition area and annual transition intensity from grassland during the two time intervals: 1986–2000 and 2000–2015
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World Bank information document,2 the water-
treatment costs of the municipality have increased
four-fold over the past decade. Today, the potable water
demand of the city is growing nearly three times faster
than the water-supply rate (MPR 2011), which is a
warning sign that sound planning and the management
of existing and additional water-supply sources are re-
quired. The land-change phenomena that have been
recently observed in the catchment have significant
implications for the water-supply systems in Addis
Ababa. Further studies should address the drivers of
perceived land changes from the perspective of under-
lying and related factors.

Conclusions

The rate of overall land change was fast during the FTI
but slower during the STI. Cultivation and settlements
were the major net-gain categories throughout the study
period. Nevertheless, the annual gain intensity was ac-
tive for settlements and dormant for cultivation. How-
ever, grassland and bare land were the dominant net-loss
categories during the entire study period. The annual
loss intensities in these categories were always active
throughout the FTI and STI. None of the land categories
showed perfect stationarity in all three levels of analysis
across the study period. However, stationarity did exist
(but not perfectly) in some categories among the three
levels of analysis. Moreover, the categories encountered
a one-step direct transition. Direct transitions were in-
volved from grassland to cultivation, from bare land to
cultivation, and from settlement to cultivation. All the
direct transitions from grassland to cultivation were
involved during both the FTI and the STI, which implies
that grassland was the most displaced category by cul-
tivation during both time intervals. The transition from
bare land to cultivation initiated during the STI, signi-
fying that the increasing population and pressure on land
resources led to a scarcity of cultivated land and, thus,
encroachment onto infertile bare surfaces.

This study supports the sound planning and manage-
ment of existing and additional water-supply sources.
Further studies that identify the drivers of land change
are imperative. Generally, intensity analysis helps

identify and measure the rate of land changes across
time intervals, identify dormant and active categories of
land change, and detect the most targeted and avoided
categories at the three levels of measurement.
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